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Abstract

This paper addresses the problem of understanding joint
attention in third-person social scene videos. Joint attention
is the shared gaze behaviour of two or more individuals on
an object or an area of interest and has a wide range of
applications such as human-computer interaction, educa-
tional assessment, treatment of patients with attention dis-
orders, and many more. Our method, Attention Flow, learns
joint attention in an end-to-end fashion by using saliency-
augmented attention maps and two novel convolutional at-
tention mechanisms that determine to select relevant fea-
tures and improve joint attention localization. We compare
the effect of saliency maps and attention mechanisms and
report quantitative and qualitative results on the detection
and localization of joint attention in the VideoCoAtt dataset,
which contains complex social scenes.

1. Introduction
Humans spend most of their lives interacting with each

other. In public or private spaces such as squares, concert
halls, cafes, schools, we share various aspects of everyday
life with one another. Through new technologies and grow-
ing distractive effects of social media, we divide our atten-
tion and memory into separate themes and may have dif-
ficulties to focus our attention onto our primary task. In
that regard, from both psychological and computer vision
perspectives, understanding a person’s attentional focus and
particular localization of joint attention present valuable op-
portunities.

Joint attention is very helpful in many different contexts.
For example, in classroom-based learning, teachers who en-
gage all students equally can enhance student achievement
[12, 20, 30, 39]. To investigate this, educational researchers
manually analyze student behaviours and especially the vi-
sual attention of students from video recordings of instruc-
tions and try to explain relationships between students’ and
teachers’ behaviour in a very time-consuming way. Another

(a) input image (b) saliency estimation

(c) face likelihood (d) co-attention likelihood
Figure 1. Sample of a social scene in (a), and the estimated
saliency map using [21] in (b). Our method, Attention Flow takes
only the input image in (a) and estimate the face likelihood (c) and
the co-attention likelihood (d).

example is in the context of attention disorders or autism
research. For instance, it has been shown that joint at-
tention and engagement, particularly in early ages, can be
taught using behavioural and developmental interventions
[25]. Thus, computer vision-based, automated joint atten-
tion analysis can be instrumental in behavioural psychology
to develop efficient training curricula for the treatment of
children with disabilities. Another useful application is in
the area of human-computer interaction and especially in-
teraction with autonomous systems. For example, robots
can infer gaze direction in case of a single person or joint
attention in groups and turn their heads into that direction.
Such information could be further used by robots to aug-
ment their collaboration with humans [2, 3].

Although an automated analysis of joint attention might
be beneficial for a variety of applications, related work in
the domain of computer vision is still quite limited. Few
works addressed a similar problem, namely social saliency
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in first and third-person view [27, 28, 29, 37]. Also, there
are examples of joint attention in human-robot interaction
[2, 9, 23, 24]. Whereas mapping gaze directions to a com-
mon plane [33] is a promising option in controlled settings,
it does not work in more challenging multimedia data. A re-
cent study [10] collected a large video dataset, which we use
in this study, and proposed a spatiotemporal neural network
to estimate shared attention. Even though we deal with the
same problem, we prefer to use the term of joint attention,
since shared attention, from a psychological perspective, in-
cludes further underlying cognitive processes and does not
necessitate joint gaze.

In this work, we propose a new approach that relates
saliency and joint attention to estimate locations of joint at-
tention in third person images or videos. Simply explained,
saliency is an estimation of fixation likelihood on an image.
In fact, due to the limited capacity of our visual system, we,
by the help of an attentional mechanism, focus on the most
relevant parts of a scene that are more distinctive than the
remaining. In essence, it is how our eye movements pro-
cess a scene, by employing various eye movements (such as
saccade and fixations) and visual search which is guided by
various bottom-up and top-down processes. Eye tracking-
based saliency information has supported many computer
vision tasks such as object detection [26], zero-shot image
classification [19], and image/video captioning [8, 43].

Figure 1 shows a sample of our approach. Despite the
usefulness of saliency maps, they do not necessarily repre-
sent the visual focus of people in the scene. However, dur-
ing the training time, we exploit saliency maps to encode
contextual information and create pseudo attention maps by
combining them with face locations and their joint atten-
tion point and learn to predict these likelihoods. Then, dur-
ing the test time, we can summarise the attentional focus of
people in given third-person social images or videos.

