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Abstract
Inspired by human vision, we propose a new periphery-fovea multi-resolution driving model that predicts vehicle
speed from dash camera videos. The peripheral vision module of the model processes the full video frames in
low resolution. Its foveal vision module selects sub-regions and uses high-resolution input from those regions
to improve its driving performance. We train the fovea selection module with supervision from driver gaze.
We show that adding high-resolution input from predicted human driver gaze locations significantly improves
the driving accuracy of the model. Our periphery-fovea multi-resolution model outperforms a uni-resolution
periphery-only model that has the same amount of floating-point operations. More importantly, we demonstrate
that our driving model achieves a significantly higher performance gain in pedestrian-involved critical situations
than in other non-critical situations.

1 Introduction
Vision-based deep autonomous driving models have shown
promising results recently [1, 2, 3, 4]. However, their per-
formance is still far behind humans. An important aspect of
human vision that distinguishes it from existing autonomous
driving models is its multi-resolution property, with distinct
foveal and peripheral structures that carry high-resolution and
low-resolution information, respectively. The human fovea cov-
ers approximately two degrees of the central visual field; the rest
of our visual field, i.e., the periphery, is blurry. Eye movements,
guided by visual attention, are therefore necessary to gather high
resolution foveal information from different parts of the visual
field. One advantage of this design is its efficiency: resources
are saved for particularly salient or important regions in what
are otherwise redundant visual scenes. Driving scenes seem to
be highly redundant, as well, considering the large portions of
uniform areas such as the sky, buildings, and roads. Inspired
by the human vision, we propose a new periphery-fovea multi-
resolution driving model and show that it achieves higher driving
accuracy and better efficiency.

The first challenge in designing this model is to effectively com-
bine the global low-resolution peripheral vision and the local
high-resolution foveal vision that dynamically scans across the
frame. We propose two ways to merge the two visions by either
using a combined peripheral-foveal planner or two independent
visual planners. We will compare their performances and discuss
the differences.

The second challenge is how to dynamically guide foveal vi-
sion to the critical locations. The foveal location selection is a
non-differentiable process. A potential solution is to use rein-
forcement learning, but it could take a great deal of data and
training. We choose a different approach: guiding the foveal
vision to where human drivers would gaze. Recently proposed
large driver gaze datasets [5, 6] and driver gaze prediction mod-
els [5, 7, 8] allow us to predict human gaze for our videos.
However, it has not been tested whether predicted human gaze
or even ground-truth human gaze can benefit autonomous driv-
ing models. Note that in order to be highly efficient, the human
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Figure 1: Our model uses the low-resolution full video frame as
the peripheral visual input to predict human driver gaze and gets
high-resolution image patches from the predicted gaze locations.
It then combines the peripheral input and foveal input to predict
the vehicle speed at high accuracy and high efficiency.

gaze can only be predicted using low-resolution input images,
which makes the question even more complex.

A unique property of human gaze is that it reveals the relative
urgency of locations and objects of potential interest. Different
moments during driving and different road agents are not equally
urgent. Human drivers look at the most critical regions when
emergencies arise. Incorporating human gaze into a driving
model may not only increase its average performance but also
bring even higher performance gain at critical moments. We use
a driving video dataset that has human-annotated explanations
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about the driver’s actions. We demonstrate that our driving
model guided by human gaze shows even higher performance
gain in the cases where reactions to pedestrians are necessary
than in other presumably less critical cases.

2 Related work

End-to-End Learning for Self-driving Vehicles. Recent suc-
cesses [3, 4] suggest that a driving policy can be successfully
learned by neural networks with the supervision of observation
(i.e.raw images)-action (i.e.steering) pairs collected from human
demonstration. Bojarski et al. [3] trained a deep neural network
to map a dashcam image to steering controls, while Xu et al. [4]
utilized a dilated deep neural network to predict a vehicle’s dis-
cretized future motions. Hecker et al. [9] explored an end-to-end
driving model that consists of a surround-view multi-camera
system, a route planner, and a CAN bus reader. Explainability
of deep neural networks has been increasingly explored. Kim et
al. [1, 2] explored an interpretable end-to-end driving model
that explains the rationale behind the vehicle controller by visu-
alizing attention heat maps and generating textual explanation.
Recently, Wang et al. [10] introduced an instance-level attention
model that finds objects (i.e., cars, and pedestrians) that the
network needs to pay attention to.

