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Figure 1: MonoLayout: Given only a single image of a road scene, we propose a neural network architecture that reasons
about the amodal scene layout in bird’s eye view in real-time (30 fps). Our approach, dubbed MonoLayout can hallucinate
regions of the static scene (road, sidewalks)—and traffic participants—that do not even project to the visible regime of the
image plane. Shown above are example images from the KITTI [10] (left) and Argoverse [5] (right) datasets. MonoLayout
outperforms prior art (by more than a 20% margin) on hallucinating occluded regions.

Abstract

In this paper, we address the novel, highly challeng-
ing problem of estimating the layout of a complex urban
driving scenario. Given a single color image captured
from a driving platform, we aim to predict the bird’s
eye view layout of the road and other traffic partici-
pants. The estimated layout should reason beyond what
is visible in the image, and compensate for the loss of
3D information due to projection. We dub this problem
amodal scene layout estimation, which involves halluci-
nating scene layout for even parts of the world that are
occluded in the image. To this end, we present Mono-
Layout, a deep neural network for real-time amodal
scene layout estimation from a single image. We rep-
resent scene layout as a multi-channel semantic occu-
pancy grid, and leverage adversarial feature learning to
“hallucinate” plausible completions for occluded image
parts. We extend several state-of-the-art approaches
for road-layout estimation and vehicle occupancy esti-
mation in bird’s eye view to the amodal setup for rig-
orous evaluation. By leveraging temporal sensor fusion
to generate training labels, we significantly outperform
current art over a number of datasets. A video abstract
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of this paper is available here.

1. Introduction

The advent of autonomous driving platforms has led
to several interesting, new avenues in perception and
scene understanding. While most of the industrially-
led solutions leverage powerful sensors (eg. lidar, pre-
cision GPS, etc.), an interesting research question is to
push the capabilities of monocular vision sensors. To
this end, we consider the novel and highly challenging
task of estimating scene layout in bird’s eye view, given
only a single color image.

Humans have a remarkable cognitive capability of
perceiving amodal attributes of objects in an image.
For example, upon looking at an image of a vehi-
cle, humans can nominally infer the occluded parts,
and also the potential geometry of the surroundings
of the vehicle. While modern neural networks out-
perform humans in image recognition and object de-
tection [8,11,15,16,29,32, 41|, they still lack this in-
nate cognitive capablhty of reasoning beyond image
evidence. With this motivation, we propose MonoLay-
out, a neural architecture that takes as input a color
image of a road scene, and outputs the amodal scene
layout in bird’s eye view. MonoLayout maps road re-
gions, sidewalks, as well as regions occupied by other
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traffic participants such as cars, to bird’s eye view, in
a single pass, leveraging adversarial feature learning.

To the best of our knowledge, MonoLayout is the
first approach to amodally reason about the static and
dynamic objects in a scene. We show that, by using a
shared context to reason about scene entities, Mono-
Layout achieves better performance on each task when
compared to approaches that train only for a particular
task. On the task of amodal scene layout estimation,
MomnoLayout outperforms all evaluated baselines by a
significant margin on several subsets of the KITTT [10]
and the Argoverse [5] datasets. Further, MonoLayout
achieves state-of-the-art object detection performance
in bird’s eye view, without using any form of thresh-
olding / postprocessing. In summary, our contributions
are the following:

1. We propose MonoLayout, a practically motivated
deep architecture to estimate the amodal scene
layout from just a single image (c.f. Fig. 1).

2. We demonstrate that adversarial learning can be
used to further enhance the quality of the es-
timated layouts, specifically when hallucinating
large missing chunks of a scene (c.f. Fig. 1, Sec. 3).

3. We evaluate against several state-of-the-art ap-
proaches, and outperform all of them by a
significant margin on a number of established
benchmarks (KITTI-Raw, KITTI-Object, KITTI-
Odometry [10], Argoverse [5], c.f. Sec. 4, Table 1).

4. Further, we show that MonoLayout can also be ef-
ficiently trained on datasets that do not contain li-
dar scans by leveraging recent successes in monoc-
ular depth estimation. [12] (c.f. Table 2).

Please refer to the appendix for more results, where
we demonstrate that the extracted amodal layouts can
suit several higher level tasks, such as (but not limited
to) multi-object tracking, trajectory forecasting, etc.

2. Related Work

To the best of our knowledge, no published approach
has tackled the task of simultaneous road layout (static
scene) and traffic participant (dynamic scene) estima-
tion from a single image. However, several recent ap-
proaches have addressed the problem of estimating the
layout of a road scene, and several other independent
approaches have tackled 3D object detection. We sum-
marize the most closely related approaches in this sec-
tion.

Road layout estimation

Schulter et al. [34] proposed one of the first approaches
to estimate an occlusion-reasoned bird’s eye view road
layout from a single color image. They use monocular

depth estimation [12] as well as semantic segmenta-
tion to bootstrap a CNN that predicts occluded road
layout. They use priors from OpenStreetMap [26] to
adversarially regularize the estimates. More recently,
Wang et al. [38] builds on top of [34] to infer parame-
terized road layouts. Our approach does not require to
be bootstrapped using either semantic segmentation or
monocular depth estimation, and can be trained end-
to-end from color images.

Perhaps the closest approach to ours is MonoOc-
cupancy [24], which builds a variational autoencoder
(VAE) to predict road layout from a given image.
They also present results for extracting regions close
to roads (eg. sidewalk, terrain, non-free space). How-
ever, they reason only about the pixels present in the
image, and not beyond occluding obstacles. Also, the
bottleneck enforced by that leads to non-sharp, blob-
like layouts. On the other hand, MonoLayout esti-
mates amodal scene layouts, reasoning beyond occlu-
sion boundaries. Our approach produces crisp road
edges as well as vehicle boundaries, by leveraging ad-
versarial feature learning and sensor fusion to reduce
noise in the labeled ground-truth training data.