The main contributions of this paper are as follows:
1. It formulates the problem of inferring joint attention

as end-to-end training. Thereby, Attention Flow works
without additional dependencies such as face/head de-
tection, region proposals, or saliency estimation.

2. It explicitly learns saliency and joint attention of a
high-level inference task using saliency augmented
pseudo attention maps and Attention Flow network
with channel-wise and spatial attention mechanisms.

3. Experimental results verify the performance of our ap-
proach on large-scale social videos, namely the Video-
CoAtt dataset [10]. We also present a comparative ab-
lation analysis of saliency and attention modules.

2. Related Work
First, we review related research on gaze following and

joint attention. Then, we will discuss saliency estimation
and attention modules as we utilized them in our approach

to infer the joint attention.
Gaze Following: Recasens et al. [31] proposed a neu-

ral network which predicts the locations being gazed at in a
convolutional neural network using head location, an image
patch from head location, and an entire image. They also
created a large-scale dataset where persons’ eye and gaze
locations were annotated. They later extended their work to
use eye locations in a video frame and to predict gazed lo-
cation in future frames [32]. Gorji et al. [13] used a similar
approach to [31]; however, they leveraged gaze information
to boost saliency estimation and did not report gaze follow-
ing results.

Recently, Chong et al. [7] proposed a method to train
gaze following, head pose and gaze tasks based on a multi-
task learning approach by optimizing several losses on dif-
ferent tasks and datasets. They also included outside of the
frame labels and predicted visual attention. Nevertheless,
their approach estimates a single person’s visual attention,
not joint attention.

Joint vs. Shared Attention: Joint attention is a social
interaction that can occur in the forms of dyadic (looking
at each other) or triadic ways (looking at each other and an
object). Previous research shows that infants can discrimi-
nate between dyadic and joint attention interactions already
by the age of 3 months [36]. Joint attention is crucial for
language learning and imitative learning [1, 22]. In con-
trast to joint attention, shared attention does not require co-
attending physically or by gaze. For instance, co-attending
a television broadcast when looking at another point can be
an example of shared attention. An observer can understand
shared attention by using cues from the environment [35].
Shared attention is more related to the underlying cognitive
processes, whereas joint attention is dyadic and triadic gaze
oriented. Thus, in the following we will use the term of joint
attention since computer vision relies on seen visual cues.

Joint Attention: Looking into studies on the analy-
sis of attention in social interactions, [27] localized head-
mounted cameras in 3D using structure from motion and
triangulated joint attention. Later, they proposed a geomet-
ric model between joint attention and social formation cap-
tured from first and third person views [29]. These works
are noteworthy; however, they depend on first-person views
and thus cannot be applied in unconstrained third view im-
ages and videos. Also, they aim to predict only proximity
of joint attention (social saliency) and cannot present a good
understanding of joint attention.

Saliency Estimation: Saliency is a measure of spatial
importance, and it characterizes the parts of the scene which
stand out relative to other parts. Being salient can depend on
low-level features such as luminance, color, texture, high-
level features such as objectness, task-driven factor, and
center bias phenomenon. In the literature of saliency es-
timation, two approaches exist: (a) bottom-up methods,



Figure 2. Overview of our Attention Flow Our method is composed of three modules, (i) feature encoder, (ii) attention flow generator, and
(iii) saliency-based ground truth generation. It estimates a two-channel heatmap, which encodes faces and their co-attention likelihood in
the scene.

which aim to combine relevant information without prior
knowledge of the scene, and (b) top-down methods which
are more goal-oriented [5]. Availability of large-scale at-
tention datasets and deep learning approaches have sur-
passed all previous psychological and computational meth-
ods. Based on these recent studies, we know that humans
look at humans, faces, objects, texts [6] and also emotional
content [11]. The joint attention of humans in the scene is
also noticeable. For this reason, we will leverage saliency
information to learn joint attention.