Incorporating human visual attention. Attention mecha-
nisms have shown promising results in various computer vi-
sion tasks, e.g., image caption generation [11], visual question
answering (VQA) [12], and image generation [13]. Most of
these models do not supervise the generated attention by human
attention. Recently, Das et al. [14] has shown that explicitly
supervising the attention of VQA models by human attention
improves the models’ VQA performance. Zhang et al. [15] has
trained a network that predicts human attention for Altari games
and shown that incorporating the predicted human attention into
the policy network significantly improves the action prediction
accuracy. However, incorporating human visual attention in
driving tasks has not yet been explored. Besides, the previously
mentioned attention models use high-resolution images to gen-
erate attention. Predicting attention using low-resolution input
and combining global low-resolution input and attended local
high-resolution input has not been explored.

Predicting driver attention. Recently, deep driver attention
prediction models [5, 7, 8] have been proposed. The input of
these models is video recorded by cameras mounted on the
car. The output is an attention map indicating the driver’s gaze
probability distribution over the camera frame. These models are
trained using large-scale driver attention datasets [5, 6] collected
with eye trackers, and they use high-resolution input images
(576×1024 or higher) to achieve optimal accuracy. How reliable
the prediction would be using low-resolution input images have
not been explored.

3 Periphery-FovealMulti-ResolutionModel

Here, we propose a novel driving model that mimics the key
aspect of the human vision system: the peripheral and the foveal
systems. Our model mainly uses the peripheral vision to predict
a control command (i.e., speed) in an end-to-end manner, but

we add the foveal vision to improve the model’s perceptual
primitives. While the peripheral vision sees the whole but blurry
image, the foveal vision fixates on parts of the images with
a higher resolution. To this end, our model needs three main
capabilities: (1) the ability to extract perceptual primitives to
manipulate the vehicle’s behavior, (2) the ability to find out
image regions where the model needs to attend with a high
resolution (i.e., pedestrians, traffic lights, construction cones,
etc), (3) the ability to augment the peripheral vision system with
the foveal vision.

As we summarized in Figure 2, our model consists of four parts:
(1) the peripheral visual encoder, which extracts high-level con-
volutional visual features (CNN here); (2) the human attention
prediction module, which learns the behavior of human attention
as a supervised learner over image-gaze pairs collected from
humans; (3) the foveal visual encoder, which selects fovea loca-
tions, crops the high-resolution fovea image patches and extracts
visual features from the high-resolution image patches; (4) the
peripheral-foveal planner, which combines the peripheral and
foveal visual features and predicts a low-level control command,
i.e.a vehicle’s speed.

3.1 Peripheral Visual Encoder

We sample the video frames at 10 Hz. The original frame images
have a resolution of 720× 1280 pixels. We downsample them to
72× 128 pixels as the input for the peripheral vision input of our
model. The raw pixel values are subtracted by [123.68, 116.79,
103.939] as [16].

The low-resolution frame images are first passed to the periph-
eral feature encoder. This feature encoder consists of an Ima-
geNet pre-trained AlexNet and three additional convolutional
layers. The weights of the pre-trained AlexNet are fixed and not
further trained during the training of our driving model. Each
of the additional convolutional layers is followed by Batch Nor-
malization and Dropout. The output feature maps of this feature
encoder have a size of 3×7 pixels and 8 channels. These feature
maps are then upsampled to 9 × 16 pixels for the next steps.

