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Abstract

Image denoising methods must effectively model, implic-
itly or explicitly, the vast diversity of patterns and textures
that occur in natural images. This is challenging, even
for modern methods that leverage deep neural networks
trained to regress to clean images from noisy inputs. One
recourse is to rely on “internal” image statistics, by search-
ing for similar patterns within the input image itself. In this
work, we propose a new method for natural image denois-
ing that trains a deep neural network to determine whether
patches in a noisy image input share common underlying
patterns. Given a pair of noisy patches, our network pre-
dicts whether different sub-band coefficients of the origi-
nal noise-free patches are similar. The denoising algorithm
then aggregates matched coefficients to obtain an initial es-
timate of the clean image. Finally, this estimate is pro-
vided as input, along with the original noisy image, to a
standard regression-based denoising network. Experiments
show that our method achieves state-of-the-art color image
denoising performance, including with a blind version that
trains a common model for a range of noise levels, and does
not require knowledge of level of noise in an input image.
Our approach also has a distinct advantage when training
with limited amounts of training data.

1. Introduction

The sheer diversity of content, that can be present in
photographs of natural scenes, makes them a challenge for
algorithms that must model their statistics for various im-
age restoration tasks, including the classical task of im-
age denoising: recovering an estimate of a clean image
from a noisy observation. A common approach is to rely
on image models for local image regions—either explicitly
as parametric priors or implicitly as estimators trained via
regression—with parameters learned on databases of natu-
ral images [3, 5, 6, 9, 21, 22, 28, 29, 30, 32].

An important class of methods adopt a different model-

ing approach, to exploit self-similarity in images by relying
on their “internal statistics” [2, 7, 8]. A particularly success-
ful example from this class is the BM3D [7, 8] algorithm,
which identifies sets of similar patches in noisy images us-
ing sum of squared distances (SSD) as the matching metric,
and then uses the statistics of each set to denoise patches
in that set. Applying this process twice, BM3D produced
high-quality estimates that, until recently, represented the
state-of-the-art in image denoising performance.

However, recent methods have been able to exceed this
performance by using neural networks trained to regress to
clean image patches from noisy ones [3, 6, 29]. With care-
fully chosen architectures, these methods are able to use the
powerful expressive capacity of neural networks to better
learn and encode image statistics from external databases,
and thus exceed the capability of self-similarity based meth-
ods. In this work, we describe a denoising method that
brings the expressive capacity of neural networks to the task
of identifying and leveraging recurring patterns in the un-
derlying images from their noisy observations.

Our contributions are as follows:

• We introduce a novel matching network that looks at
pairs of noisy patches at a time, and makes fine-grained
predictions of the similarity of their underlying clean
versions. Specifically, our network outputs separate
matching scores for different groups of wavelet coeffi-
cients, to exploit similarities that exist at some orienta-
tions and scales, but not others. These scores are used
for averaging to form an initial denoised estimate.

• We propose a two-step process to train this matching
network, with respect to denoising quality, that leads
to convergence to a better network model.

• We combine the matching network with a standard
regression step to yield a complete algorithm that
achieves state-of-the-art denoising performance.

• We carry out extensive experiments on multiple
datasets and show that our method consistently yields
higher quality estimates than the state-of-the-art on a
variety of metrics. Indeed, even a blind version of
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our model—that does not have knowledge of the noise
level—outperforms state-of-the-art methods that do.

• Finally, we show that our method has a distinct ad-
vantage over regression-based networks when learning
from only a small amount of training data. In these
cases, our method is able to generalize better due to its
reliance on per-image internal statistics.

2. Related Work
Denoising is a classical problem in image restoration. In

addition to its practical utility in improving the quality of
photographs taken in low-light or by cheaper sensors, im-
age denoisers can be used as generic “plug-and-play” pri-
ors within iterative approaches to solve a larger variety of
generic image restoration tasks (e.g., [1, 4, 23, 29]).