Attention Mechanism: Computer-based estimation of
attention can also be approached by means of machine-
learning techniques, where models, with the help of spatial
or temporal attention mechanisms, are able to learn where,
when, and what to attend. The use of First use cases are
machine translation [4], image captioning [41], and action
classification [34].

Looking into attention mechanisms in images, Wang et
al. [38] incorporated attention modules into an encoder-
decoder network and performed well in an image clas-
sification task. Their method learns attention jointly in
3D. Another recent work exploited inter-channel relation-
ships. In Squeeze-and-Excitation blocks, they utilized
global average-pooled features to perform a channel-wise
calibration [17]. Recently, Woo et al. [40] proposed a con-
volutional attention module that leverages channel and spa-
tial relations separately.

The common point of these works is that they ad-
dress classification tasks by the use of spatial, temporal, or
channel-wise attention. In contrast, we propose novel con-
volutional attention mechanisms for two purposes: the first
is to learn feature selection along the channel dimension of
a learned representation, and secondly, to guide a regres-
sion network to focus on more relevant areas in the spatial
dimension. Instead of an architectural block in a classifica-

tion task as in [17], we utilize these blocks to benefit from
learned features better by applying an adaptive feature se-
lection and apply a further refinement on top of the heatmap
generation module.

3. Method
Our approach aims to infer joint attention in third person

social videos, where two or more people look at another
person or object. Figure 2 shows an overview of our work-
flow.

For a given social image or video frame, we estimate a
two-channel likelihood distribution, called Attention Flow.
One channel represents faces in the scene, whereas the sec-
ond channel is the likelihood of joint attention. In our work-
flow, raw images can be considered as a fusion of social
presence in the scene and the center of joint attention. Fig-
ure 2 depicts an example prediction of our approach. Our
Attention Flow network takes only raw images and detects
faces and their respective co-attention locations without de-
pending on any other information. In this section, we will
describe (1) the creation of pseudo-attention maps (§3.1),
which are augmented by saliency estimation; (2) learning
and inference (§3.2) by our Attention Flow network using
attention mechanisms, and provide (3) implementation de-
tails (§3.3).

3.1. Saliency Augmented Pseudo-Attention Maps

Consider persons interacting with each other in a social
scene. The question we address is how to infer their visual
attention focus from a third person’s view? Probably
the most accurate way to obtain this information would
be by employing mobile eye trackers or through gaze
estimation based on several high-resolution field cameras.
For the majority of use cases in our daily lives, where such



equipment cannot be employed, it would be very useful
to be able to retrieve such information solely based on
images or video material. For this reason, we first compute
pseudo-attention maps by leveraging saliency estimation.

More specifically, for an input image I , we have a num-
ber of detected head locations (xi, yi, wi, hi), where i =
1, 2, ..., n and n ≥ 0. To model social presence and the
respective co-attention location we use Gaussian distribu-
tions. For a head detection or co-attention bounding box,
this distribution is defined as

G(x+ δx, y + δy) ={
exp{−x

2+y2

2σ2 } ‖δx‖ ≤ w, ‖δy‖ ≤ h
0, otherwise

(1)

Then, we combine head locations and co-attention maps
with the estimated saliency maps, which is a precursor
of observer’s attention. Augmented by estimated saliency
maps S, the created pseudo-attention maps can be formal-
ized as follows:

H1 = α log
( ∑
i=1,..,n

Gfi
)
+ β log(S)

H2 = α log(Gcoatt) + β log(S)
(2)

In this way, we suppress the saliency to lower values
and ensure that if there are detected faces in the scene, they
and their respective co-attention point will correspond to the
maximum values of pseudo-attention maps in the first and
second channels.

By employing saliency estimation in our method, we
leverage the information of relative importance of the re-
gions which can be also salient for the persons in the scene.
Thus, it prevents unreliable training samples, where the
same object can appear as a co-attention point or zero when
we use only Gf and Gcoatt.

3.2. Attention Flow Network

Our model aims to solve three problems simultaneously:
(1) to locate faces in the given image, (2) to detect whether
joint attention exists or not, and (3) to predict the location
of joint attention.

