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Abstract

Automated road network extraction from remote sens-
ing imagery remains a significant challenge despite its im-
portance in a broad array of applications. To this end,
we explore road network extraction at scale with inference
of semantic features of the graph, identifying speed limits
and route travel times for each roadway. We call this ap-
proach City-Scale Road Extraction from Satellite Imagery
v2 (CRESIv2), Including estimates for travel time permits
true optimal routing (rather than just the shortest geo-
graphic distance), which is not possible with existing remote
sensing imagery based methods. We evaluate our method
using two sources of labels (OpenStreetMap, and those from
the SpaceNet dataset), and find that models both trained
and tested on SpaceNet labels outperform OpenStreetMap
labels by≥ 60%. We quantify the performance of our algo-
rithm with the Average Path Length Similarity (APLS) and
map topology (TOPO) graph-theoretic metrics over a di-
verse test area covering four cities in the SpaceNet dataset.
For a traditional edge weight of geometric distance, we find
an aggregate of 5% improvement over existing methods for
SpaceNet data. We also test our algorithm on Google satel-
lite imagery with OpenStreetMap labels, and find a 23%
improvement over previous work. Metric scores decrease
by only 4% on large graphs when using travel time rather
than geometric distance for edge weights, indicating that
optimizing routing for travel time is feasible with this ap-
proach.

1. Introduction

The automated extraction of roads applies to a multitude
of long-term efforts: improving access to health services,
urban planning, and improving social and economic wel-
fare. This is particularly true in developing countries that
have limited resources for manually intensive labeling and
are under-represented in current mapping. Updated maps
are also crucial for such time sensitive efforts as determin-

Figure 1: Potential issues with OSM data. Left: OSM
roads (orange) overlaid on Khartoum imagery; the east-west
road in the center is erroneously unlabeled. Right: OSM
roads (orange) and SpaceNet buildings (yellow); in some
cases road labels are misaligned and intersect buildings.

ing communities in greatest need of aid, effective position-
ing of logistics hubs, evacuation planning, and rapid re-
sponse to acute crises.

Existing data collection methods such as manual road
labeling or aggregation of mobile GPS tracks are currently
insufficient to properly capture either underserved regions
(due to infrequent data collection), or the dynamic changes
inherent to road networks in rapidly changing environ-
ments. For example, in many regions of the world Open-
StreetMap (OSM) [23] road networks are remarkably com-
plete. Yet, in developing nations OSM labels are often miss-
ing metadata tags (such as speed limit or number of lanes),
or are poorly registered with overhead imagery (i.e., labels
are offset from the coordinate system of the imagery), see
Figure 1. An active community works hard to keep the road
network up to date, but such tasks can be challenging and
time consuming in the face of large scale disasters. For ex-
ample, following Hurricane Maria, it took the Humanitarian
OpenStreetMap Team (HOT) over two months to fully map
Puerto Rico [21]. Furthermore, in large-scale disaster re-
sponse scenarios, pre-existing datasets such as population
density and even geographic topology may no longer be ac-
curate, preventing responders from leveraging this data to
jump start mapping efforts.

The frequent revisits of satellite imaging constellations
may accelerate existing efforts to quickly update road net-
work and routing information. Of particular utility is es-
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timating the time it takes to travel various routes in order
to minimize response times in various scenarios; unfortu-
nately existing algorithms based upon remote sensing im-
agery cannot provide such estimates. A fully automated
approach to road network extraction and travel time esti-
mation from satellite imagery therefore warrants investiga-
tion, and is explored in the following sections. In Section 2
we discuss related work, while Section 3 details our graph
extraction algorithm that infers a road network with seman-
tic features directly from imagery. In Section 4 we discuss
the datasets used and our method for assigning road speed
estimates based on road geometry and metadata tags. Sec-
tion 5 discusses the need for modified metrics to measure
our semantic graph, and Section 6 covers our experiments
to extract road networks from multiple datasets. Finally in
Sections 7 and 8 we discuss our findings and conclusions.