Many classical approaches to image denoising are based
on exploiting statistics of general natural images, using es-
timators or explicit statistical priors [9, 21, 22, 32], whose
parameters are learned from datasets of clean images. A
different category of approaches use patch-recurrence of
self-similarity [2, 8], to address the fact that there is signif-
icant diversity in content across images, while the variation
within a specific image is far more limited. There is a natu-
ral trade-off between these two approaches: methods based
on external statistics have the opportunity to learn them
from clean images, but these statistics may be too general
for a specific image; while those based on self-similarity
work with a more relevant model for each image, but must
find a way to derive its parameters from the noisy observa-
tion itself. We refer the reader to the work of Mosseri et
al. [19] for an insightful discussion.

BM3D [8] is a particularly successful method that is
based on self-similarity. It works by organizing similar
patches into groups (using SSD as the matching metric,
and doing two rounds of matching), and denoising patches
based on the statistics of its group through collaborative
filtering. However, recent algorithms [3, 5, 6, 28, 29, 30]
have been able to surpass BM3D’s performance using esti-
mators trained on external datasets, leveraging the powerful
implicit modeling capacity of deep neural networks.

In this work, we propose a new method that uses neu-
ral networks to identify and exploit self-similarity in noisy
images. This was also the goal of methods by Lefkimmi-
atis [15] and Yang and Sun [25], who proposed interest-
ing approaches that are based on designing network archi-
tectures that “un-roll” and carry out the computations in
BM3D and non-local means denoising, and then train the
parameters of these steps discriminatively through back-
propagation, resulting in performance gains over the base-
line methods. More recently, [16] and [20] proposed using
non-local aggregation steps on the intermediate activations
of their network. In contrast, we employ a substantially dif-

ferent approach: denoising in our framework is achieved
by weighted averaging of different sub-band coefficients of
the noisy image patches themselves, while our network is
tasked with predicting optimal values of these weights by
matching. Also note that, unlike [20] which makes a hard
selection of a small number of the best matches for every
reference location, we average across a dense set of matches
in a large neighborhood, with different continuous weights.

The primary component of our method is a network that
must learn to match patches through noise. Several neural
network-based methods have been proposed to solve match-
ing problems [14, 26, 27], with the goal of finding corre-
spondences across images for tasks like stereo. Our method
is motivated by their success, and we borrow several de-
sign principles of their architectures. However, our match-
ing network has a completely different task: denoising. Our
network is thus trained with a loss optimized for denoising
(as opposed to classification or triplet losses), and instead
of predicting a single matching score for a pair of patches,
produces a richer description of their commonality with dis-
tinct scores for different sub-bands.

3. Proposed Denoising Algorithm
Our goal is to produce an estimate of an image X given

observation Y that is degraded by i.i.d. Gaussian noise, i.e.,

Y = X + ε, ε ∼ N (0, σ2
zI). (1)

Our algorithm leverages the notion that many patterns will
occur repeatedly in different regions in the underlying clean
image X , while the noise in those regions in Y will be un-
correlated and can be attenuated by averaging. In this sec-
tion, we describe our approach to training and using a deep
neural network to identify these recurring patterns from the
noisy image, and forming an initial estimate of X by aver-
aging matched patterns. We then use a second network to
regress to the final denoised output from a combination of
these initial estimates and the original noisy observation.

3.1. Denoising by Averaging Recurring Patterns

Our initial estimate is formed by denoising individual
patches in the image, by computing a weighted average
over neighboring noisy patches with weights provided by
a matching network. Formally, given the noisy observa-
tion Y of an image X , we consider sets of overlapping
patches {yi = PiY } (corresponding to clean versions
{xi = PiX}), where each Pi is a linear operator that crops
out intensities of a different square patch (of size 8 × 8 in
our implementation) from the image. We then use a de-
correlating color space followed by a Harr wavelet trans-
form to obtain coefficients si = Tyi (corresponding to
clean versions ri = Txi), where the orthonormal matrix
T represents the color and wavelet transforms.
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Figure 1. Overview of Our Approach to Patch Denoising. We produce estimates of clean patches by weighted averaging across a candidate
set of nearby patches in the observed noisy input. We decompose every patch using a wavelet and de-correlating color transform into sets
of sub-band coefficients, with coefficients at the same scale, orientation, and color channel grouped together in each set. We then train a
neural network that, given a pair of patches, computes a vector of matching scores—one for each group of coefficients. For every patch,
we compute these score vectors with respect to all candidate patches. The denoised patch is obtained by averaging, across all candidates,
of each group of coefficients using its corresponding matching scores.