3.2 Human Attention Prediction Module

The low-resolution frame images are also passed to a human
attention prediction module to determine where human drivers
would gaze. We used the model described in [5] as our human
attention prediction module. This model consists of a fixed
ImageNet pre-trained AlexNet, three additional convolutional
layers, and a Convolutional Long Short-Term Memory (ConvL-
STM) module. Since both the peripheral feature encoder and
the human attention prediction module start with passing the
low-resolution through the same fixed AlexNet, this passway is
shared by both modules. The human attention prediction module
is separately trained using a human driver attention dataset and
is fixed during the training of the driving model. The predicted
human attention maps have a resolution of 9 × 16 pixels.

3.3 Foveal Visual Encoder

The foveal visual encoder chooses two independent fovea loca-
tions for each input frame. In the following experiments, the
fovea locations can be chosen in four different ways: random
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Figure 2: Our model consists of four parts: (1) the peripheral visual encoder, which extracts high-level convolutional visual features
(CNN here); (2) the human attention prediction module, which learns the behavior of human attention as a supervised learner over
image-gaze pairs collected from humans; (3) the foveal visual encoder, which selects fovea locations, crops the high-resolution
fovea image patches and encodes them into visual features; (4) the peripheral-foveal planner, which combines the peripheral and
foveal visual features and predicts a low-level control command, i.e., a vehicle’s speed.

selection over the frame, always selected from the frame center,
a top-k method and a sampling method. The top-k method se-
lects the two pixels that have the highest attention intensities in
each predicted 9 × 16-pixel human attention map. The sampling
method samples two fovea locations following the predicted
attention probability distribution modulated by a temperature
factor described by the following formula:

pi =
exp (log qi/T )∑
j exp (log q j/T )

(1)

where pi is the probability of the i-th pixel being selected as the
fovea location, qi is the predicted human attention probability
at the i-th pixel, and T is the temperature factor. A temperature
factor of 1 means sampling faithfully following the predicted
human attention distribution. A higher temperature factor means
sampling more uniformly. A lower temperature factor means
sampling more from the pixel that has the highest human atten-
tion intensity.

An image patch of 240 × 240 pixels centered at each selected
fovea location is cropped out from the 720 × 1280-pixel high-
resolution frame image. The images patches are then downsized
to 185 × 185 pixels to fit the receptive fields and strides of the
following encoder network. The raw pixel values are subtracted
by [123.68, 116.79, 103.939] as [16] before being passed to
the encoder network. The foveal visual encoder has the same
structure as the peripheral visual encoder except for the kernel
sizes and strides of the additional convolutional layers.

3.4 Peripheral-Foveal Planner

The peripheral-foveal planner further processes the peripheral
and foveal features to predict speed for the future. It first creates

a foveal feature map that has the same size as the peripheral
feature map (9× 16 pixels, eight semantic channels). The foveal
feature map is initialized with zeros. Each foveal image patch
is encoded into a 3 × 3 × 8 feature patch by the foveal feature
encoder. These foveal feature patches (yi, j) are inserted into the
foveal feature map (x f

i, j) at locations corresponding to the foveal
locations:

x f
i+h, j+w = yi, j (2)

where h and w are the height and width coordinates of the top-
left corner of the fovea patch.

In the cases where the feature patches of two foveae overlap,
the maximum of each pair of overlapping feature values is kept.
Then the peripheral feature maps (xp

i, j) and foveal feature maps

(x f
i, j) are concatenated along the semantic dimension to form the

combined feature maps (xc
i, j).

xc
i, j =

xp
i, j

x f
i, j

 (3)

The combined feature maps are then processed by a ConvLSTM
layer and four fully-connected layers to predict a continuous
value for the vehicle speed.

4 Experiments

In this section, we first present the datasets we used and our
training and evaluation details. Then, we make quantitative
and qualitative analyses of our proposed periphery-fovea multi-
resolution driving model.
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Figure 3: Examples of different approaches of foveal region selection. We present the original input video frame and the predicted
human attention heat map at the left column. Our baseline model only uses peripheral vision (without fovea). We studied four
different types of foveal vision selection: random, central, top-2, and sampling. Top-2 and sampled foveae are chosen according to
the predicted human attention. For better visualization, we present orange boxes to indicate the foveal regions.