2. Related Work
Extracting road pixels in small image chips from aerial

imagery has a rich history (e.g. [34], [20] [30], [34], [26],
[16]). These algorithms typically use a segmentation + post-
processing approach combined with lower resolution im-
agery (resolution ≥ 1 meter), and OpenStreetMap labels.
Some more recent efforts (e.g. [35]) have utilized higher
resolution imagery (0.5 meter) with pixel-based labels [9].

Extracting road networks directly has also garnered in-
creasing academic interest as of late. [27] attempted road
extraction via a Gibbs point process, while [32] showed
some success with road network extraction with a condi-
tional random field model. [6] used junction-point pro-
cesses to recover line networks in both roads and retinal
images, while [28] extracted road networks by represent-
ing image data as a graph of potential paths. [19] extracted
road centerlines and widths via OSM and a Markov random
field process, and [17] used a topology-aware loss function
to extract road networks from aerial features as well as cell
membranes in microscopy.

Of greatest interest for this work are a trio of recent
papers that improved upon previous techniques. Deep-
RoadMapper [18] used segmentation followed by A∗

search, applied to the not-yet-released TorontoCity Dataset.
The RoadTracer paper [3] utilized an interesting approach
that used OSM labels to directly extract road networks from
imagery without intermediate steps such as segmentation.
While this approach is compelling, according to the authors
it “struggled in areas where roads were close together” [2]
and underperforms other techniques such as segmentation +
post-processing when applied to higher resolution data with
dense labels. [4] used a connectivity task termed Orienta-
tion Learning combined with a stacked convolutional mod-
ule and a SoftIOU loss function to effectively utilize the
mutual information between orientation learning and seg-
mentation tasks to extract road networks from satellite im-

agery, noting improved performance over [3]. Given that
[3] noted superior performance to [18] (as well as previous
methods), and [4] claimed improved performance over both
[3] and [18], we compare our results to RoadTracer [3] and
Orientation Learning [4].

We build upon CRESI v1 [10] that scaled up narrow-field
road network extraction methods. In this work we focus
primarily on developing methodologies to infer road speeds
and travel times, but also improve the segmentation, gap
mitigation, and graph curation steps of [10], as well as im-
prove inference speed.

3. Road Network Extraction Algorithm

Our approach is to combine novel segmentation ap-
proaches, improved post-processing techniques for road
vector simplification, and road speed extraction using both
vector and raster data. Our greatest contribution is the in-
ference of road speed and travel time for each road vector, a
task that has not been attempted in any of the related works
described in Section 2. We utilize satellite imagery and geo-
coded road centerline labels (see Section 4 for details on
datasets) to build training datasets for our models.

We create training masks from road centerline labels as-
suming a mask halfwidth of 2 meters for each edge. While
scaling the training mask width with the full width of the
road is an option (e.g. a four lane road will have a greater
width than a two lane road), since the end goal is road cen-
terline vector extraction, we utilize the same training mask
width for all roadways. Too wide of a road buffer inhibits
the ability to identify the exact centerline of the road, while
too thin of a buffer reduces the robustness of the model to
noise and variance in label quality; we find that a 2 me-
ter buffer provides the best tradeoff between these two ex-
tremes.

We have two goals: extract the road network over large
areas, and assess travel time along each roadway. In order to
assess travel time we assign a speed limit to each roadway
based on metadata tags such as road type, number of lanes,
and surface construction.

We assign a maximum safe traversal speed of 10 - 65
mph to each segment based on the road metadata tags. For
example, a paved one-lane residential road has a speed limit
of 25 mph, a three-lane paved motorway can be traversed
at 65 mph, while a one-lane dirt cart track has a traversal
speed of 15 mph. See Appendix A for further details. This
approach is tailored to disaster response scenarios, where
safe navigation speeds likely supersede government-defined
speed limits. We therefore prefer estimates based on road
metadata over government-defined speed limits, which may
be unavailable or inconsistent in many areas.



(a) Input Image (b) Binary Training Mask

(c) Continuous Training Mask (d) Multi-class Training Mask

Figure 2: Training data. (a) Input image. (b) Typical bi-
nary road training mask (not used in this study). (c) Con-
tinuous training mask, whiter denotes higher speeds. (d)
Multi-class mask showing individual speed channels: red =
21-30 mph, green = 31-40 mph, blue = 41-50 mph.