We group these coefficients into sets {sgi }where each set
includes all coefficients with the same orientation (horizon-
tal, vertical, or diagonal derivative), scale or pyramid level,
and color channel1. Then, for every patch yi we consider a
set of candidate matches composed of other noisy patches
in the image yj , j ∈ Ni, from a large neighborhood around
i. As illustrated in Fig. 1, our method produce an estimate
of the denoised coefficients r̂i as a weighted average of the
corresponding coefficients of the candidate patches:

r̂gi =

1 +
∑
j∈Ni

mg
ij

−1sgi + ∑
j∈Ni

mg
ijs

g
j

 , (2)

where mg
ij ≥ 0 are scalar matching weights that are a pre-

diction of the similarity between the gth set of coefficients
in patches i and j respectively.

This gives us a denoised estimate for each patch x̂i in the
image as T−1r̂i. We then obtain an estimate X̂ of the full
clean image simply by averaging the denoised patches x̂i,
i.e., the denoised estimate of each pixel is computed as the
average of its estimate from all patches that contain it.

3.2. Predicting Matches from Noisy Observations

The success of our match-averaging strategy in (2) de-
pends on obtaining optimal values for the matching scores
mg

ij . Intuitively, we want mg
ij to be high when the clean

coefficients rgi and rgj are close, so that the averaging in (2)
will attenuate noise and yield r̂gi close to rgi . Conversely, we
want mg

ij to be low where the two sets of underlying clean
coefficients are not similar, because averaging them would

1For 8× 8 patches, this gives us 30 coefficient groups: 27 correspond-
ing to 3 color channels, 3 scales, and 3 derivative orientations; and an ad-
ditional 3 coefficients for the scaling coefficients of the 3 color channels.

yield poor results, potentially worse than the noisy observa-
tion itself. However, note that while the optimal values of
these matching scores depend on the characteristics of the
clean coefficients {rgi }, we only have access to their noisy
counterparts {sgj}.

Therefore, we train a neural network M to predict the
matching scores given a pair of larger noisy patches (16×16
in our implementation) y+i and y+j centered around yi
and yj respectively: mij = M(y+i , y

+
j ), where mij =

[. . . ,mg
ij , . . .] is a vector of matching scores for all sets of

coefficients. We don’t require the output of the networkM
to be symmetric (mij need not be the same as mji), and we
use the same network model for evaluating all patch pairs,
being agnostic to their absolute or relative locations.

The matching network M has a Siamese-like architec-
ture as illustrated in Fig. 2. It begins with a common fea-
ture extraction sub-network applied to both input patches
to produce a feature-vector for each. This sub-network has
a receptive field of 16 × 16, and includes a total of four-
teen convolutional layers with skip connections [11] includ-
ing at the final output (see Fig. 2). The computed feature-
vectors for each of the two inputs are then concatenated
and passed through a comparison sub-network, which com-
prises of a set of five fully-connected layers. All layers
have ReLU activations, except for the last which uses a sig-
moid to produce the match-scores mg

ij . These scores are
thus constrained to lie in [0, 1]. Note that during inference,
the feature extraction sub-network needs to be applied only
once to compute feature-vectors for all patches in a fully-
convolutional way. Only the final five fully connected lay-
ers need to be repeatedly applied for different patch pairs.