4.1 Datasets

We used the Berkeley DeepDrive eXplanation (BDD-X)
dataset [2] to train and evaluate the driving models. This dataset
contains human-demonstrated dashboard videos of urban driving
scenes in various weather and lighting conditions. The dataset
also provides a set of time-stamped sensor measurements, e.g.,
vehicle’s velocity and course, and time-stamped human anno-
tations for vehicle action descriptions and justifications. The
training set contains 5,588 videos and the validation and testing
sets contain 698 videos. Most videos are 40 seconds long.

We used the Berkeley DeepDrive Attention (BDD-A) dataset [5]
to train the human attention prediction module. The BDD-A
dataset contains driving videos collected in the same way as the
BDD-X dataset. (But the two datasets do not share the same
videos.) The BDD-A dataset also provides human attention
map annotations. The human attention maps were collected
by averaging multiple drivers’ eye movements while they were
watching the videos and performing a driver instructor task [5].
The attention maps highlight where human drivers need to gaze
when making driving decisions in the particular situations. The
BDD-A dataset contains 926, 200 and 303 videos in the training,
validation and testing sets, respectively. Each video is approxi-
mately 10-second-long.

4.2 Training and Evaluation Details

The AlexNet modules in the driving models were pre-trained
on ImageNet and frozen afterwards. The human attention pre-
diction module was trained following [5] except that the input
image resolution was 72 × 128 pixels. Other parts of the driv-
ing models were trained end-to-end from scratch. We used the
Adam optimization algorithm [17], dropout [18] at a drop rate
of 0.2, and the Xavier initialization [19]. The training of our
model took approximately one day on one NVIDIA GeForce
GTX 1080 GPU. Our implementation is based on Tensorflow
[20] and our code will be publicly available upon publication.
The models were set to predict the vehicle speed one second
in the future. We used three metrics, i.e., the mean absolute

error (MAE), the root-mean-square error (RMSE), and the cor-
relation coefficient (Corr), to compare the prediction against
the ground-truth speed signals to evaluate the performances of
the driving models. At inference time, the longest single video
duration that our GPU memory could process was 30 seconds.
Therefore, during training, unless otherwise stated, the original
testing videos that were longer than 30 seconds were divided
into 30-second-long segments and the remaining segments.

4.3 Effect of the foveal vision guided by human attention

To test the effect of the foveal vision guided by human atten-
tion, we compared our peripheral-foveal multi-resolution driving
model against three baseline models (Figure 3). The first base-
line model (no fovea) uses only low-resolution full video frames
as input and has only the peripheral branch of the driving model
we introduced. The second baseline model (random fovea) select
fovea locations randomly over the video frame. The third base-
line model (central fovea) always assigns its two foveae to the
central 240 × 480 region of the frame. The central-fovea model
is a strong baseline because the central regions mostly cover the
area the vehicle is driving into and human drivers mostly localize
their attention around the center of the road. We compared these
baseline models with our peripheral-foveal multi-resolution driv-
ing model guided by human attention (human-guided fovea).
The fovea locations were selected using the top-2 method. The
mean testing errors of these models are summarized in Table 1.
Our driving model outperformed all of the baseline models. This
result suggests that the foveal vision guided by predicted human
attention can effectively improve the model’s accuracy. Note
that the random-fovea model performed worse than the no-fovea
model. This suggests that adding high-resolution foveal input
would not necessarily improve the model. If fovea locations are
not selected in a proper way, it may add distracting information
to the driving model.
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Table 1: We compared the vehicle control (i.e.speed) predic-
tion performance of four different types of vision systems. We
evaluated their performance in terms of the mean absolute error
(MAE), the root-mean-square error (RMSE), and the correlation
coefficient (Corr).