Object detection in bird’s eye view

There exist several approaches to 3D object detection
that exclusively use lidar [2,35,39], or a combination of
camera and lidar sensors [7,20,22]|. However, there are
only a handful of approaches that purely use monocular
vision for object detection [6,21,25]. Most of these
are two stage approaches, comprising a region-proposal
stage, and a classification stage.

Another category of approaches map a monocular
image to a bird’s eye view representation [30], thereby
reducing the task of 3D object detection to that of 2D
image segmentation. Recently, BirdGAN [306] lever-
aged adversarial learning for mapping images to bird’s
eye view, where lidar object detectors such as [2] were
repurposed for object detection.

Such techniques usually require a pre-processing
stage (usually a neural network that maps an image
to a bird’s eye view) after which further processing is
applied. On the other hand, we demonstrate that we
can achieve significantly higher accuracy by directly
mapping from the image space to objects in bird’s eye
view, bypassing the need for a pre-processing stage al-
together.

More notably, all the above approaches require
a post-processing step that usually involves non-
maximum suppression / thresholding to output ob-
ject detections. MonoLayout neither requires pre-
processing nor post-processing and it directly estimates
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Figure 2: Architecture: MonoLayout takes in a color image of an urban driving scenario, and predicts an amodal scene
layout in bird’s eye view. The architecture comprises a context encoder, amodal layout decoders, and two discriminators.

scene layouts that can be evaluated (or plugged into
other task pipelines).

3. MonoLayout: Monocular Layout Esti-
mation

3.1. Problem Formulation

In this paper, we address the problem of amodal
scene layout estimation from a single color image. For-
mally, given a color image Z captured from an au-
tonomous driving platform, we aim to predict a bird’s
eye view layout of the static and dynamic elements of
the scene. Concretely, we wish to estimate the follow-
ing three quantities. !

1. The set of all static scene points S (typically
the road and the sidewalk) on the ground plane
(within a rectangular range of length L and width
W, in front of the camera), regardless of whether
or not they are imaged by the camera.

2. The set of all dynamic scene points D on the
ground plane (within the same rectangular range
as above) occupied by vehicles, regardless of
whether or not they are imaged by the camera.

3. For each point discerned in the above step as being
occupied by a vehicle, an instance-specific labeling
of which vehicle the point belongs to.

3.2. MonoLayout

The problem of amodal scene layout estimation is
challenging from a neural networks standpoint in sev-
eral interesting ways. First, it necessitates that we
learn good visual representations from images that help
in estimating 3D properties of a scene. Second, it re-
quires these representations to reason beyond classic
3D reconstruction; these representations must enable
us to hallucinate 3D geometries of image regions that

1 Flat-earth assumption: For the scope of this paper, we as-
sume that the autonomous vehicle is operating within a bounded
geographic area of the size of a typical city, and that all roads in
consideration are somewhat planar, i.e., no steep/graded roads
on mountains.

are occupied by occluders. Furthermore, the learned
representations must implicitly disentangle the static
parts of the scene (occupied by road points) from the
dynamic objects (eg. parked/moving cars). With these
requirements in mind, we design MonoLayout with the
following components.

Maximum a posteriori estimation

We formulate the amodal road layout estimation prob-
lem as that of recovering the Maximum a posteriori
(MAP) estimate of the distribution of scene statics
and dynamics. Given the image Z, we wish to re-
cover the posterior P(S,D|T), over the domain £
(@, H, )=o)l < Li [ (z—z0)ll1 < W; (2—20) >
0}°. Note that the static (road) and dynamic (vehicle)
marginals are not independent. They are not indepen-
dent - they exhibit high correlation (vehicles ply on
roads). Hence, we introduce an additional condition-
ing context variable C that can be purely derived only
using the image information I, such that, S and D are
conditionally independent given C. We term this con-
ditioning variable as the "shared context" as it neces-
sarily encompasses the information needed to estimate
the static and dynamic layout marginals. This allows
the posterior to be factorized in the following form.

P(S,DIT) x P(S,D,C|T)

= P(S|lc,7) P(DIC,T) P(C|T)
—— ——— ——

static decoder dynamic decoder context encoder

(1)

In accordance with the above factorization of the
posterior, the architecture of MonoLayout comprises
three subnetworks (c.f. Fig. 2).

1. A context encoder which extracts multi-scale fea-

ture representations from the input monocular im-
age. This provides a shared context that captures

2This domain is a rectangular region in bird’s eye view. H is
the height of the camera above the ground.



static as well as dynamic scene components for
subsequent processing.

2. An amodal static scene decoder which decodes the
shared context to produce an amodal layout of the
static scene. This model consists of a series of
deconvolution and upsampling layers that map the
shared context to a static scene bird’s eye view.

3. A dynamic scene decoder which is architecturally
similar to the road decoder and predicts the vehicle
occupancies in bird’s eye view.

4. Two discriminators [17,33] which regularize the
predicted static/dynamic layouts by regularizing
their distributions to be similar to the true dis-
tribution of plausible road geometries (which can
be easily extracted from huge unpaired databases
such as OpenStreetMap [26]) and ground-truth ve-
hicle occupancies.

Feature Extractor

From the input image, we first extract meaningful im-
age features at multiple scales, using a ResNet-18 en-
coder (pre-trained on ImageNet [9]). We finetune this
feature extractor in order for it to learn low-level fea-
tures that help reason about static and dynamic as-
pects of the scene.

Static and dynamic layout decoders

The static and dynamic layout decoders share an iden-
tical architecture. They decode the shared context
from the feature extractor by a series of upsampling
layers to output a D x D grid each®.

