
A Flexible Selection Scheme for Minimum-Effort Transfer Learning

Amélie Royer
IST Austria

aroyer@ist.ac.at

Christoph H. Lampert
IST Austria

chl@ist.ac.at

Abstract

Fine-tuning is a popular way of exploiting knowledge
contained in a pre-trained convolutional network for a new
visual recognition task. However, the orthogonal setting of
transferring knowledge from a pretrained network to a vi-
sually different yet semantically close source is rarely con-
sidered: This commonly happens with real-life data, which
is not necessarily as clean as the training source (noise, ge-
ometric transformations, different modalities, etc.).

To tackle such scenarios, we introduce a new, general-
ized form of fine-tuning, called flex-tuning, in which any
individual unit (e.g. layer) of a network can be tuned, and
the most promising one is chosen automatically. In order
to make the method appealing for practical use, we propose
two lightweight and faster selection procedures that prove
to be good approximations in practice. We study these se-
lection criteria empirically across a variety of domain shifts
and data scarcity scenarios, and show that fine-tuning indi-
vidual units, despite its simplicity, yields very good results
as an adaptation technique. As it turns out, in contrast to
common practice, rather than the last fully-connected unit it
is best to tune an intermediate or early one in many domain
shift scenarios, which is accurately detected by flex-tuning.

Accepted to be Published in: Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, March 2-5, 2020, Snowmass Village, CO, USA
2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

1. Introduction
Deep convolutional networks have substantially ad-

vanced the state of the art in many areas of computer vi-
sion. These networks are often interpreted as a feature ex-
traction stage (typically convolutional layers), followed by
a small classifier (fully connected layers), and have the abil-
ity to learn features from data directly instead of having
them hard-coded, as was the case for previous shallow tech-
niques. However, this comes with a cost, as it requires a
lot more training data than methods relying on fixed ad-hoc
feature extraction. Consequently, it is not surprising that the
first successes of deep networks in image classification oc-
curred as large annotated datasets were made available, e.g.
MNIST [22] for digit recognition (60,000 training samples)
or ImageNet [32] for object classification (1.2 million).

When only little available training data is available,
however, training a deep feature extraction pipeline from
scratch is not possible, as it often leads to severe overfit-
ting. Instead, two main transfer learning strategies have
emerged, exploiting the fact that deep convolutional net-
works pre-trained on large datasets are freely available these
days [25, 38, 39]: Either, one isolates and “freezes” the fea-
ture extraction stage of the pre-trained model and then uses
the available new data to train only the smaller, less prone to
overfitting, classifier stage, or alternatively, one fully fine-
tunes the model, i.e. initializes the network parameters from
the pre-trained network, and then trains all layers using the
new data, typically only for a few steps, to avoid overfitting.
Choosing the best solution depends not only on the amount
of available samples, though, but also on the data charac-
teristics. For example, it has been observed that features
learned on large and varied natural images datasets, e.g. Im-
ageNet, transfer well to related domains such as aerial or
even biomedical images [19]. However, for domains with
very different low-level image statistics, e.g. sketches, fine-
tuning all layers is preferable [3]. Moreover, fine-tuning
only a few classification layers is often easier, hence when
both options are viable, one might prefer this alternative.

In this work, we argue for a more systematic approach to
exploiting pre-trained networks, in situations where the new
input domain can vary greatly in terms of visual appear-
ance, but its output space shares similar semantics with the
one the model was pre-trained on. We introduce the idea of
flex-tuning, a general-purpose transfer learning scheme that
leverages the information of an available pre-trained model
by fine-tuning a targeted part of the model, not necessarily
the last layer or all layers, but any individual layer or block
of consecutive layers, selected in a data-dependent way. In
fact, the idea of focusing training resources on specific in-
termediate layers draws inspiration from an important trans-
fer learning paradigm: It has been consistently observed
across various networks and datasets in the literature that
early convolutional layers capture elementary local proper-
ties of images such as edges or local textures, while middle
layers rather represent configurations of several such ele-
ments, and the last feature layers extract information about

ar
X

iv
:2

00
8.