Observe that our matching network takes the noisy
patches directly as input, while using the wavelet and color
transforms to parameterize its outputs, as a means of pro-
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Figure 2. Matching Network Architecture. To produce the matching scores mg
ij , we first extract a feature vector for all patches by

passing the image through a feature extraction network, comprised of a set of convolutional layers with skip connections (where the join is
performed by a concatenate operation. Then, for any pair of patches, we take the corresponding pair of feature vectors, and pass them after
concatenation through a series of fully-connected layers. The final layer has a sigmoid activation, yielding scores that lie between 0 and 1.

viding a more fine-grained characterization of similarity be-
tween patches than a single score. Moreover, although the
inputs to the network itself consist only of a pair of rela-
tively small patches, it enables aggregation from a dense set
of patches in a large neighborhood, through repeated appli-
cation on multiple patch pairs and averaging as per (2).

3.3. Training

We train the matching networkM to produce matching
scores that are optimal with respect to the quality of the de-
noised patches x̂i. Specifically, we use an L2 loss between
the true and estimated clean patches:

L = ‖xi − x̂i‖2 =
∑
g

‖r̂gi − r
g
i ‖

2, (3)

where the denoised coefficients r̂gi are computed using (2)
based on matching-scores predicted by the network. Note
that the loss for a single patch xi will depend on matching
scores produced by the network for xi paired with all can-
didate patches in its neighborhood Ni.

While it is desirable to train the network in this end-to-
end manner with our actual denoising approach, we empir-
ically find that training the network with this loss from a
random initialization often converges to a sub-optimal lo-
cal minima. We hypothesize that this is because we com-
pute gradients corresponding to a large number of match-
ing scores (all candidates inNi) with respect to supervision
only from a single denoised patch.

Thus, we adopt a pre-training strategy using a loss de-
fined on pairs of patches at a time, using a simplified loss
for denoising patch i by averaging it with patch j as:

L̂ij =
∑
g

‖sgi − r
g
i ‖2 +mg

ij
2‖sgj − r

g
i ‖2(

1 +mg
ij

)2 . (4)

This is equivalent to the actual loss in (3) with performing
the averaging in (2) with only one candidate patch j, by
dropping the cross term between (xi − yi) and (xi − yj),
i.e., by assuming the noise is un-correlated with the dif-
ference between the two patches. It is interesting to note
here if we assume that the deviations between reference and
candidate patches are un-correlated, for different candidates
j ∈ Ni, then the optimal averaging weight for a given can-
didate is the same whether averaging with one or multiple
candidates. The modified loss in (4) serves as a good initial
proxy for pre-training, but since the un-correlated deviation
assumption does not hold in practice, we follow this with
training with the actual loss in (3).

In particular, we pre-train the network for a number of
iterations using the modified loss in (4)—constructing the
training set by considering all non-overlapping patches i
in an image, with random shuffling to select candidate j
for each patch i, and train with respect to the loss of both
matching i to j and vice-versa. This allows us to compute
updates with respect to a much more diverse set of patches
into a training batch, and to make maximal use of the feature
extraction computation during training. The pre-training
step is followed by training the network with the true loss in
(3) till convergence—here, we extract a smaller number of
training reference patches from each image, along with all
their neighboring candidates.

3.4. Final Estimates via Regression

While the initial estimates produced by our method as
described above are of reasonable quality, they are limited
by (2) restricting every denoised patch to be a weighted
average of observed noisy patches. To overcome this and
achieve further improvements in quality, we use a second
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network trained via traditional regression to derive our final
denoised estimate. Specifically, we adopt the architecture
of IRCNN [29] with has seven dilated convolutional layers.
In our case, this network takes a six-channel input formed
by concatenating the original noisy input and our initial de-
noised estimate from match-based averaging. The output of
the last layer is interpreted as a residual, and added to the
initial estimates to yield the final denoised image output.