Adversarial Feature Learning

To better ground the likelihoods P(S|C,Z), P(D|C,T)
(c.f. Eq. 1), we introduce adversarial regularizers (dis-
criminators) parameterized by 6g and 0p respectively.
The layouts estimated by the static and dynamic de-
coders are input to these patch-based discriminators
[17]. The discriminators regularize the distribution of
the output layouts (fake data distribution, in GAN [13]
parlance) to match a prior data distribution of conceiv-
able scene layouts (true data distribution). This prior
data distribution is a collection of road snippets from
OpenStreetMap [26], and rasterized images of vehicles
in bird’s eye view. Instead of training with a paired

3We tried training a single decoder for both the tasks, but
found convergence to be hard. We attribute this to the ex-
treme change in output spaces: while roads are large, contin-
uous chunks of space, cars are tiny, sparse chunks spread over
the entire gamut of pixels. Instead, we chose to train two de-
coders over a shared context, which bypasses this discrepancy in
output spaces, and results in sharp layout estimates.

OSM for each image, we choose to collect a set of di-
verse OSM maps representing the true data distribu-
tion of road layouts in bird’s eye view and train our
discriminators in an unpaired fashion. This mitigates
the need to have perfectly aligned OSM views to the
current image, making MonoLayout favourable com-
pared to approaches like [34] that perform an explicit
alignment of the OSM before beginning processing.

Loss function

The parameters ¢,r,1 of the context encoder, the
amodal static scene decoder, and the dynamic scene
decoder respectively are obtained by minimizing the
following objective using minibatch stochastic gradient
descent.

min £sup(¢7 v, w) + ‘Cadv (¢7 97 ¢) + Ediscr(¢7 V)
¢,v,%,05,0p

N
Lwp = D I1So0(T") = Spull? + 1D, (T') — DI
=1

‘Cadv(s? 157 ¢7 97 '(/J) = EGprake [(D(es) - 1)2]
+Epmpyare [(D(0) —1)7]

»Cdiscr(D; 0) = Z ]EGNPtma [(D(a) - 1)2}
0c{6p,9s}

+ Bomprarne [(D(0) = 1)7]

Here, Ly, is a supervised (L2) error term that pe-
nalizes the deviation of the predicted static and dy-
namic layouts (S, (Z)), Dy, (Z))) with their corre-
sponding ground-truth values (S};, D;). The adver-
sarial loss L4, encourages the distribution of layout es-
timates from the static/dynamic scene decoders (pfqke)
to be close to their true counterparts (pgrye). The dis-
criminator loss Lg;se is the discriminator update ob-
jective [13].

3.3. Generating training data: sensor fusion

Since we aim to recover the amodal scene layout,
we are faced with the problem of extracting training
labels for even those parts of the scene that are oc-
cluded from view. While recent autonomous driving
benchmarks provide synchronized lidar scans as well
as semantic information for each point in the scan, we
propose a sensor fusion approach to generate more ro-
bust training labels, as well as to handle scenarios in
which direct 3D information (eg. lidar) may not be
available.

As such, we use either monocular depth estima-
tion networks (Monodepth2 [12]) or raw lidar data
and initialize a pointcloud in the camera coordinate



Dataset Method Static Layout Estimation Vehicle Layout
Road | Sidewalk | Road + Sidewalk
mloU mloU occl mloU mloU | mAP
MonoOccupancy [24] 56.16 18.18 28.24 - -
KITTI Raw Schulter et al. [34] 68.89 30.35 61.06 - -
MonoLayout-static (Ours) 73.86 | 32.86 67.42 - -
MonoOccupancy 64.72 12.08 34.87 - -
KITTI Odometry MonoLayout-static [(O]urs) 80.08 | 42.66 72.46 - -
MonoOccupancy-ext - - - 20.45 | 22.59
. Mono3D - - - 17.11 | 29.62
KITTI Object OFT | [] ] - - - 25.24 | 34.69
MonoLayout-dynamic (Ours) - - - 26.08 | 40.79
KITTI Tracking MonoLayout (Ours) 53.94 - - 24.16 | 36.83
Argoverse MonoOccupancy-ext 32.70 - - 16.22 | 38.66
MonoLayout (Ours) 58.33 - - 32.05 | 48.31

Table 1:

Quantitative results: We evaluate the performance of MonoLayout on several datasets, on amodal scene

layout estimation. As there is no existing baseline that simultaneously estimates static (road/sidewalk) as well as dynamic

(vehicle) layout, we evaluate under multiple settings. On the KITTI Raw and KITTI Odometry [
| dataset, we evaluate MonoLayout-dynamic. On the KITTI Tracking [10]

MonoLayout-static. On the KITTI Object |

| datasets, we evaluate

and Argoverse [5] datasets, we evaluate MonoLayout, the full architecture that estimates both static and dynamic layouts.
We outperform existing approaches by a significant margin, on all metrics.

frame. Using odometry information over a window of
W frames, we aggregate/register the sensor observa-
tions over time, to generate a more dense, noise-free
pointcloud. Note that, when using monocular depth
estimation, we discard depths of points that are more
than 5 meters away from the car, as they are noisy. To
compensate for this narrow field of view, we aggregate
depth values over a much larger window size (usually
40 — 50) frames.

The dense pointcloud is then projected to an occu-
pancy grid in bird’s eye view. If ground-truth semantic
segmentation labels are available, each occupancy grid
cell is assigned the label based on a simple majority
over the labels of the corresponding points. For the
case where ground-truth semantic labels are unavail-
able, we use a state-of-the-art semantic segmentation
network [32] to segment each frame and aggregate these
predictions into the occupancy grid.

For vehicle occupancy estimation though, we rely on
ground-truth labels in bird’s eye view, and train only
on datasets that contain such labels®.