Model
Speed (km/h)

MAE RMSE Corr

Peripheral vision only (no fovea, baseline) 9.6 14.4 .594
w/ Random fovea 11.2 15.4 .520
w/ Central fovea 9.4 13.9 .592
w/ Human-guided fovea (ours) 9.1 13.4 .596

Table 2: Mean testing errors of our driving model using different
fovea selection methods.

Fovea selection Temperature Likelihood Overlap MAE RMSE Corr

Top-2 fovea - 0.48 92% 9.1 13.4 .596
Sampled fovea 0.5 0.46 55% 8.6 12.7 .622
Sampled fovea 1 0.37 32% 8.5 12.4 .626
Sampled fovea 2 0.18 11% 8.7 12.9 .621

4.4 Sampling according to multi-focus human attention

Human attention can be multi-focus [21], especially during
driving when the driver needs to react to multiple road agents
or objects. A concern about using the top-2 method to select
fovea locations is that it may select adjacent locations around
a single focus in one frame and also select locations from the
same focus in the next frames. To address this concern, we
brought a sampling method to select fovea locations (described
in the Model section). It samples fovea locations according
to the predicted human attention probability distribution and
modulated by a temperature factor (Figure 3). We tested our
driving model using both the top-2 method and the sampling
method and experimented with three different temperature factor
values for the sampling method. To quantify to how much extend
the fovea selection followed the predicted human attention, we
calculated the likelihood of the selected foveae. To quantify
the redundancy in fovea location selection, we calculated the
overlap ratio between the fovea patches of adjacent frames. The
results are summarized in Table 2. The results showed the trend
that a balance between high likelihood and low overlap would
result in the optimal performance. In our experiments, sampling
completely following the predicted human attention distribution
(i.e., temperature factor T = 1) showed the best prediction
accuracy.

4.5 Comparison between combined and dual
peripheral-foveal planner

The previously presented design of our peripheral-foveal plan-
ner combines peripheral and foveal features to process with
one ConvLSTM network. We call this design the combined
peripheral-foveal planner design. In this design, the peripheral
and foveal feature maps need to have the same resolution in
order to be concatenated along the semantic dimension (9 × 16
in our case). This constraint determines that the feature patch

Table 3: Mean testing errors of our driving models using either
combined or dual peripheral-foveal planner.

Model MAE RMSE Corr

Ours w/ Dual Peripheral-foveal Planner 9.4 13.2 .602
Ours w/ Combined Peripheral-foveal Planner 8.5 12.4 .626

P = 0.002

P < 0.001 P < 0.001

Model

Driving moment

0.0

Pedestian-involved Others

No Fovea

Ours
2.5

5.0
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Figure 4: Testing errors of the no-fovea baseline model and
our model at pedestrian-involved moments and other moments
when the vehicle speed is under 10 m/s (36 km/h). Statistical
significance levels given by permutation tests are noted in the
graph.

corresponding to one foveal input image patch cannot be bigger
than 3 × 3 pixels.

To break this constraint, we experimented with a different design,
i.e., the dual peripheral-foveal planner structure. It bypasses the
uni-resolution constraint by processing the peripheral and foveal
features with separate ConvLSTM networks. It generates a
feature patch of 14× 14 pixels for each foveal input image patch.
In stead of inserting the foveal feature patch into a bigger grid
that corresponded to the full video frame, it adds the positional
encoding [22] of the fovea location into the fovea features to
preserve the fovea location information.

We tested the dual planner and compared it against the combined
planner. The dual planner did not show higher accuracy than
the combined planner (Table 3). We think this is because the
combined planner also have its own unique advantages. In the
combined planner design, the fovea location is clearly indicated
by the location of the features in the feature map. Besides, the
foveal features and peripheral features that are calculated from
the same frame region are aligned into one vector in the com-
bined feature maps. So the kernel of the upcoming ConvLSTM
network can process the peripheral and foveal features of the
same region jointly.