11
99

5v
1

 [
cs

.C
V

]
 2

7
A

ug
 2

02
0

high-level concepts, such as object parts and their configu-
rations [5, 27, 41]. Thus, in order to adapt, for instance, a
network trained on clean natural images to work with noisy
ones, we hypothesize it is easier to fine-tune early layers,
while for adapting the same network to artistic paintings,
focusing on a later layer would be more promising.

Our contribution is three-fold: First, we formally de-
fine flex-tuning, which is a strategy for, given a pre-trained
network and a new training dataset, deciding in a data-
dependent and automatic way which of the available layers
to fine-tune, based on a selection criterion on a held-out val-
idation dataset. Second, in order to make flex-tuning more
appealing for practical use, we further introduce two vari-
ants based on a more efficient selection criterion, called fast
flex-tuning and even faster flex-tuning, that avoid the need
to train multiple fine-tuned models for the selection pro-
cess. Finally, we design an extensive experimental setup
that covers varied visual domain shifts, data scarcity sce-
narios and architectures. We show that flex-tuning almost
always improves classification accuracy over standard fine-
tuning techniques, particularly in settings where fine-tuning
all layers is prone to overfitting, such as settings with small
sample size and large networks. Furthermore, the (even)
faster flex-tuning variants are generally on par with flex-
tuning while providing a much lighter selection procedure.

2. Related work
Transferrability of pretrained convolutional networks

across visual tasks has been often observed and extensively
studied in the computer vision literature [1, 7, 8, 40, 42]. In
fact, many state-of-the-art computer vision models are not
trained from random initialization, but rely crucially on the
re-use of weights from networks pre-trained on large classi-
fication tasks, such as ImageNet [32]. Popular examples in-
clude the YOLO object detector [31] or fully-convolutional
networks for segmentation [24]. In the weakly supervised
learning literature, pre-trained features are also used as a
compact and semantically meaningful image representa-
tion, e.g. for image retrieval [2], style transfer [11, 16], col-
orization [21], or unsupervised part detection [35]. All of
these approaches typically aim at transferring knowledge
between two tasks that have different output structures but
similar input domain appearances and distributions. Clos-
est to our work is [40], which studies the outcome of fine-
tuning from different levels of a pre-trained network for the
standard transfer learning setting. In comparison, we ana-
lyze the effect of tuning a single unit of a pre-trained net-
work, in particular for situations where source and target
domains are visually dissimilar but semantically close.

In fact, our interest lies exactly in these orthogonal sce-
narios, i.e. where one has a similar output task, typically
multi-class classification, but with –potentially significantly
– different source and target input distributions. This setting

resembles, yet differs from, the problem of domain adapta-
tion [33, 12, 10], where the goal is to construct a classifier
for a, usually unlabelled, target task by exploiting one or
more source tasks. In domain adaptation one typically as-
sumes that samples from both source and target domain are
available, while in the fine-tuning situation, one only has
access to a pre-trained network, not the data distribution
it was trained on: This aspect rules out adversarial train-
ing [17, 43], paired samples [14], or more generally, ex-
ploiting any concrete knowledge from the source distribu-
tion to improve predictions on the target domain.

In fact, with the growth of datasets and necessary com-
pute resources, the ability to tune networks without access
to the original training data is becoming more and more im-
portant: First, when dealing with very large source datasets,
training jointly on the source and target domains (as many
domain adaptation methods require) is computationally im-
practical. Second, source training data is sometimes non-
public, especially in commercial settings. Third, specific
applications require data privacy, preventing public data re-
lease, for instance for protecting individuals identities in
face recognition models. As such, learning under privacy
constraints has become a popular topic in recent years [28].