3.1. Multi-Class Segmentation

We create multi-channel training masks by binning the
road labels into a 7-layer stack, with channel 0 detailing
speeds between 1-10 mph, channel 1 between 11-20 mph,
etc. (see Figure 2). We train a segmentation model in-
spired by the winning SpaceNet 3 algorithm [1], and use a
ResNet34 [12] encoder with a U-Net [24] inspired decoder.
We include skip connections every layer of the network, and
use an Adam optimizer. We explore various loss functions,
including binary cross entropy, Dice, and focal loss [14],
and find the best performance with αmc = 0.75 and a cus-
tom loss function of:

L = αmcLfocal + (1− αmc)Ldice (1)

3.2. Continuous Mask Segmentation

A second segmentation method renders continuous train-
ing masks from the road speed labels. Rather than the typi-
cal binary mask, we linearly scale the mask pixel value with
speed limit, assuming a maximum speed of 65 mph (see
Figure 2).

We use a similar network architecture to the previous
section (ResNet34 encoder with a U-Net inspired decoder),

Figure 3: Graph extraction procedure. Left: raw mask
output. Left center: refined mask. Right center: mask skele-
ton. Right: graph structure.

though we use a loss function that utilizes cross entropy
(CE) rather than focal loss (αc = 0.75):

L = αcLCE + (1− αc)Ldice (2)

3.3. Graph Extraction Procedure

The output of the segmentation mask step detailed above
is subsequently refined into road vectors. We begin by
smoothing the output mask with a Gaussian kernel of 2 me-
ters. This mask is then refined using opening and closing
techniques with a similar kernel size of 2 meters, as well
as removing small object artifacts or holes with an area less
than 30 square meters. From this refined mask we create a
skeleton (e.g. sckit-image skeletonize [25]). This skeleton
is rendered into a graph structure with a version of the sknw
package [33] package modified to work on very large im-
ages. This process is detailed in Figure 3. The graph created
by this process contains length information for each edge,
but no other metadata. To close small gaps and remove spu-
rious connections not already corrected by the mask refine-
ment procedures, we remove disconnected subgraphs with
an integrated path length of less than a certain length (6 me-
ters for small image chips, and 80 meters for city-scale im-
ages). We also follow [1] and remove terminal vertices that
lie on an edge less than 3 meters in length, and connect ter-
minal vertices if the distance to the nearest non-connected
node is less than 6 meters.

3.4. Speed Estimation Procedure

We estimate travel time for a given road edge by lever-
aging the speed information encapsulated in the prediction
mask. The majority of edges in the graph are composed of
multiple segments; accordingly, we attempt to estimate the
speed of each segment in order to determine the mean speed
of the edge. This is accomplished by analyzing the predic-
tion mask at the location of the segment midpoints. For each
segment in the edge, at the location of the midpoint of the
segment we extract a small 8×8 pixel patch from the predic-
tion mask. The speed of the patch is estimated by filtering
out low probability values (likely background), and averag-
ing the remaining pixels (see Figure 4). In the multi-class
case, if the majority of the the high confidence pixels in the
prediction mask patch belong to channel 3 (corresponding
to 31-40 mph), we would assign the speed at that patch to



Figure 4: Speed estimation procedure. Left: Sample
multi-class prediction mask; the speed (r) of an individual
patch (red square) can be inferred by measuring the signal
from each channel. Right: Computed road graph; travel
time (∆t) is given by speed (r) and segment length (∆l).

be 35 mph. For the continuous case the inferred speed is
simply directly proportional to the mean pixel value.

The travel time for each edge is in theory the path inte-
gral of the speed estimates at each location along the edge.
But given that each roadway edge is presumed to have a
constant speed limit, we refrain from computing the path in-
tegral along the graph edge. Instead, we estimate the speed
limit of the entire edge by taking the mean of the speeds at
each segment midpoint. Travel time is then calculated as
edge length divided by mean speed.