4.6 Larger performance gain in pedestrian-involved critical
situations

The textual annotations of the BDD-X dataset allowed us to
identify the critical situations where the driver had to react to
pedestrians. These pedestrian-involved situations were defined
as the video segments where the justification annotations con-
tained the word "pedestrian", "person" or "people". We tested
whether our model showed a stronger performance gain in the
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Figure 5: Examples showing how our model and the no-fovea model react in pedestrian-involved situations. From left to right:
original high-resolution frame images, low-resolution frame images used as peripheral vision input, predicted human attention
maps, selected high-resolution image patches as foveal vision input, and ground-truth and predicted speed curves. The vertical
dashed lines in the speed curve graphs indicate the moments depicted by the frame images. The textual action and justification
human annotations are displayed below the images of each example.

pedestrian-involved situations than in the remaining situations
which should be on average less critical.

We calculated the mean prediction errors of our model and the
no-fovea model separately for the pedestrian-involved video
segments and the remaining segments in the test set. Note that
the prediction error correlates with the vehicle speed and the
pedestrian-involved segments only covered a speed range up
to 10 m/s (36 km/h). For a fair comparison, we excluded the
frames in which the vehicle speed was higher than 10 m/s from
this analysis. In order to determine the statistical significance
levels, we ran permutation tests that could address the concern
that the frames of a video are not independent.

The results are summarized in Figure 4. Our model showed
significant performance gains in both the pedestrian-involved
situations and the remaining situations (P value < 0.001). More
importantly, the gain achieved in the pedestrian-involved situ-
ations was significantly bigger than the gain in the remaining
situations (P value = 0.002). Some examples are demonstrated
in Figure 5.

4.7 Multi-resolution vs. Uni-resolution

We further compared the performance of our periphery-fovea
multi-resolution model with an uni-resolution periphery-only
design, i.e., allocating all the resources to increase the resolution
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Figure 6: Testing errors of the medium-resolution periphery-
only model and our model calculated using different lengths of
testing videos. The two models have the same amount of FLOPs
at inference time, but our model consistently showed greater
driving accuracy than the competing model.

of the periphery vision without adding foveal vision. The num-
ber of floating-point operations (FLOPs) of our multi-resolution
model for processing every video frame at inference is 3.4 bil-
lion. A medium-resolution periphery-only model that matches
the same amount of FLOPs has a periphery input resolution
size of 209 × 371 pixels. The structure of this model was the
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same as the periphery branch of our model except one change
due to the enlarged input resolution. The periphery encoder of
our model output feature maps of 3 pixels and then upsampled
them to 9 × 16 pixels. The periphery encoder of the medium-
resolution model output feature maps of 12 × 22 pixels and then
downsampled them to 9 × 16 pixels. We tested this medium-
resolution periphery-only (medium-res periphery) model against
our periphery-fovea multi-resolution model. For a thorough
analysis, we did the comparison for multiple rounds. In each
round we cut the test videos into segments no longer than a
certain length and tested the models using those segments. We
tried segment lengths from two seconds up to 30 seconds (the
longest single segment that we could process with our GPU
memory). The prediction errors of the two models measured in
MAE are summarized in Figure 6. The prediction error of the
medium-res periphery model kept increasing with increasing
video length, while the prediction error of our model stayed
more stable. Our model showed smaller prediction errors than
the medium-res periphery model with all video lengths except
with 2 seconds the two models showed the same error. Over all,
the result suggested that the periphery-fovea multi-resolution de-
sign would achieve better driving accuracy than a uni-resolution
periphery-only design given the same amount of computation.

5 Conclusion

We have proposed a new periphery-fovea multi-resolution driv-
ing model that combines global low-resolution visual input and
local high-resolution visual input. We have shown that guid-
ing the foveal vision module by predicted human gaze signifi-
cantly improves driving accuracy with high efficiency. The per-
formance gain is even more significant in pedestrian-involved
critical situations than other average driving situations. Our
approach has demonstrated a promising avenue to incorporate
human attention into autonomous driving models to handle cru-
cial situations and to enhance the interpretability of the model’s
decisions.
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