After the matching network has been trained, we gen-
erate sets of clean, noisy, and initial denoised estimates.
This serves as the training set for this second network
which is trained using an L2 regression loss. We find that
this step leads to further improvement over our initial esti-
mates, while also outperforming state-of-the-art denoising
networks (including IRCNN [29] itself).

4. Experiments
4.1. Preliminaries

We train our algorithm on a set of 1600 color images
from the Waterloo exploration dataset [17], and 168 im-
ages from the BSD-300 [18] train set, using the remaining
32 images for validation and parameter setting. We train
our network using noisy observations generated by adding
Gaussian noise to clean images in the training set. Un-
less otherwise specified, we construct the candidate set Ni

of patches by considering all the overlapping patches in a
31× 31 search window around patch i.

We use Adam [13] to train both the matching and regres-
sion networks, with an initial learning rate of 10−3. We
pre-train the matching network for a 100k iterations based
on the modified loss (4), with batches of 16 images and
pairing all non-overlapping patches with randomly shuf-
fled counterparts. This leads to a large number of ordered
matching pairs for pre-training in each batch. We then con-
tinue training the matching network with the true loss in
(3), in this case forming a batch with 256 unique refer-
ence patches from various images, and computing matching
scores for each with respect to all 312 candidates. We train
with this loss till saturation, with two learning rate drops
of 100.5. Once the matching network is trained, we store a
set of noisy and denoised version of our training set, and use
these to train the regression network (with the same training
schedule, but without pre-training). Our code and trained
models will be made available on publication.

4.2. Denoising with Known Noise Level

We evaluate our method for the task of color image
denoising at five different noise levels, corresponding to
additive white Gaussian noise with standard deviations of
σ =25, 35, 50, and 75 gray levels. We train a separate net-
work model for each level, and report their performance in
Table 1 on four datasets: Urban-100 [12], Kodak-24 [10],

CBSD-68 [21], and McMaster [31]. For comparison, we
also show results from a number of other state-of-the-art
color denoising methods [7, 15, 25, 28, 29, 30]. We evaluate
performance in terms of the standard PSNR and SSIM [24]
metrics, and to measure robustness, report worst-case er-
rors as the 25th%-ile among PSNR values of all individual
8× 8 patches in all images in each dataset. We find that our
results are consistently more accurate across all datasets,
with significant improvements over state-of-the-art methods
at higher noise levels (with an improvement of 0.63 dB at
noise-level 75 on the Urban-100 images). Moreover, not
only are our denoised estimates more accurate on average
in terms of PSNR and SSIM, our worst-case performance is
also better—highlighting the robustness of our approach.

We include examples of denoised images in Fig. 3 for
a qualitative evaluation, and see that denoised results from
our method often contain better reconstructions of texture
and image detail than state-of-the-art denoising methods.
In general, we find that our method has an advantage when
a scene contains many repeating textures as expected, and
also when it contains unique patterns—that are rare in train-
ing data and which regression-based methods are thus un-
able to reliably estimate. For images with limited repeat-
ing patterns, the burden of denoising then falls more to
our second regression network, which then is able to still
achieve results of acceptable quality at the level of standard
regression-based methods.

4.3. Blind Denoising

Next, we consider the task of blind denoising, when the
level of Gaussian noise in an observed image is unknown.
For this, we follow the approach of [28] in training a com-
mon model for a range of noise levels σ ∈ [0, 55], by adding
Gaussian noise with σ chosen randomly for each image dur-
ing training. Note that unlike for FFDNet [30], the noise
level for a specific input image is not provided to our model.
Table 1 also includes an evaluation of this version of our
method (as Ours-Blind). We find that its performance is
only slightly lower than that of our noise-specific networks,
and still better in almost all cases than that of state-of-the-art
methods that are aware of the level of noise in their inputs.
This represents an attractive and practically useful variant
of our method—which does not require maintaining mul-
tiple models for each noise level, and can be applied even
when the noise level is unknown.