3.5. Scaling to Large Images

The process detailed above works well for small input
images, yet fails for large images due to a saturation of GPU
memory. For example, even for a relatively simple architec-
ture such as U-Net [24], typical GPU hardware (NVIDIA
Titan X GPU with 12 GB memory) will saturate for images
greater than ∼ 2000 × 2000 pixels in extent and reason-
able batch sizes > 4. In this section we describe a straight-
forward methodology for scaling up the algorithm to larger
images. We call this approach City-Scale Road Extraction
from Satellite Imagery v2 (CRESIv2). The essence of this
approach is to combine the approach of Sections 3.1 - 3.4
with the Broad Area Satellite Imagery Semantic Segmen-
tation (BASISS) [7] methodology. BASISS returns a road
pixel mask for an arbitrarily large test image (see Figure 5),
which we then leverage into an arbitrarily large graph.

The final algorithm is given by Table 1. The output of
the CRESIv2 algorithm is a NetworkX [11] graph struc-
ture, with full access to the many algorithms included in
this package.

4. Datasets
Many existing publicly available labeled overhead or

satellite imagery datasets tend to be relatively small, or

Figure 5: Large image segmentation. BASISS process of
segmenting an arbitarily large satellite image [7].

Table 1: CRESIv2 Inference Algorithm

Step Description

1 Split large test image into smaller windows
2 Apply multi-class segmentation model to each window
2b * Apply remaining (3) cross-validation models
2c * For each window, merge the 4 predictions

3 Stitch together the total normalized road mask
4 Clean road mask with opening, closing, smoothing
5 Skeletonize flattened road mask
6 Extract graph from skeleton
7 Remove spurious edges and close small gaps in graph
8 Estimate local speed limit at midpoint of each segment
9 Assign travel time to each edge from aggregate speed

* Optional

labeled with lower fidelity than desired for foundational
mapping. For example, the International Society for Pho-
togrammetry and Remote Sensing (ISPRS) semantic label-
ing benchmark [13] dataset contains high quality 2D seman-
tic labels over two cities in Germany; imagery is obtained
via an aerial platform and is 3 or 4 channel and 5-10 cm
in resolution, though covers only 4.8 km2. The TorontoC-
ity Dataset [31] contains high resolution 5-10 cm aerial 4-
channel imagery, and ∼ 700 km2 of coverage; building and
roads are labeled at high fidelity (among other items), but
the data has yet to be publicly released. The Massachusetts
Roads Dataset [15] contains 3-channel imagery at 1 meter
resolution, and 2600 km2 of coverage; the imagery and la-
bels are publicly available, though labels are scraped from
OpenStreetMap and not independently collected or vali-
dated. The large dataset size, higher 0.3 m resolution, and
hand-labeled and quality controlled labels of SpaceNet [29]
provide an opportunity for algorithm improvement. In addi-
tion to road centerlines, the SpaceNet dataset contains meta-
data tags for each roadway including: number of lanes, road
type (e.g. motorway, residential, etc), road surface type



Figure 6: SpaceNet training chip. Left: SpaceNet Geo-
JSON road label. Right: 400 × 400 meter image overlaid
with road centerline labels (orange).

(paved, unpaved), and bridgeway (true/false).

4.1. SpaceNet Data

Our primary dataset accordingly consists of the
SpaceNet 3 WorldView-3 DigitalGlobe satellite imagery
(30 cm/pixel) and attendant road centerline labels. Imagery
covers 3000 square kilometers, and over 8000 km of roads
are labeled [29]. Training images and labels are tiled into
1300× 1300 pixel (≈ 160, 000 m2) chips (see Figure 6).

To test the city-scale nature of our algorithm, we extract
large test images from all four of the SpaceNet cities with
road labels: Las Vegas, Khartoum, Paris, and Shanghai. As
the labeled SpaceNet test regions are non-contiguous and
irregularly shaped, we define rectangular subregions of the
images where labels do exist within the entirety of the re-
gion. These test regions total 608 km2, with a total road
length of 9065 km. See Appendix B for further details.

4.2. Google / OSM Dataset

We also evaluate performance with the satellite imagery
corpus used by [3]. This dataset consists of Google satellite
imagery at 60 cm/pixel over 40 cities, 25 for training and
15 for testing. Vector labels are scraped from OSM, and
we use these labels to build training masks according the
procedures described above. Due to the high variability in
OSM road metadata density and quality, we refrain from
inferring road speed from this dataset, and instead leave this
for future work.