As input we only use the raw images instead of any other
computational blocks, such as face detector, object detec-
tor or proposal networks. In this way, our Attention Flow
network can be used to retrieve images or videos accord-
ing to their social context in an efficient and fast way. The
two-channel saliency augmented pseudo-attention maps are
a compressed form of these objectives and provide all nec-
essary information. In images which do not contain faces,

the first channel of the attention map will give a lower like-
lihood, and they can be easily omitted from the further at-
tention analysis.

In case of two or more persons in the scene, the first
channel will represent the locations of their faces, whereas
the second channel will be either estimated saliency or joint
attention. Since pseudo-attention maps are a weighted sum-
mation of saliency estimation and joint attention, the typical
values of maximum points are informative about the pres-
ence of joint attention. Therefore, learning pseudo-attention
maps enables both detection and localization tasks simulta-
neously.

As it can be seen in Figure 2, we first extract a visual rep-
resentation of the scene using a pre-trained encoder network
on object classification tasks. Since inferring joint attention
is a complex problem even for humans, we leverage from an
encoder to understand the visual focus of the persons in the
image and for better generalization. The following block
is a generator network, which learns attention maps from
encoded representations. In order to avoid undesired out-
comes of rescaling, we preserve the original aspect ratio in
the input image and prefer fully convolutional architectures
in both encoder and generator networks.

As a loss function, we use the Mean Squared Error
(MSE) between the predicted attentions maps Ĥ and ground
truth pseudo saliency mapsH (created as described in §3.1):

LMSE =
1

H ·W
‖G(E(I)),H‖2 (3)

When compared to other vision tasks such as object de-
tection, segmentation or categorization, localizing the joint
attention is a very complex task because the same region,
i.e., a face or an object, can be the co-attention point in a
scene, but shortly for a short period of time, it might not
be true. In order to deal with these situations, our Atten-
tion Flow network can be guided towards the more relevant
regions. For this purpose, we propose two novel attention
mechanisms, namely channel-wise and spatial, and inves-
tigate their efficiency in the localization of joint attention.
Figure 3 shows these attention mechanisms.

The encoder output is typically the output of a convo-
lutional network which preserves spatial information in a
reduced resolution and contains a higher dimension in the
channel. The combination of these feature maps decides
whether objects are present in the image. Using the com-
plete encoded representation is redundant. According to the
context, some channels can have more importance in the
representation of the scene. Channel-wise convolutional at-
tention performs a feature selection by weighting channels
according to their contribution to the task.

On the other hand, spatial attention works as a refine-
ment on top of the final joint attention estimations. In con-
trast to the spatial attention mechanisms in classification,



Figure 3. Channel-wise feature attention and convolutional spatial
attention blocks.

which works as an importance map to maximize class acti-
vations, our spatial attention augments a heatmap regression
task.

3.3. Implementation Details

The Attention Flow network is composed of three main
modules: encoder, generator, and co-attention map genera-
tion blocks. In order to exploit the knowledge of large-scale
object classification tasks, we use a pre-trained ResNet-50
[15] as an encoder. Our final estimation is an attention map
and needs to preserve spatial relations as much as possi-
ble. Thus, we prefer dilated residual architecture, DRN-A-
50 [42] trained on ImageNet and keep the resolution 1/8 at
the output of the encoder.

As a generator, we used 9 residual blocks with instance
normalization. It takes inputs in the number of feature chan-
nels (2048) and outputs 2-channel attention maps. Then,
linear upsampling (x8) is applied.

The last block is co-attention map generation, and it is
used only in training time to produce ground truth attention
maps as described in §3.1. To estimate saliency, we used
Deep Gaze II [21]. Similar to other data-driven saliency
estimation methods, Deep Gaze II makes use of different
level of features and has an understanding of objectness. It
helps us to reduce the number of potential locations where
joint attention might exist.

The layers of channel-wise feature attention are depicted
in Figure 3(a). On the other hand, in the convolutional block
of spatial attention, we used a small residual network that
contains 3 residual blocks. As we applied spatial attention
at 1/8 resolution before upsampling, it does not introduce
an extensive computational cost to the entire workflow.