4. Experiments

To evaluate MonoLayout, we conduct experiments
over a variety of challenging scenarios and against mul-
tiple baselines, for the task of amodal scene layout es-
timation.

4For a detailed description of the architecture and the training
process, we refer the reader to the appendix

4.1. Datasets

We present our results on two different datasets -
KITTTI [10] and Argoverse [5]. The latter contains a
high-resolution semantic occupancy grid in bird’s eye
view, which facilitates the evaluation of amodal scene
layout estimation. The KITTI dataset, however, has
no such provision. For a semblance of ground-truth,
we register depth and semantic segmentation of lidar
scans in bird’s eye view.

To the best of our knowledge, there is no published
prior work that reasons jointly about road and ve-
hicle occupancies. However, there exist approaches
for road layout estimation [24,34], and a separate set
of approaches for vehicle detection [6,30]. Further-
more, each of these approaches evaluate over different
datasets (and in cases, different train/validation splits).
To ensure fair comparision with all such approaches, we
organize our results into the following categories.

1. Baseline Comparison: For a fair comparison
with state-of-the-art road layout estimation tech-
niques, we evaluate performance on the KITTI
RAW split used in [34] (10156 training images,
5074 validation images). For a fair compari-
sion with state-of-the-art 3D vehicle detection ap-
proaches we evaluate performance on the KITTI
3D object detection split of Chen et al. [6] (3712
training images, 3769 validation images).

2. Amodal Layout Estimation: To evaluate lay-
out estimation on both static and dynamic scene
attributes (road, vehicles), we use the KITTI
Tracking [10] and Argoverse [5] datasets. We an-
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Figure 3: Static layout estimation: Observe how MonoLayout performs amodal completion of the static scene (road

shown in

, sidewalk shown in gray. MonoOccupancy [24] fails to reason beyond occluding objects (top row), and does

not hallucinate large missing patches (bottom row), while MonoLayout(Ours) is accurately able to do so. Furthermore,
even in cases where there is no occlusion (row 2), MonoLayout(Ours) generates road layouts of much sharper quality. Row
3 show extremely challenging scenarios where most of the view is blocked by vehicles, and the scenes exhibit high-dynamic

range (HDR) and shadows.

notate sequences from the KITTI Tracking dataset
for evaluation (5773 training images, 2235 valida-
tion images). Argoverse provides HD maps as well
as vehicle detections in bird’s eye view (6723 train-
ing images, 2418 validation images).

3. Temporal sensor fusion for supervision: We
then present results using our data generation ap-
proach (c.f. Sec. 3.3) on the KITTI Odometry
dataset. This also uses the dense semantic segmen-
tation labels from the Semantic KITTI dataset [1].

4.2. Approaches evaluated

We evaluate the performance of the following ap-
proaches.

e Schulter et al.: The static scene layout estimation
approach proposed in [34].

e MonoOccupancy: The static scene layout estima-
tion approach proposed in [24].

e Mono3D: The monocular 3D object detection ap-
proach from [0].

e OFT: A recent, state-of-the-art monocular bird’s
eye view detector [30].

e MonoOccupancy-ext: We extend MonoOccupancy
[24] to predict vehicle occupancies.

e MonoLayout-static: A version of MonoLayout
that only predicts static scene layouts.

e MonoLayout-dynamic: A version of MonoLayout
that only predicts vehicle occupancies.

e MonoLayout: The full architecture, that predicts
both static and dynamic scene layouts.

4.3. Static layout estimation (Road)

We evaluate MonoLayout-static against Schulter et
al. [34] and MonoOccupancy [24] on the task of static
scene (road/sidewalk) layout estimation. Note that
Schulter et al. assume that the input image is first
passed through monocular depth estimation and se-
mantic segmentation networks, while we operate di-
rectly on raw pixel intensities. Table 1 summarizes
the performance of existing road layout estimation ap-
proaches (Schulter et al. [34], MonoOccupancy [24])
on the KITTI Raw and KITTI Odometry benchmarks.
For KITTI Raw, we follow the exact split used in Schul-
ter et al. and retrain MonoOccupancy and MonoLay-
out-static on this train split. Since the manual anno-
tations for semantic classes for KITTI Raw aren’t pub-
licly available, we manually annotated sequences with
semantic labels (and will make them publicly avail-
able).

From Table 1 (c.f. “KITTI Raw"), we see that
MonoLayout-static outperforms both MonoOccupancy
[24] and Schulter et al. [34] by a significant margin.
We attribute this to the strong hallucination capabil-
ities of MonoLayout-static due to adversarial feature
learning (c.f. Fig. 3). Although Schulter et al. [34] use
a discriminator to regularize layout predictions, they



seem to suffer from cascading errors due to sequential
processing blocks (eg. depth, semantics extraction).
MonoOccupancy [24] does not output sharp estimates
of road boundaries by virtue of being a variational au-
toencoder (VAE), as mean-squared error objectives and
Gaussian prior assumptions often result in blurry gen-
eration of samples [23]. The hallucination capability
is much more evident in the occluded region evalua-
tion, where we see that MonoLayout-static improves
by more than 10% on prior art.

4.4. Dynamic (vehicle) layout estimation

To evaluate vehicle layout estimation in bird’s eye
view, we first present a comparative analysis on the
KITTI Object [10] dataset, for a fair evaluation with
respect to prior art. Specifically, we compare against
Orthographic Feature Transform (OFT [30]), the cur-
rent best monocular object detector in bird’s eye view.
We also evaluate against Mono3D [(], as a baseline.
And, we extend MonoOccupancy [24] to perform vehi-
cle layout estimation, to demonstrate that VAE-style
architectures are ill-suited to this purpose. This com-
parison is presented in Table 1 (“KITTI Object”).