5. Evaluation Metrics

Historically, pixel-based metrics (such as IOU or F1
score) have been used to assess the quality of road propos-
als, though such metrics are suboptimal for a number of rea-
sons (see [29] for further discussion). Accordingly, we use
the graph-theoretic Average Path Length Similarity (APLS)
and map topology (TOPO) [5] metrics designed to measure
the similarity between ground truth and proposal graphs.

5.1. APLS Metric

To measure the difference between ground truth and pro-
posal graphs, the APLS [29] metric sums the differences
in optimal path lengths between nodes in the ground truth
graph G and the proposal graph G’, with missing paths in
the graph assigned a score of 0. The APLS metric scales
from 0 (poor) to 1 (perfect). Missing nodes of high central-
ity will be penalized much more heavily by the APLS met-
ric than missing nodes of low centrality. The definition of
shortest path can be user defined; the natural first step is to
consider geographic distance as the measure of path length
(APLSlength), but any edge weights can be selected. There-
fore, if we assign a travel time estimate to each graph edge
we can use the APLStime metric to measure differences in
travel times between ground truth and proposal graphs.

For large area testing, evaluation takes place with the
APLS metric adapted for large images: no midpoints along
edges and a maximum of 500 random control nodes.

5.2. TOPO Metric

The TOPO metric [5] is an alternative metric for com-
puting road graph similarity. TOPO compares the nodes
that can be reached within a small local vicinity of a number
of seed nodes, categorizing proposal nodes as true positives,
false positives, or false negatives depending on whether they
fall within a buffer region (referred to as the “hole size”).
By design, this metric evaluates local subgraphs in a small
subregion (∼ 300 meters in extent), and relies upon physi-
cal geometry. Connections between greatly disparate points
(> 300 meters apart) are not measured, and the reliance
upon physical geometry means that travel time estimates
cannot be compared.

6. Experiments

We train CRESIv2 models on both the SpaceNet and
Google/OSM datasets. For the SpaceNet models, we use
the 2780 images/labels in the SpaceNet 3 training dataset.
The Google/OSM models are trained with the 25 training
cities in [3]. All segmentation models use a road centerline
halfwidth of 2 meters, and withhold 25% of the training
data for validation purposes. Training occurs for 30 epochs.
Optionally, one can create an ensemble of 4 folds (i.e. the
4 possible unique combinations of 75% train and 25% val-
idate) to train 4 different models. This approach may in-
crease model robustness, at the cost of increased compute
time. As inference speed is a priority, all results shown be-
low use a single model, rather than the ensemble approach.

For the Google / OSM data, we train a segmentation
model as in Section 3.1, though with only a single class
since we forego speed estimates with this dataset.



6.1. SpaceNet Test Corpus Results

We compute both APLS and TOPO performance for the
400 × 400 meter image chips in the SpaceNet test corpus,
utilizing an APLS buffer and TOPO hole size of 4 meters
(implying proposal road centerlines must be within 4 meters
of ground truth), see Table 2. An example result is shown in
Figure 7. Reported errors (±1σ) reflect the relatively high
variance of performance among the various test scenes in
the four SpaceNet cities. Table 2 indicates that the con-
tinuous mask model struggles to accurately reproduce road
speeds, due in part to the model’s propensity to predict high
pixel values for for high confidence regions, thereby skew-
ing speed estimates. In the remainder of the paper, we only
consider the multi-class model. Table 2 also demonstrates
that for the multi-class model the APLS score is still 0.58
when using travel time as the weight, which is only 13%
lower than when weighting with geometric distance.