Recent work has also tackled the problem of domain
adaptation by transferring from source to target directly at
the pixel level, either via generative models [4] or by iden-
tifying simpler causal transformations [29]. Weight tuning
methods are nonetheless simpler to use, as they directly act
on feature representations, rather than learning a transfor-
mation that holds independently of the pre-trained network.

3. Flex-Tuning

Our first contribution in this work is to highlight that sim-
ple and lightweight, but surprisingly effective, model adap-
tation is possible by fine-tuning the weights of only a single
unit in a pretrained network, provided that the right unit is
chosen. Which is the right unit depends crucially, and in a
non-trivial way, on the relation between source and target
domains as well as on the amount of available data. We
propose to identify the best unit automatically in a data-
dependent manner using a procedure we call flex-tuning.

3.1. Transferring knowledge across domain shifts

First, we formally introduce the transfer learning sce-
nario we are interested in: We are given a pre-trained con-
volutional network, N , mapping input space X to an output
space Y , and whose weights were pre-trained on a training
dataset from a source domain, that is however not available
anymore. Our goal is to learn a network for a target domain,
for which a new, and potentially small, annotated dataset,
D iid∼ P(X,Y), is available. In contrast to the standard
transfer learning application scenario, we consider practi-

cal settings where the target domain is semantically close
but visually different from the source domain. Here, by se-
mantically close, we mean that the output space of the target
task is a subset of the source task. Extending the framework
to different output structures, e.g. from a classification task
to a detection task, would be possible by fine-tuning both
the unit selected by flex-tuning and the last fully-connected
layer. In this work, we focus on thoroughly analyzing and
characterizing the influence of single units on transferring
knowledge across visually different domains and leave the
possibility of combining multiple units for future work.

Nonetheless, the setting we consider encompasses a va-
riety of real-world scenarios, where the source and target
domains do not overlap well. For example, we can consider
a source network trained on natural images, with the target
task of classifying monochrome sketches; or a source net-
work trained on scenes under daylight, that should also op-
erate at night, etc. Here we work with images as inputs, and
discrete labels as outputs. However, the underlying princi-
ples apply equally to other input domains and tasks.

3.2. Flex-tuning

We consider pre-trained multi-layer convolutional archi-
tectures, that we decompose into smaller units, which we
denote by N = NL ◦ · · · ◦ N1. In practice, a unit can
simply be a single convolutional or fully-connected layer,
or, for more complex architectures, a block of consecutive
layers. Intuitively, we think of units N1 to NL−1 as the
feature extraction part, while the last layer NL is the per-
forms the actual classification, however the method applies
to arbitrary decompositions. Given such a decomposition,
the goal of flex-tuning is to analyze the influence of tuning
specific units, not only the last one, for transferring knowl-
edge across domains with different visual appearances. Al-
gorithm 1 describes the steps of flex-tuning in pseudo-code:
For each unit of the network, we construct a fine-tuned net-
work Nft-` by training the network on the available target
data, allowing only the weights of the `-th unit to change,
while keeping all the others frozen. We also create a net-
work Nft-all, for which all layers are fine-tuned. We train
each network with an early stopping criterion, monitoring
its performance on the validation set, Dval. This prevents
overfitting in a way that is data-dependent and adaptive to
each training setting. In fact, different units might have very
different numbers of weight parameters, and therefore will
often need different numbers of epochs to converge. Finally,
we choose the best model out of these L + 1 networks by
comparing their accuracy on the validation set and output it
as the flex-tuned model, Nflex.