4.4. Training with Limited Data

For many forms of image data and measurement mod-
els (e.g., medical images), a large amount of training data
is difficult to acquire. Here, our method presents an advan-
tage because of its focus on leveraging common patterns
and textures in the input image itself, rather than those it
has observed previously in a training set. We demonstrate
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Method
σ=75 σ=50 σ=35 σ=25

PSNR SSIM 25%-ile PSNR SSIM 25%-ile PSNR SSIM 25%-ile PSNR SSIM 25%-ile

Urban-100

*CBM3D [7] 25.97 0.784 24.09 27.94 0.843 25.96 29.27 0.875 27.07 31.38 0.912 29.20
IRCNN [29] - - - 27.69 0.842 25.63 29.50 0.881 27.39 31.20 0.911 29.06
FFDNet [30] 26.05 0.793 23.98 28.05 0.850 25.93 29.78 0.887 27.61 31.40 0.914 29.17
Ours-Blind - - - 28.57 0.859 26.47 30.21 0.893 28.04 31.70 0.917 29.49

Ours 26.68 0.811 24.64 28.62 0.862 26.52 30.26 0.895 28.09 31.81 0.919 29.59

Kodak-24

*CBM3D [7] 26.82 0.714 25.07 28.45 0.775 26.51 29.90 0.821 27.77 31.67 0.868 29.51
IRCNN [29] - - - 28.81 0.792 26.76 30.43 0.838 28.32 32.03 0.878 29.91

CDnCNN [28] 25.04 - - 28.85 - - 30.46 - - 32.03 - -
FFDNet [30] 27.27 0.733 25.30 28.98 0.793 26.89 30.57 0.841 28.41 32.13 0.879 29.95
Ours-Blind - - - 29.21 0.803 27.11 30.78 0.849 28.63 32.31 0.884 30.14

Ours 27.56 0.748 25.59 29.25 0.805 27.15 30.81 0.849 28.66 32.34 0.884 30.19

CBSD-68

*CBM3D [7] 25.75 0.698 23.60 27.38 0.767 25.07 28.89 0.821 26.46 30.71 0.872 28.25
*CBM3D-Net [25] - - - 27.48 - - - - - 30.91 - -

*CNL-Net [15] - - - 27.64 - - - - - 30.96 - -
IRCNN [29] - - - 27.86 0.792 25.54 29.50 0.844 27.14 31.16 0.886 28.81

CDnCNN [28] 24.47 - - 27.92 - - 29.58 - - 31.23 - -
FFDNet [30] 26.24 0.723 23.92 27.96 0.792 25.56 29.58 0.844 27.14 31.21 0.886 28.78
Ours-Blind - - - 28.03 0.797 25.65 29.62 0.848 27.21 31.22 0.888 28.82

Ours 26.39 0.734 24.08 28.06 0.799 25.69 29.64 0.849 27.24 31.24 0.888 28.85

McMaster

*CBM3D [7] 26.80 0.735 24.78 28.52 0.794 26.41 29.92 0.833 27.73 31.66 0.874 29.49
IRCNN [29] - - - 28.91 0.807 26.78 30.59 0.851 28.48 32.18 0.885 30.11

CDnCNN [28] 25.10 - - 28.61 - - 30.14 - - 31.51 - -
FFDNet [30] 27.33 0.760 25.19 29.18 0.816 26.99 30.81 0.857 28.62 32.35 0.889 30.20
Ours-Blind - - - 29.31 0.824 27.14 30.85 0.861 28.69 32.31 0.890 30.14

Ours 27.59 0.775 25.47 29.35 0.826 27.16 30.90 0.863 28.70 32.33 0.890 30.17
*Other methods that are based on internal image statistics. See supplementary for comparisons of these to denoising with only our matching network.

Table 1. Denoising Performance at Various Noise Levels on Different Datasets. We report performance in terms of Average PSNR (dB)
and SSIM. To gauge robustness, we also report the 25th%-ile worst-case PSNR (dB), computed across 8× 8 patches across each dataset.
Ours-Blind refers to results from a common model of our method that is trained for a range of noise levels σ ∈ [0, 55] (and does not have
knowledge of the specific noise level of its input).

this advantage by comparing our method to IRCNN [29]
in Fig. 4, when both methods are trained with only a few
training images (selected from our complete training set).