At training time, we used a SGD solver with a learning
rate of 0.01 in the generator block. In feature encoder, we
either lock the pre-trained parameters or applied fine-tuning
by a 10 times reduced learning rate.

4. Experiments

In this section, we first define the used dataset and per-
formance metrics. Then, we report the ablation studies
on the use of saliency estimation to create attention maps
and the effect of attention mechanisms and evaluate our ap-
proach on the VideoCoAtt dataset in comparison to related
approaches.

4.1. Experimental Setup

To evaluate our approach on joint attention estimation,
we used the Video Co-Attention dataset [10], which is
currently, to the best of our knowledge, the only avail-
able dataset on a joint attention task. The dataset contains
380 RGB video sequences from 20 different TV shows in
the resolution of 320×480. There are 250,030 frames in
the training set, 128,260 frames in the validation set, and
113,810 frames in the testing set. Each split comes from
different TV shows, and the dataset includes varying human
appearances and formation.

There are two tasks: detection and localization of joint
attention. Some images might not contain human bodies or
faces. In images with social content, subjects’ attentional
focus can be different. In the detection task, we report over-
all prediction accuracy in the test set of VideoCoAtt. On the
other hand, localization is evaluated on the test images with
joint attention locations. L2 distance in the input resolution
will be used.

By adopting the evaluation procedure from [10], we use
the Structured Edge Detection Toolbox [44] to generate
bounding box proposals. In the location, where our method
predicts joint attention, we apply a Non-Maximum Suppres-
sion (NMS) and take the one that intersects greatest with our
predicted estimation. It should be noted that our approach
can locate the center of joint attention. Thus, in order to
make a fair comparison with state-of-the-art methods, and
we used the bounding box proposal.

Furthermore, there may be no joint attention or more
than one joint attention location in an image. In order to
learn the detection and localization of joint attention at the
same time, we learn by all types of images without social
context (body or faces), with social context but without any
joint attention, and one or more joint attention. According
to Eq. 2, we limit the values of saliency to some range by
natural logarithm and a scale factor. Thus, our trained net-
work’s prediction can be joint attention if and only if the
predicted likelihood is greater than a threshold.

4.2. Results and Analysis

Saliency and joint attention Saliency models the atten-
tion of a third person who observes a video or image. On the
other hand, joint attention analysis aims to understand from
the perspectives of persons in these visual content. Due to



Figure 4. Example daily life scenes from VideoCoAtt dataset [10]
and their respective saliency estimations using Deep Gaze II [21].
The focus of shared visual attention does not necessarily need to
be the most salient region, but contains auxiliary information to
localize joint attention.

the geometric difference between the viewpoints and human
behavior in social scenes, the most salient part of images
may not be the focus of persons’ attention. Thus, we inves-
tigate how the co-attention locations are salient for different
saliency estimation methods.

We tested four saliency estimation methods, Itti and
Koch [18], GBVS [14], Signature [16], and Deep Gaze 2
[21]. The first three were chosen as representatives of clas-
sical computational saliency methods, whereas Deep Gaze
2 is a data-driven approach that depends on pre-trained fea-
ture representations on image classification. Deep Gaze
2’s mean saliency value in co-attention bounding boxes of
the training images, 96% of the time, are above the mean
saliency value of images, whereas it is the case in 44%, 71%
and 77% for Itti & Koch, GVBS, and Signature.

In most cases, persons in the scene interact with either
another person or an object. We regard that a data-driven
Deep Gaze 2 can result in higher saliency in co-attention
regions as it leverages a representation trained on object
classification. Thus, we prefer Deep Gaze 2 when creating
pseudo attention maps (§3.1).

Figure 4 shows some sample images and their estimated
saliency maps using Deep Gaze 2 [21], respectively. These
samples show us that the most salienct regions do not nec-
essarily contain the possible joint attention in the social im-
ages. However, they are a precursor of observer’s attention
who gaze at images.

A tiny visual change in the image can cause a big change
in the presence and location of joint attention. This is the
main reason why we leverage the saliency information. The
“raw image” results in [10] also validate our assumption.
One can suppose the use of saliency as introducing noise,
however, starting from the attention of observer and guid-
ing the attention of the network towards understanding the

attention of people inside the scene is a reasonable solution
and also makes the problem learnable.