3.3. Practicality of the method

Technically, Algorithm 1 performs an exhaustive search
over the potential fine-tuned models. Therefore, the exist-

Algorithm 1 Flex-Tuning (flex)
input target training and validation sets, Dtrain and Dval
input pre-trained network with L units, N = NL ◦· · ·◦N1

1: for ` = 1, . . . , L do
2: Nft-` ← fine-tune unit ` of N on Dtrain until

accuracy on Dval stops improving
3: aft-` ← accuracy of Nft-` on Dval
4: end for
5: Nft-all ← fine-tune all units of N on Dtrain until

accuracy on Dval stops improving
6: aft-all ← accuracy of Nft-all on Dval

7: Nflex ← Nbest for best← argmax
X∈{1,...,L,all}

aft-X

output Nflex

1 2 3 4 5 6 7
Fine-tuned unit

30

35

40

45

50

55

60

65

70

va
l a

cc
ur

ac
y

(-
)

0.001 0.01 0.1 1.0 base network fully fine-tuned

1 2 3 4 5 6 7
Fine-tuned unit

30

40

50

60

70

80

te
st

 a
cc

ur
ac

y
(-

 -
)

Figure 1. Validation (-) and test (- -) accuracies for fine-tuning a
single unit of a pretrained CIFAR network to the Blurry CIFAR
(left) and Quick, Draw! (right) datasets. Each line color represents
a different subsampling ratio of the target training dataset, while
blue markers indicate the unit picked based on validation accuracy.

ing theoretical results for model selection [34] apply, and
we obtain that, in the limit, flex-tuning will indeed choose
the best of the possible models. Moreover, the difference
between flex-tuning’s accuracy estimated from the valida-
tion data and the expected accuracy on future data decreases

with a rate of O
(√

logL
|Dval|

)
. In Figure 1, we illustrate flex-

tuning’s practical use: We apply the proposed method on a
small network (5 convolutional and 2 fully connected lay-
ers) pre-trained on CIFAR [20] and to be adapted to a sub-
set of the “Quick, Draw!” dataset [6] and a blurred variant
of CIFAR, for different sizes of the target training dataset.
These preliminary results show that (i) it is often beneficial
to fine-tune an intermediate layer rather than the last one
and that (ii) well-performing units strongly depend on the
dataset and in a non-trivial way, but can be efficiently pin-
pointed with a simple selection criterion such as flex-tuning.

For deep networks however, flex-tuning can be compu-
tationally costly: It requires training as many networks as
there are units, plus another one in which all units are fine-
tuned. Let us denote the average number of training epochs
by Eone when fine-tuning a single unit, and by Eall when
fine-tuning all. Also, let us denote the corresponding aver-
age computational cost of one such epoch as cone and call,

respectively. Then the total runtime complexity of flex-
tuning is O(LEonecone + Eallcall). Even when taking into
account that typically Eall > Eone and call > cone, for rea-
sonably large networks the complexity is often dominated
by the computational cost of fine-tuning the network once
for each unit. Since ultimately only one of the models is
chosen, these computations end up wasted. To address this
issue, we introduce two improved selection criteria in the
following section to efficiently approximate flex-tuning.

4. Efficient Selection Criteria
4.1. Fast flex-tuning

To overcome the aforementioned computational ineffi-
ciency of flex-tuning, we propose a different criterion, fast
flex-tuning, for selecting the unit to be fine-tuned. It relies
on the idea that a given unit’s influence can be approximated
by a few feed-forward passes rather than a full training pro-
cess. While it does not come with formal guarantees, we
found it to work nearly as well as the exhaustive search in
practice, while at the same time requiring only 2 networks
to be trained instead of L + 1. Algorithm 2 describes fast
flex-tuning in pseudo-code: The method starts by training
one new model, Nft-all, by fine-tuning all units of the pre-
trained network on the training data available for the target
domain. From this, we construct L new networks by net-
work surgery. For any ` = 1, . . . , L, we create a proxy net-
work, Nprox-`, by copying all units from N , except the `-th
one, which is copied from the fine-tuned network, Nft-all.
Clearly, the resulting hybrid networks are not functional
models, as the l-th unit and the other units were not trained
together. Nevertheless, the construction allows us to derive
a measure which of the network units is the most promising
candidate for fine-tuning, namely the one that leads to the
biggest improvement in accuracy (if any) when applied to
the target domain. Numerically, we compute the accuracy
of each model Nprox-` on the validation dataset and iden-
tify the value for ` with highest accuracy. We then create a
viable model by fine-tuning the selected unit on the target
dataset D. Finally, we output either this model, or the one
in which all layers were fine-tuned (which is available as we
created it at the beginning of the procedure), depending on
which achieved the higher validation accuracy. We report
the validation accuracies of the Nprox-` models for our dif-
ferent experimental settings in the supplemental material.