We assume a fixed known noise level of σ = 50, and
train versions of both models with different training set
sizes—ranging from 10 to 50 images. Since overfitting is
an issue with so little data, we track the performance of both
methods on a validation set of 32 images through training,
and choose the version with highest validation accuracy. We
do not drop the learning rate for either method in this set-
ting. Figure 4 shows the average PSNR for both methods on
the Urban-100 dataset [12], for different training set sizes.
While our method outperforms IRCNN [29] in all cases,
the performance gap is notably larger for smaller training
sets—at 1.5 dB when training with only 10 images.

4.5. Matching Network Analysis

Our matching network is a key component of our de-
noising algorithm. We end by analyzing its performance
when applied to neighborhoods of different sizes, and the
role that pre-training plays in convergence to a good solu-

tion. We also visualize the matching scores it generates,
and how these differ across different groups of sub-bands.
Furthermore, the supplementary includes evaluations of de-
noising using just the matching network (i.e., without the
second regression network) on all datasets.

Effect of Window Size and Pre-training. In Table 2,
we characterize the trade-off between quality and compu-
tational cost when choosing different search window sizes
over which to match and average patches. For different win-
dow sizes, we report average PSNR (over our validation
set) for our initial match-averaged estimates when train-
ing with a known noise level of σ = 25. We also report
the corresponding running time required to compute match-
ing scores and perform the averaging for different window
sizes—for a 256× 256 input image on an NVIDIA 1080Ti
GPU. Note that computing the initial estimates takes a ma-
jority of the time in our denoising method—the following
regression step takes only an additional 0.01 seconds, and
is independent of window size.

As expected, running time goes up roughly linearly with
the number of candidate matches (i.e., as square of the
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Figure 3. Example Crops of Denoised Images (σ = 50).
Compared to state-of-the-art denoising algorithms (IRCNN [29],
DnCNN [28], and FFDNet [30]), we see that our overall method
is often able to recover texture and detail with higher fidelity, by
exploiting similar patterns in the input image itself.

search window size), but we find that the drop in PSNR
is a modest 0.06 dB when going down to a 23 × 23 win-
dow. Table 2 also demonstrates the importance of pre-
training, and reports performance (again, of our initial es-
timates) achieved by a network that is initialized with ran-
dom weights instead of with pre-training. We find that this
leads to a PSNR drop of about 0.1 dB, highlighting that pre-
training is important for convergence to a good model.

Visualizing Matching Scores. For a number of reference
patches cropped from different training images, and their
corresponding search windows, we visualize the matching
scores predicted by our network in Fig. 5. We show the

Figure 4. Effect of training set size. We report average PSNR on
Urban-100 [12] for denoising at σ = 50 with our method and IR-
CNN [29], when both are trained with a limited number of train-
ing images (“Full” represents using the entire training set for our
method, and the official model for IRCNN). While our estimates
are always more accurate than those from IRCNN, the gap is es-
pecially higher when the number of training images is small.

Window Size 15 23 31 31 (No Pre-training)

PSNR (dB) 31.31 31.40 31.46 31.35
Run Time 1.07s 2.47s 4.42s 4.42s

Table 2. Window Size and Pre-Training Ablation. We report av-
erage PSNR (db) of the initial match-averaged estimates from
our method on a validation set for σ = 25. Run-times are for
256× 256 images on a 1080Ti GPU.

average matching score across all sub-bands, as well as av-
erage weights corresponding to combinations of sets at the
same wavelet scale (averaging over color channels and ori-
entation), and at the same orientation (averaging over scale
and color). We see that the matching network produces very
different averaging weights for different sub-bands.