We see again that MonoLayout-dynamic outper-
forms prior art on the task of vehicle layout estima-
tion. Note that Mono3D [6] is a two-stage method
and requires strictly additional information (semantic
and instance segmentation), and OFT [30] performs
explicit orthographic transfors and is parameter-heavy
(23.5M parameters) which slows it down considerably
(5 fps). We make no such assumptions and operate on
raw image intensities, yet obtain better performance,
and about a 6x speedup (32 fps). Also, MonoOccu-
pany [24] does not perform well on the vehicle occu-
pancy estimation task, as the variational autoencoder-
style architecture usually merges most of the vehicles
into large blob-like structures (c.f. Fig. 4).

4.5. Amodal scene layout estimation

In the previous sections, we presented results in-
dividually for the tasks of static (road) and dynamic
(vehicle) layout estimation, to facilitate comparision
with prior art on equal footing. We now present results
for amodal scene layout estimation (i.e., both static
and dynamic scene components) on the Argoverse [5]
dataset. We chose Argoverse [5] as it readily provides
ground truth HD bird’s eye view maps for both road
and vehicle occupancies. We follow the train-validation
splits provided by [5], and summarize our results in Ta-
ble 1 (“Argoverse”).

We show substantial improvements at nearly 20%
on mloU vis-a-vis the next closest baseline [24]. This
is a demonstration of the fact that, even when perfect

ground-truth is available, approaches such as MonoQOc-
cupancy [24] fail to reach the levels of performance as
that of MonoLayout. We attribute this to the shared
context that encapsulates a rich feature collection to
facilitate both static and dynamic layout estimation.
Note that, for the Argoverse [5| dataset we do not
train our methods on the ground-truth HD maps, be-
cause such fine maps aren’t typically available for all
autonomous driving solutions. Instead, we train our
methods using a semblance of ground-truth (generated
by the process described in Sec 3.3), and use the HD
maps only for evaluation. This validates our claim that
our model, despite being trained using noisy ground
estimates by leveraging sensor fusion, is still able to
hallucinate and complete the occluded parts of scenes
correctly as shown in Fig 6.

4.6. Ablation Studies
Using monocular depth as opposed to lidar

While most of the earlier results focused on the scenario
where explicit lidar annotations were available, we turn
to the more interesting case where the dataset only
comprises monocular images. As described in Sec 3.3,
we use monocular depth estimation (MonoDepth2 [12])
and aggregate/register depthmaps over time, to pro-
vide training signal. In Table 2, we analyze the impact
of the availability of lidar data on the performance of
amodal scene layout estimation.

We train MonoOccupancy [24] and MonoLayout-
static on the KITTI Raw dataset, using monocular
depth estimation-based ground-truth, as well as lidar-
based ground-truth. While lidar based variants per-
form better (as is to be expected), we see that self-
supervised monocular depth estimation results in rea-
sonable performance too. Surprisingly, for the per-
frame case (i.e., no sensor fusion), monocular depth
based supervision seems to fare better. Under similar
conditions of supervision, we find that MonoLayout-
static outperforms MonoOccupancy [24].

Impact of sensor fusion

The sensor fusion technique described in Sec 3.3 greatly
enhances the accuracy of static layout estimation. Ag-
gregating sensor observations over time equips us with
more comprehensive, and noise-free maps. Table 2
presents results for an analysis of the performance ben-
efits obtained due to temporal sensor fusion.

Impact of adversarial learning

With the discriminators, we not only improve qual-
itatively (sharper/realistic samples) (c.f. Fig 7), but
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Figure 4: Dynamic layout estimation: We show vehicle occupancy estimation results on the KITTI [10] 3D Object
detection benchmark. From left to right, the column corresponds to the input image, MonoOccupancy [24], Mono3D [6],
OFT [30], MonoLayout (Ours), and ground-truth respectively. While the other approaches miss out on detecting cars (top
row), or split a vehicle detection into two (second row), or stray detections off road (third row), MonoLayout (Ours) produces

crisp object boundaries while respecting vehicle and road geometries.

Figure 5: Impact of sensor fusion: Col 1: Input images.
Col 2: Using per-frame monocular depth, Col 3: Using per-
frame lidar depth, Col 4: Sensor-fused monocular depth,
Col 5: Sensor-fused lidar depth. (Refer to Table 2 and
Sec. 4.6 for more details)

also gain significant performance boosts. This is even
more pronounced on Argoverse [5], as shown in Table 3.
In case of vehicle occupancy estimation, while using a
discriminator does not translate to quantitative perfor-
mance gains, it often results in qualitatively sharper,
aesthetic estimates as seen in Fig 7.

Timing analysis
We also show the computation test time of our method

as compared to other baslines in Table 6. Unlike Schul-
ter et al. [34], our network does not require discrimi-

Supervision MonoOccupancy-ext | MonoLayout-static (Ours)
Per-frame monocular depth 56.16 58.87
Sensor-fused monocular depth 64.81 66.71
Per-frame lidar 44.29 48.29
Sensor-fused lidar 71.67 73.86

Table 2: Monocular depth: If lidar data is unavailable,
we leverage self-supervised monocular depth estimation to
generate training data for MonoLayout-static and achieve
reasonable static layout estimation (rows 1-2). Although
performance is inferior to the case when lidar is available
(rows 3-4), this is not unexpected. Sensor fusion: Re-
gardless of the modality of depth information, sensor-fusing
depth estimates over a window of 40 frames dramatically
improves performance (row 2, row 4).