Table 2: Performance on SpaceNet Test Chips

Model TOPO APLSlength APLStime

Multi-Class 0.53± 0.23 0.68± 0.21 0.58± 0.21
Continuous 0.52± 0.25 0.68± 0.22 0.39± 0.18

6.2. Comparison of SpaceNet to OSM

As a means of comparison between OSM and SpaceNet
labels, we use our algorithm to train two models on
SpaceNet imagery. One model uses ground truth segmen-
tation masks rendered from OSM labels, while the other
model uses ground truth masks rendered from SpaceNet la-
bels. Table 3 displays APLS scores computed over a sub-
set of the SpaceNet test chips, and demonstrates that the
model trained and tested on SpaceNet labels is far superior
to other combinations, with a≈ 60−100% improvement in
APLSlength score. This is likely due in part to the the more
uniform labeling schema and validation procedures adopted
by the SpaceNet labeling team, as well as the superior reg-
istration of labels to imagery in SpaceNet data. The poor
performance of the SpaceNet-trained OSM-tested model is
likely due to a combination of: different labeling density
between the two datasets, and differing projections of la-
bels onto imagery for SpaceNet and OSM data. Figure 8
and Appendix C illustrate the difference between predic-
tions returned by the OSM and SpaceNet models.

Table 3: OSM and SpaceNet Performance

Training Labels Test Labels APLSlength

OSM OSM 0.47
OSM SpaceNet 0.46
SpaceNet OSM 0.39
SpaceNet SpaceNet 0.77

(a) Ground truth mask (b) Predicted mask

(c) Ground truth network (d) Predicted network

Figure 7: Algorithm performance on SpaceNet. (a)
Ground truth and (b) predicted multi-class masks: red =
21-30 mph, green = 31-40 mph, blue = 41-50 mph, yellow
= 51-60 mph. (c) Ground truth and (d) predicted graphs
overlaid on the SpaceNet test chip; edge widths are pro-
portional to speed limit. The scores for this proposal are
APLSlength = 0.80 and APLStime = 0.64.

Figure 8: SpaceNet compared to OSM. Road predictions
(yellow) and ground truth SpaceNet labels (blue) for a Las
Vegas image chip. SpaceNet model predictions (left) score
APLSlength = 0.94, while OSM model predictions (right)
struggle in this scene with significant offset and missing
roads, yielding APLSlength = 0.29.

6.3. Ablation Study

In order to assess the relative importance of various im-
provements to our baseline algorithm, we perform ablation
studies on the final algorithm. For evaluation purposes we
utilize the the same subset of test chips as in Section 6.2,



Table 4: Road Network Ablation Study

Description APLS

1 Extract graph directly from simple U-Net model 0.56
2 Apply opening, closing, smoothing processes 0.66
3 Close larger gaps using edge direction and length 0.72
4 Use ResNet34 + U-Net architecture 0.77
5 Use 4 fold ensemble 0.78

and the APLSlength metric. Table 4 demonstrates that ad-
vanced post-processing significantly improves scores. Us-
ing a more complex architecture also improves the final pre-
diction. Applying four folds improves scores very slightly,
though at the cost of significantly increased algorithm run-
time. Given the minimal improvement afforded by the en-
semble step, all reported results use only a single model.

6.4. Large Area SpaceNet Results

We apply the CRESIv2 algorithm described in Table 1
to the large area SpaceNet test set covering 608 km2. Eval-
uation takes place with the APLS metric adapted for large
images (no midpoints along edges and a maximum of 500
random control nodes), along with the TOPO metric, using
a buffer size (for APLS) or hole size (for TOPO) of 4 me-
ters. We report scores in Table 5 as the mean and standard
deviation of the test regions of in each city. Table 5 reveals
an overall ≈ 4% decrease in APLS score when using speed
versus length as edge weights. This is somewhat less than
the decrease of 13% noted in Table 2, due primarily to the
fewer edge effects from larger testing regions. Table 5 in-
dicates a large variance in scores across cities; locales like
Las Vegas with wide paved roads and sidewalks to frame
the roads are much easier than Khartoum, which has a mul-
titude of narrow, dirt roads and little differentiation in color
between roadway and background. Figure 9 and Appendix
D display the graph output for various urban environments.