We find that that the weights tend to be generally higher
at the finest scale (indicating more averaging), and low-
est for the scaling coefficients. This is likely because the
highest-frequencies are close to zero in most patches, and
thus to each other. For lower-frequencies and DC values,
the network selects only those patches that are close to the
reference patch (in the clean image). For different orien-
tations, the high matches are sometimes concentrated at
different locations for the same reference, especially when
there are strong edges and repeating textures. Thus, free
from the contraint of matching patches as a whole with a
single score, our network finds different sets of matches for
different sub-bands in order to achieve optimal denoising.

5. Conclusion
In this work, we presented a denoising method that em-

ployed a neural network to identify and exploit recurring
patterns in an observed noisy image. Our network provided
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Figure 5. Visualization of Matching Score Distributions in Different Sub-bands. We show reference patches (indicated by blue squares)
along with their local search windows from various images of the training set (9 windows per image), and visualize the matching scores
predicted by our network. We show the predicted weights averaged across all sub-bands, as well as specific to different scales (averaging
over color and orientation at each scale), and orientations (averaging over color and scale).

a fine-grained characterization of similarity, in terms of sep-
arate scores for different corresponding sub-band compo-
nents, and thus enabled the recovery of high-quality de-
noised estimates. We also showed that our network is espe-
cially useful in regimes where training data is scarce, being
able to achieve relatively higher performance from training
on a small number of examples than standard regression-
based methods. A natural direction of future work lies in
exploring applications of our approach, of characterizing

sub-band level self-similarity, to other image-like signals
such as depth maps and motion-fields.
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A. Separate Evaluation of Matching Network

While our main evaluation considers the performance of our overall method, below we separately evaluate the performance
of just our matching network and compare it to other “internal statistics”-based methods. Our matching network is trained
with the objective of maximizing denoising quality when using its outputs as weights for averaging patches. Therefore,
as evaluation, we include average PSNR and SSIM values on all datasets of the initial estimates of our method: based
on averaging using predicted matching scores (but without the second regression step). For comparison, we also include the
results of the other internal statistics-based methods from Table 1: CBM3D which is based on sum-of-squares distance (SSD)
matching, and the neural network-based methods CBM3D-Net and CNL-Net.

We find that even our matching network by itself outperforms past self similarity-based methods (while our full method
achieves state-of-the-art performance as demonstrated in the main paper).

Method σ=75 σ=50 σ=35 σ=25
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Urban-100 CBM3D 25.97 0.784 27.94 0.843 29.27 0.875 31.38 0.912
Ours: Match-average Only 26.15 0.793 28.12 0.850 29.76 0.886 31.34 0.913

Kodak-24 CBM3D 26.82 0.714 28.45 0.775 29.90 0.821 31.67 0.868
Ours: Match-average Only 27.27 0.735 28.98 0.796 30.53 0.843 32.06 0.880

CBSD-68

CBM3D 25.75 0.698 27.38 0.767 28.89 0.821 30.71 0.872
CBM3D-Net - - 27.48 - - - 30.91 -

CNL-Net - - 27.64 - - - 30.96 -
Ours: Match-average Only 26.15 0.723 27.83 0.791 29.40 0.843 31.00 0.884

McMaster CBM3D 26.80 0.735 28.52 0.794 29.92 0.833 31.66 0.874
Ours: Match-average Only 27.18 0.757 28.92 0.812 30.39 0.850 31.81 0.882

B. Additional Examples

B.1. Comparisons to FFDNet

We begin by showing more visual results comparing our performance to the state-of-the-art method. Here, we include
denoising estimates with both the “blind” and noise-specific versions of our model.
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B.2. Failure Cases

Next, we show some of the examples of image regions where our denoised estimates have low accuracy.

B.3. Initial vs Final Estimates

Finally, we include examples of the intermediate output of our method—our initial estimates formed only by averaging
based on scores from the matching network—and compare it to the final output after processing by the regression network.
The match-average estimates are of reasonably high quality, and the regression network improves these results by varying
amounts in different images (by removing subtle “ringing-like” artifacts).
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