Dataset MonoLayout-no-disc MonoLayout

Road | Vehicle (mIoU) | Vehicle (mAP) | Road | Vehicle (mIoU) | Vehicle (mAP)

KITTI Raw 70.95 - - 73.86
KITTI Object - 26.25 37.66 - 25.47 41.52
Argoverse 51.66 32.84 44.07 58.33 32.06 48.31

Table 3: Effect of discriminator: Adding a discrimina-
tor clearly translates to an accuracy boost in static (road)
layout estimation. For vehicle occupancy estimation, while
a quantitative boost is not perceived, the generated layouts
are sharper, and aesthetic as opposed to when not using
the discriminator (c.f. Fig. 7)

nator to be used during inference time. It achieves
real time inference rate of approx. 32 Hz for an input
size 3 X 512 x 512 and an output size 2 x 128 x 128



MonoLayout  GroundTruth

Figure 6: Amodal scene layout estimation on the Ar-
goverse [5] dataset. The dataset comprises multiple chal-
lenging scenarios, with low illumination, large number of
vehicles. MonoLayout is accurately able to produce sharp
estimates of vehicles and road layouts. (Sidewalks are not
predicted here, as they aren’t annotated in Argoverse).

MonoLayout-no-disc ~ MonoLayout

Figure 7: Effect of adversarial learning: As can be
clearly seen here, the discriminators help enhance both the
static (road) layout estimation (top and middle rows), as
well as produce sharper vehicle boundaries (bottom row).
While this translates to performance gains in static layout
estimation (c.f. Table 3), the gains in dynamic layout esti-
mation are more cosmetic in nature.

on an NVIDIA GeForce GTX 1080Ti GPU. Note that
in MonoLayout the static and dynamic decoders are
executed in parallel, maintining comparable runtime.
MonoLayout is an order of magnitude faster than pre-
vious methods, making it more attractive for on-road
implementations.

5. Discussion and conclusions

This paper proposed MonoLayout, a versatile deep
network architecture capable of estimating the amodal
layout of a complex urban driving scene in real-time.

Method Parameters | Computation Time
Mono3D 0] >>20 M 0.24 fps
OFT [30)] 23.5 M <5 fps
MonoOccupancy [24] 275 M 15 fps
Schulter et al. [31] >>20 M <3 fps
MonoLayout (Ours) 19.6M 32 fps

Table 4: A comparative study of infrence time of various
methods. MonoLayout is about 2x faster and significantly
more accurate compared to prior art. (c.f. Table 1).

In the appendix, we show several additional results, in-
cluding extended ablations, and applications to multi-
object tracking and trajectory forecasting. A promis-
ing avenue for future research is the generalization of
MonoLayout to unseen scenarios, as well as incorpo-
rating temporal information to improve performance.
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A. Implementation Details

In this section, we describe the network architecture
and training procedure in greater detail.

A.l. Network Architecture

MonoLayout comprises the following four blocks: a
feature extractor, a static layout decoder, dynamic lay-
out decoder, and two discriminators.

Feature extractor

Our feature extractor is built on top of a ResNet-
18 encoder®. The network usually takes in RGB im-
ages of size 3 x 512 x 512 as input, and produces a
512 x 32 x 32 feature map as output. In particular,
we use the ResNet-18 architecture without bottleneck
layers. (Bottleneck layers are absent, to ensure fair
comparision with OFT [30]). This extracted feature
map is what we refer to as the shared context.

Layout Decoders

We use two parallel decoders with identical architec-
tures to estimate the static and dynamic layouts. The
decoders consists 2 convolution layers and take as input
the 512 x 32 x 32 shared context. The first convolution
block maps this shared context to a 128 x 16 x 16 fea-
ture map, and the second convolution block maps the
output of the first block to another 128 x 8 x 8 feature
map.

At this point, 4 deconvolution (transposed convo-
lution) blocks are applied on top of this feature map.
Each block increases spatial resolution by a factor of
2, and decreases the number of channels to 64,32, 16,
and O respectively, where O is the number of channels
in the output feature map (O € {1,2} for the static
layout decoder, and O = 1 for the dynamic layout de-
coder). This results in an output feature map of size
O x128x128. We also apply a spatial dropout (ratio of
0.4) to the penultimate layer, to impose stochastic reg-
ularization. The output 128 x 128 grid corresponds to
a rectangular region of area 40m x 40m on the ground
plane.

Discriminators
The discriminator architecture is inspired by
Pix2Pix [18]. We found the patch based regular-

ization in Pix2Pix to be much better than a standard
DC-GAN [28]. So, we use patch-level discriminators

5We also tried other feature extraction / image-image archi-
tectures such as UNet and ENet, but found them to be far inferior
in practice.
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that contain four convolution layers (kernel size 3 x 3,
stride 2), that outpus an 8 x 8 feature map. This
feature map is passed through a tanh nonlinearity and
used for patch discrimination.

A.2. Training details

We train MonoLayout with a batch size of 16 for
200 epochs using the Adam [19] optimizer with initial
learning rate 5e — 5. The input image is reshaped to
3x512x512 and further augmented to make our model
more robust. Some of the augmentation techniques
we use include random horizontal flipping and color
jittering.

A.3. Metrics used
Road layout estimation

To evaluate estimated road layouts, we use
intersection-over-union (IoU) as our primary metric.
We split IoU evaluation into two parts and measure
IoU for the entire static scene, as well as IoU for
occluded regions (i.e., regions of the road that are
occluded in the image and were hallucinated by
MonoLayout).

Vehicle occupancy estimation

While most approaches to vehicle detection evalu-
ate only mean Average Precision (mAP), it has been
shown to be a grossly inaccurate measure of how
tight a bounding box is [14]. We hence adopt mean
Intersection-over-Union (mlIoU) as our primary basis
of evaluation. To ensure a fair comparision with prior
art, we also report mAP.%. (Note that, since we are
evaluating object detection in bird’s eye view, and not
in 3D, we use the mIoU and mAP, as is common prac-
tice [6, 10]). This choice of metrics is based on the
fact that MonoLayout is not an object “detection" ap-
proach; it is rather an object occupancy estimation ap-
proach, which calls for mIoU and mAP evaluation. We
extend the other object “detection" approaches (such
as pseudo-lidar based approaches [30,35,40]) to the oc-
cupancy estimation setting, for a fair comparision.