Table 5: SpaceNet Large Area Performance

Test Region TOPO APLSlength APLStime

Khartoum 0.53± 0.09 0.64± 0.10 0.61± 0.05
Las Vegas 0.63± 0.02 0.81± 0.04 0.79± 0.02
Paris 0.43± 0.01 0.66± 0.04 0.65± 0.02
Shanghai 0.45± 0.03 0.55± 0.13 0.51± 0.11

Total 0.51± 0.02 0.67± 0.04 0.64± 0.03

6.5. Google / OSM Results

Applying our methodology to 60 cm Google imagery
with OSM labels achieves state of the art results. For the
same 4 m APLS buffer used above, we achieve a score of
APLSlength = 0.53 ± 0.11. This score is consistent with
the results of Table 3, and compares favorably to previous
methods (see Table 6 and Figure 10).

Figure 9: CRESIv2 road speed. Output of CRESIv2 in-
ference as applied to the SpaceNet large area test dataset.
Predicted roads are colored by inferred speed limit, from
yellow (20 mph) to red (65 mph). Ground truth labels are
shown in gray. Top: Las Vegas: APLSlength = 0.85 and
APLStime = 0.82. Bottom: A smaller region of Khartoum:
APLSlength = 0.71 and the APLStime = 0.67.

6.6. Comparison to Previous Work

Table 6 demonstrates that CRESIv2 improves upon ex-
isting methods for road extraction, both on the 400 × 400
m SpaceNet image chips at 30 cm resolution, as well as 60
cm Google satellite imagery with OSM labels. To allow a
direct comparison in Table 6, we report TOPO scores with
the 15 m hole size used in [3]. A qualitative comparison
is shown in Figure 10 and Appendices E and F, illustrating
that our method is more complete and misses fewer small
roadways and intersections than previous methods.

7. Discussion

CRESIv2 improves upon previous methods in extracting
road topology from satellite imagery, The reasons for our
5% improvement over the Orientation Learning method ap-
plied to SpaceNet data are difficult to pinpoint exactly, but



Table 6: Performance Comparison

Algorithm Google / OSM SpaceNet
(TOPO) (APLSlength)

DeepRoadMapper [18] 0.37 0.511

RoadTracer [3] 0.43 0.581

OrientationLearning [4] - 0.64
CRESIv2 (Ours) 0.53 0.67
1 from Table 4 of [4]

RoadTracer CRESIv2

Figure 10: New York City (top) and Pittsburgh (bottom)
Performance. (Left) RoadTracer prediction [8]. (Right)
Our CRESIv2 prediction over the same area.

our custom dice + focal loss function (vs the SoftIOU loss of
[4]) is a key difference. The enhanced ability of CRESIv2
to disentangle areas of dense road networks accounts for
most of the 23% improvement over the RoadTracer method
applied to Google satellite imagery + OSM labels.

We also introduce the ability to extract route speeds and
travel times. Routing based on time shows only a 3 − 13%
decrease from distance-based routing, indicating that true
optimized routing is possible with this approach. The ag-
gregate score of APLStime = 0.64 implies that travel time
estimates will be within ≈ 1

3 of the ground truth.
As with most approaches to road vector extraction, com-

plex intersections are a challenge with CRESIv2. While we
attempt to connect gaps based on road heading and proxim-
ity, overpasses and onramps remain difficult (Figure 11).

Figure 11: CRESIv2 challenges. While the pixel-based
score of this Shanghai prediction is high, correctly connect-
ing roadways in complex intersections remains elusive.

CRESIv2 has not been fully optimized for speed, but
even so inference runs at a rate of 280 km2/hour on a
machine with a single Titan X GPU. At this speed, a 4-
GPU cluster could map the entire 9100 km2 area of Puerto
Rico in ≈ 8 hours, a significant improvement over the two
months required by human labelers [21].

8. Conclusion
Optimized routing is crucial to a number of challenges,

from humanitarian to military. Satellite imagery may aid
greatly in determining efficient routes, particularly in cases
involving natural disasters or other dynamic events where
the high revisit rate of satellites may be able to provide up-
dates far more quickly than terrestrial methods.

In this paper we demonstrated methods to extract city-
scale road networks directly from remote sensing im-
ages of arbitrary size, regardless of GPU memory con-
straints. This is accomplished via a multi-step algo-
rithm that segments small image chips, extracts a graph
skeleton, refines nodes and edges, stitches chipped pre-
dictions together, extracts the underlying road network
graph structure, and infers speed limit / travel time prop-
erties for each roadway. Our code is publicly available at
github.com/CosmiQ/cresi.