Use of attention mechanisms Our Attention Flow net-
work learns joint attention by using a pre-trained represen-
tation and a generator as a regression task with mean square
loss. To supplement it, we proposed two attention mecha-
nisms. In contrast to existing attention mechanisms in the
literature, such as temporal in videos or text data, or spatial
in image categorization, we use two novel convolutional at-
tention blocks for feature selection and regression tasks. We
evaluate their performance on the joint attention localiza-
tion task.

The output of the dilated residual network that we used
as an encoder is 1/8 resolution of the input and its chan-
nel size is 2048. The channel-wise attention module, first
applies (4 × 6) average pooling, two convolutional layers
whose kernel sizes are 3× 3, 3× 2 with a stride of 2 and 1,
respectively. Their channel sizes are 512 and 2048, respec-
tively. The final output is in the size of C × 1 × 1 and the
original encoder output is channel-wise multiplied by these
importance weights.

Table 1 shows the results of joint attention localization
over the test set of VideoCoAtt dataset. We first tested the
following options: To use the encoder as pre-trained fea-
tures (no learning), to train the encoder in the same learn-
ing rate as the generator, and finetuning the encoder by a
reduced (×0.1) learning rate. Channel-wise attention aims
to apply feature selection in a learn representation. Thus,
we freeze the encoder when training channel-wise attention
and generator jointly. This approach reduces the mean L2

distance by 10.92 and 6.88 pixels in comparison with no
learning and finetuning, respectively.

Looking into our spatial attention, we applied spatial
attention to the output of the generator in 1/8 resolution
(40× 60) before linear upsampling. Spatial attention mod-
ule takes the estimation of joint attention maps (2×H×W )
and learns a spatial importance on top to better localize the
co-attention point. In spatial attention, we use a 3× 3 con-
volutional layer (64), batch normalization, a residual bottle-

Method L2 distance

Attention Flow
E(lr=0) 73.77
E(base_lr) 70.47
E(finetune) 69.72

channel − wise attention 62.84

spatial attention 65.70

Table 1. The effect of attention mechanisms in localization of joint
attention over the test set of VideoCoAtt dataset.



Figure 5. Qualitative results of Attention Flow Bounding boxes on sample test images (green) show the ground truth attentional focus.
The second and third columns are our estimated Attention Flow. In the third column, we also depicted the estimated bounding boxes
(cyan). Figure best viewed in color.

neck module and final convolutional layer to reduce channel
size back to 2. Then, a sigmoid activation is applied and the
previous predictions are weighted.

Before using attention mechanisms, we show how ac-
curate we can localize co-attention bounding boxes based
on our baseline approach that is depicted in Figure 2. Af-
ter creating saliency guided pseudo-attention maps that we
use as the label, our Attention Flow network has two train-
able blocks: an encoder, and a generator. The encoder is
initialized by ImageNet trained weights. Then, we com-
pared the following three cases: freeze the encoder and
train only generator (E(lr=0)), train encoder and generator
jointly (E(base_lr)), and learn encoder by transfer learning
with a reduced learning rate and train generator from scratch
(E(finetune)). As it can be seen in Table 1, transfer learn-
ing performs better than the approaches mentioned above
and achieves an L2 distance of 69.72.

Channel-wise attention, which is used between encoder
and generator, can predict joint attention with a mean dis-
tance of 62.84, whereas spatial attention after the generator
gives 65.70. Both attention mechanisms improve joint at-
tention localization by 4.02 and 6.88 points with respect to
our baseline network with encoder fine-tuned in Table 1.
The better performance of our channel-wise attention ap-
proach indicates that feature selection on top of deep learn-
ing features plays an important role. Weighting features per
channel improves their potential as a scene descriptor.