B. Timing analysis

We also show the computation test time of our
method as compared to similar methods in Table 6.
Our network does not require discriminator to be used
during inference time. It achieves real time inference
rate of approx. 30 Hz for an input image with a resolu-
tion of 512 * 512 pixels and an output map with 128 *
128 occupancy grid cells using a Nvidia GeForce GTX

6We outperform existing methods under both these metrics



Method Vehicle (mAP) | Vehicle (mIoU) | Road (mlIou) | Frame Rate
ENet + Pseudo lidar input(Monodepth2) 0.37 0.24 0.62 12.34 fps
PointRCNN + Pseudo lidar input(Monodepth2) 0.43 0.26 - 5.76 fps
MonoLayout (Ours) 0.41 0.26 0.80 32 fps
‘ AVOD + Pseudo lidar input(PSMNet) (Stereo) ‘ 0.59 0.43 - < 1.85 fps

Table 5: Comparision with Pseudo-lidar [37]:
lidar |

We also evaluate MonoLayout against several variants of pseudo-
| approaches. While the usage of increasingly heavy processing blocks for pseudo-lidar variants improves accuracy,

it drastically increases computation time. On the other hand, MonoLayout offers—by far—the best mix of accuracy and
runtime for real-time applications. Also note that the comparision with AVOD + Pseudo-lidar (PSMNet) is unfair, since it

uses stereo disparities.

1080Ti GPU. The code for [34] is not publicly available,
and the computation time is based on the PSMNet [1]
backbone they use. Here again the proposed method is
almost an order faster than previous methods making
it more attractive for on-road implementations.

Method Parameters | Computation Time
OFT [30] 24.5 M 2 fps
MonoOccupancy [24] 27.5 M 15 fps
Schulter et al. [34] >>20 M < 3 fps
MonoLayout (Ours) 19.6M 32 fps

Table 6: A comparative study of test computation time on
NVIDIA GeForce GTX 1080Ti GPU for different methods
on the images of KITTI [10] RAW dataset.

C. Comparision with pseudo-lidar

There is another recent set of approaches to object
detection in bird’s eye view—pseudo-lidar approaches
[37]. At the core of these approaches lies the idea that,
since lidar object detection works exceedingly well,
monocular images can be mapped to (pseudo) lidar-like
maps in bird’s eye view, and object detecion networks
tailored to lidar bird’s eye view maps can readily be
applied to this setting. Such approaches are primarily
geared towards detecting objects in lidar-like maps.

MonoLayout, on the other hand, intends to estimate
an amodal scene layout, and to do so, it must reason
not only about vehicles, but also about the static scene
layout. Table 5 compares MonoLayout with a set of
pseudo-lidar approaches, in terms of vehicle occupancy
estimation and road layout estimation. Specifically, we
evaluate the following pesudo-lidar based methods.

1. ENet + Pseudo-lidar input (Monodepth2): Uses

an ENet [27]-style encoder-decoder architecture
that uses Monodepth2 [12] to get monocular depth
estimates.
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2. PointRCNN + Pseudo-lidar input (Monodepth2):
Uses a PointRCNN [35] architecture (a two-stage
object detector comprising a region proposal net-
work, and a classification network) to detect vehi-
cles in bird’s eye view.

3. AVOD + Pseudo-lidar input (PSMNet): A
stereo, supervised method. Uses the aggregated
view object detector AVOD [?] and pseudo-lidar

input computed from a disparity estimation net-
work (PSMNet [4]).

The comparision is shown in Table 5. The PointR-
CNN [35] and AVOD [20] are tailored specifically for
object detection, and hence cannot be repurposed to
estimate road layouts. However, the ENet [27] archi-
tecture can, and we trained it for the task of road
layout estimation. We observe that, among all ap-
proaches, MonoLayout is the fastest (about an order of
magnitude speedup over pseudo-lidar methods). Fur-
thermore, the accuracy is competitive, if not greater,
compared to pseudo-lidar based approaches.

We also evaluate against a stereo pseudo-lidar base-
line (AVOD + pseudolidar PSMNet [1]). By virtue
of using stereo images, and being supervised on the
KITTI Object dataset 7, achieves superior perfor-
mance. However, the comparision is unfair, and is pro-
vided only for a reference, to enable progress in amodal
layout estimation from a monocular camera.

Another shortcoming of pseudolidar-style ap-
proaches is that, it is not possible to learn visual (i.e.,
image intensity based) features that are extremely use-
ful in road layout estimation).

D. Application: Trajectory forecasting

One of the use-cases of MonoLayout is to forecast fu-
ture trajectories from the estimated amodal scene lay-
out.

"Monodepth2 [12] is unsupervised, and has not been finetuned
on the KITTI Object dataset



We demonstrate accurate trajectory forecasting per-
formance by training a Convolutional LSTM that op-
erates over the estimated layouts from MonoLayout.
Specifically, we adopt an encoder-decoder structure
similar to ENet [27], but add a convolutional LSTM
between the encoder and the decoder. We also add a
convolutional LSTM over each of the skip connections
present in ENet.

We pre-condition the trajectory forecasting network
for 1 second, by feeding it images, and then predict
future trajectories for the next 3 seconds. Note that,
when predicting future trajectories, no images are fed
to the forecasting network. Rather, the network oper-
ates in an autoregressive manner, by producing an out-
put trajectory estimate, and using this estimate as the
subsequent input We also tried predicting static scene
layouts, to forecast future static scenes, but without
any success, owing to the high variability in static scene
layouts. The resultant model, called MonoLayout-
forecast, works in real-time, and accurately forecasts
the future trajectory of a moving vehicle, as shown in
Fig. 8. As with the layout estimation task, the forecast
trajectories are confined to a 128 x 128 grid, equivalent
to a 40m x 40m square area in front of the ego-vehicle.