Applied to SpaceNet data, we observe a 5% improve-
ment over published methods, and when using OSM data
our method provides a significant (+23%) improvement
over existing methods. Over a diverse test set that includes
atypical lighting conditions, off-nadir observation angles,
and locales with a multitude of dirt roads, we achieve a total
score of APLSlength = 0.67, and nearly equivalent perfor-
mance when optimizing for travel time: APLStime = 0.64.
Inference speed is a brisk ≥ 280 km2 / hour/GPU.

While automated road network extraction is by no means
a solved problem, the CRESIv2 algorithm demonstrates that
true time-optimized routing is possible, with potential ben-
efits to applications such as disaster response where rapid
map updates are critical to success.
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Appendix A. Road Speed Assignment
See [29] for details on the precise labeling guidelines

and road type definitions. We utilize road type (motorway,
primary, secondary, tertiary, residential, unclassified, cart
track) and road surface type (paved, non-paved) to assign
speed to each edge.

Speed is assigned with Table 7, using the Oregon guide-
lines for road speed [22].

Table 7: Road Speeds (mph)

Road Type 1 Lane 2 Lane 3+ Lane

Motorway 55 55 65
Primary 45 45 55
Secondary 35 35 45
Tertiary 30 30 35
Residential 25 25 30
Unclassified 20 20 20
Cart Track 20 20 20

For each non-paved roadway, the speed from Table 7 is
multiplied by 0.75 to give the final speed.

Appendix B. Large Area Test Data
Details of the large are testing regions for SpaceNet data

are shown in Table 8, and an example test area displayed in
Figure 12.

Table 8: Test Regions

Test Region Area Road Length
(Km2) (Total Km)

Khartoum 0 3.0 76.7
Khartoum 1 8.0 172.6
Khartoum 2 8.3 128.9
Khartoum 3 9.0 144.4
Las Vegas 0 68.1 1023.9
Las Vegas 1 177.0 2832.8
Las Vegas 2 106.7 1612.1
Paris 0 15.8 179.9
Paris 1 7.5 65.4
Paris 2 2.2 25.9
Shanghai 0 54.6 922.1
Shanghai 1 89.8 1216.4
Shanghai 2 87.5 663.7
Total 608.0 9064.8

Figure 12: SpaceNet road vector labels over Shanghai (pur-
ple). The label boundary is discontinuous and irregularly
shaped, so we define rectangular regions for testing pur-
poses (e.g. the blue region denotes test region Shanghai 0).



Appendix C. OSM / SpaceNet Model Compar-
ison

Figure 13 displays comparisons of models trained on
OSM data and SpaceNet data.

Figure 13: SpaceNet compared to OSM. Road predic-
tions (yellow) and ground truth SpaceNet labels (blue) for
a sample image chips, with SpaceNet models on the left
and OSM-trained models on the right. Top: SpaceNet
model predictions (left) score APLSlength = 0.60, while
OSM model predictions (right) yield APLSlength =
0.48. Bottom: SpaceNet model predictions (left) score
APLSlength = 0.92, while OSM model predictions (right)
yield APLSlength = 0.37.

Appendix D. CRESIv2 Road Speed Plots

Figure 14: Road speed. Output of CRESIv2 inference
as applied to large SpaceNet test regions (from top: Paris,
Shanghai). Roads are colored by inferred speed limit, from
yellow (20 mph) to red (65 mph), with ground truth in gray.



Appendix E. CRESIv2 / RoadTracer Visual
Comparison

Figure 15: RoadTracer / CRESIv2. Performance compar-
ison between RoadTracer (left column, OSM labels in gray,
predictions in yellow [8]) and CRESIv2 (right column, pre-
dictions in yellow) for various cities. From top: Denver,
Vancouver.

Appendix F. RoadTracer / CRESIv2 / Deep-
RoadMapper Zooms

A qualitative comparison of three methods over various
cities is shown in Figure 16.

Figure 16: Qualitative comparison of three methods over
various cities, (see Figure 10 of [3]).
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