Table 2 shows our results in comparison with other meth-
ods in detection and localization of joint attention. Ran-

dom is acquired by drawing a Gaussian heatmap with a
random mean and variance. Fixed Bias uses joint atten-
tion bias in the TV shows (averaged over the VideoCoAtt
dataset) to sample predictions. An alternative to joint at-
tention is to make prediction per person using Gaze Fol-
low [31] and combine their attention likelihoods. Other
methods are from the reference of VideoCoAtt dataset [10]
and grouped into two categories: single frame and temporal
models. All of these methods [10] depend on head detec-
tion bounding boxes, region proposal model or saliency es-
timation even in test time. In terms of used modalities, our
approach is similar to their “Raw Image” approach.

Our Attention Flow network with a channel-wise atten-
tion detects joint attention with an accuracy of 78.1% over

Model Prediction Acc. L2 distance

Random 50.8% 286
Fixed Bias 52.4% 122

Gaze Follow [31] 58.7% 102
Raw Image [10] 52.3% 188
Only Gaze [10] 64.0% 108
Gaze+RP [10] 68.5% 74

Gaze+Saliency+LSTM [10] 66.2% 71
Gaze+RP+LSTM [10] 71.4% 62

Ours (w channel-wise att.) 78.1% 62.84

Table 2. Quantitative evaluation results with Prediction Accu-
racy and L2 Distance over the test set of VideoCoAtt dataset.



the entire test set of VideoCoAtt. Furthermore, it local-
izes co-attention bounding boxes with L2 distance of 62.84.
Our method performs significantly better than [10]’s single
frame with region proposals and gaze estimation. Further-
more, our approach is on par with Gaze+RP+LSTM and
outperforms it in terms of prediction accuracy by 6.7%.

We should note that our model makes this improvement
without using any head pose/gaze estimation branch, region
proposal maps, and also temporal information. [9]’s mod-
els with LSTM leverages 20-30-frame length sequences to
improve and smooth prediction performance. We focused
on learning an end-to-end model by using only single raw
frames. Therefore, as in Table 2, our model’s performance
(78.1% and 62.84) is far beyond [31] and [10]’s single
frame approaches which perform at best, Gaze+RP, 68.5%
and 74 in joint attention detection and localization, respec-
tively.

Figure 5 depicts the qualitative results of our Atten-
tion Flow network on several test images of VideoCoAtt.
The ground truth co-attention locations are shown in green
rectangles. Estimated face and co-attention likelihoods are
overlaid on images. The first channel of our attention maps
successfully locates both frontal and side faces. Looking
into co-attention estimation, predictions in groups with 3-4
persons are very good. Even though their distances from
ground truths are not very large, the last two examples (on
the right) are relatively broad. This is due to the difficulty
of scenes and a wider angle of view.

Another point that we should address is the distribution
of social formations in the VideoCoAtt dataset. As the
dataset is composed of acted scenes mostly from the TV
shows, it does not represent the real-world formations such
as in learning situations or group work. In addition, when
we inspect the failures, we observed that most of them were
from complicated cases where many people interest each
other. Their faces were far from the camera and difficult to
determine their activities (i.e., last two samples on the right
side of Figure 5). The possible direction in joint attention
analysis can be to create training corpus specialized in the
desired applications such as group work analysis, therapeu-
tic situations, or children’s gaze behaviors.

5. Conclusion
This study addressed a recently proposed problem, in-

ferring joint attention in third person social videos. Our At-
tention Flow network infers joint attention based on only
raw input images. Without using any temporal informa-
tion and other dependencies such as a face detector or head
pose/gaze estimator, we detect and localize joint attention
better than the previous approaches. We create pseudo-
attention maps by leveraging saliency information to better
detect and localize joint attention. Furthermore, we propose
two new convolutional attention blocks for feature selection

and attention map localization. As inferring joint attention
in an end-to-end fashion necessitates a high-level inference,
increasing the amount of training data or the network depth
will not help. We should note that these attention mech-
anisms, particularly channel-wise attention blocks for fea-
ture selection, are highly essential to select useful features
from learned representations and improve localization per-
formance of a heatmap regressor.

Understanding of joint attention by use of computer vi-
sion can help in a wide range of applications such as educa-
tional assessment, human-computer interactions, and ther-
apy for attention disorders and as a future work we extend
our approach to specialize in these applications and use as
a tool for human behavior understanding.
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