E. Application: Multi-object tracking

Further, we propose an extension to generate accu-
rate tracks of multiple moving vehicles by leveraging
the vehicle occupancy estimation capabilities of Mono-
Layout. We also construct a strong baseline multi-
object tracker using the open-source implementation
from IoU-Tracker [3] as a reference. We term this base-
line BEVTracker. Specifically, we use disparity esti-
mates from stereo cameras, semantic and instance seg-
mentation labels, to segment and identify unique cars
in bird’s eye view. We then run IoU-Tracker [3] on
these estimates.

We demonstrate in Table 7 that MonoLayout out-
performs BEVTracker [3], without access to any
such specialized information (disparity, semantics, in-
stances). Instead, we run a traditional OpenCV blob
detector on MonoLayout vehicle occupancy estimates,
and use the estimated instances to obtain the coor-
dinates of the center of the vehicle. We then use
a mazximum-overlap data association strategy across
time, using intersection-over-union to measure overlap.
We run our approach on all 24 sequences of the KITTI
Tracking (train) benchmark, and present the results in
Table 7.
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F. More qualitative results

Additional qualitative results of joint static and dy-
namic scene layout estimation are presented in Fig. 9
and Fig. 10.

G. Shortcomings

Despite outperforming several state-of-the-art ap-
proaches and achieving real-time performance, Mono-
Layout also sufferes a few shortcomings. In this section,
we discuss some failure cases of MonoLayout and also
some negative results. Please watch the supplementary
video for additional results.

G.1. Failure cases

Fig. 11 shows a few scenarios in which MonoLay-
out fails to produce accurate layout estimates. Recall
that MonoLayout uses adversarial feature learning to
estimate plausible road layouts. We leverage Open-
StreetMap [26] to randomly extract road patches to
use as the true data distribution. However, no such
data is available for sidewalks, and this results in a few
artifacts.

As shown in the bottom row of Fig. 11, high-
dynamic range and shadows coerce the network into
predicting protrusions along these directions. Also, as
shown in the top row, sometimes, sidewalk predictions
are not coherent with road predictions. In the bot-
tom row, we show failure cases for vehicle occupancy
estimation.

G.2. Negative results

Produced below is a list of experiments that the au-
thors tried, but were unsuccessful. We hope this will
expedite progress in this nascent field, by saving fellow
researchers significant amounts of time.

These did not work!

e Using a single encoder-decoder network to esti-
mate both static and dynamic scene layouts.

e Using an ENet [27] or a UNet [31] architecture as
opposed to the ResNet-18 encoder and customized
decoder we employed.

e Using a DCGAN |

discriminators [18].

| as opposed to patch-

e Employing a variational autoencoder-style latent
code between the encoder and decoder (to allow
for sampling)



Method Mean Error in Z (m) | Mean Error in X (m) | Mean L2 error (m)
BEVTracker (Open-source [3], enhanced with stereo, semantics, etc.) 1.08 0.51 1.27
MomnoLayout (Ours) 0.23 0.47 0.58

Table 7: Multi-object tracking performance: We show the preformance of MonoLayout on a multi-object tracking
task, in bird’s eye view. The comparision is unfair as BEVTracker uses strictly more information (disparities, semantic
segmentation, instance segmentation). However, MonoLayout does not employ any such privileged information, and as
such uses OpenCV blob detection to identify instances, and a mazimum-IloU-overlap data association framework. These
estimtaes are obtained over 24 sequences of the KITTI tracking benchmark. (Caveat: We only evaluate tracking accuracies
for cars within a 40m x 40m square region around the ego-vehicle, as MonoLayout estimates are confined to this region).

ROl . (et bt ek
| Procicied rajecisy

Figure 8: Trajectory forecasting: MonoLayout-forecast accurately estimates future trajectories of moving vehicles. (Left):
In each figure, the magenta cuboid shows the initial position of the vehicle. MonoLayout-forecast is pre-conditioned for
1 seconds, by observing the vehicle, at which point (cyan cuboid) it starts forecasting future trajectories (shown in blue).
The ground-truth trajectory is shown in red, for comparision. (Right): Trajectories visualized in image space. Notice how
MonoLayout-forecast is able to forecast trajectories accurately despite the presence of moving obstacles (top row), turns
(middle row), and merging traffic (bottom row).

14
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Figure 9: Dynamic layout estimation on KITTI [10]: Additional qualitative results for dynamic scene layout estimation on the
KITTI [10] dataset. From left to right, the column corresponds to the input image, MonoOccupancy [24], Mono3D [6], OFT [30],
MonoLayout (Ours), and ground-truth respectively. MonoLayout (Ours) produces crisp object boundaries while respecting vehicle
and road geometries.
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Figure 10: Qualitative results on Argoverse: Additional qualitative results on the Argoverse [5] dataset (road shown
in , vehicles shown in green. MonoLayout (center column) uses both static and dynamic layout discriminators and
produces sharp estimates, and is robust to varying weather conditions, high dynamic range (HDR), and shadows.
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Sidewnlk

Vehicle

Figure 11: Failure cases: This figure highlights a few cases in which MonoLayout produces incorrect layout estimates.
Adverse lighting conditions and sharp turns, in some cases effect sidewalk estimation accuracy(Row 1). Also, multiple
near-by vehicles in an image get merged into a single estimate, at times. (As shown in Row 2, only when the ego-vehicle
gets close to the two cars parked in close vicinity to each other, the model is able to distinguish the two cars.)
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