In comparison to flex-tuning, fast flex-tuning only has to
fine-tune two networks instead of L + 1. Its runtime com-
plexity is hence O(Eonecone + Eallcall), thereby providing
substantial computational savings for large networks.

4.2. Even faster flex-tuning

In some situations, training from scratch or fine-tuning
the complete network is simply computationally too costly:

Algorithm 2 Fast Flex-Tuning (fast-flex)
input target training and validation sets, Dtrain and Dval
input pre-trained network with L units, N = NL ◦· · ·◦N1

1: Nft-all ← fine-tune all units of N on Dtrain until
accuracy on Dval stops improving

2: aft-all ← accuracy of Nft-all on Dval

3: for ` = 1, . . . , L do
4: Nprox-` ← NL◦· · ·◦Nl+1◦[Nft-all]`◦N`−1◦· · ·◦N1

5: a` ← accuracy of Nprox-` on Dval
6: end for
7: best← argmax` a`, ` ∈ {1,...,L}
8: Nbest ← fine-tune unit best of N on Dtrain until

accuracy on Dval stops improving
9: aft-best ← accuracy of Nbest on Dval

10: Nflex ← if aft-best ≥ aft-all then Nbest else Nft-all

output Nflex

Algorithm 3 Even Faster Flex-Tuning (faster-flex)
input target training and validation sets, Dtrain and Dval
input pre-trained network with L units, N = NL ◦· · ·◦N1

1: Nft-all ← fine-tune all units of N on Dtrain
for a single epoch

2: for ` = 1, . . . , L do
3: Nprox-` ← NL◦· · ·◦Nl+1◦[Nft-all]`◦N`−1◦· · ·◦N1

4: a` ← accuracy of Nprox-` on Dval
5: end for
6: best← argmax` a`, ` ∈ {1,...,L}
7: Nflex ← fine-tune unit best of N on Dtrain until

accuracy on Dval stops improving
output Nflex

Neither flex-tuning nor fast flex-tuning are applicable, as
both require training a network by fine-tuning all units as
the first step of their selection process. To overcome this, we
propose an even faster variant, as described in Algorithm 3.

Even faster flex-tuning resembles fast flex-tuning in that
it selects a unit to be fine-tuned based on the accuracies
of different proxy models that are obtained by network
surgery, each time preserving L − 1 units from the pre-
trained source network and replacing the remaining one
with its fine-tuned counterpart. The difference lies in that
the fine-tuned units are obtained from a network in which
all units have been fine-tuned for just a single epoch. This
results in a total computational runtime of O(Eonecone+call).
We consider this close to optimal for an adaptive technique,
as at least the cost Eonecone clearly cannot be avoided, if the
goal is to produce a network in which at least one unit has
been fine-tuned. The drawback of the acceleration is that
the even faster flex-tuning algorithm does not have access
to a reliable estimate of what performance a network with
all units fully fine-tuned would have achieved. This is how-
ever not relevant here as, by assumption, the computational

method computational cost
flex LEonecone + Eallcall

fast-flex Eonecone + Eallcall
faster-flex Eonecone + call

ft-fc Eonecone
ft-all Eallcall

Table 1. Runtime complexities. L is the number of units in the
network, Eone and cone are the average number of epochs until early
stopping for fine-tuning one unit, and the estimated cost of one
such epoch. Eall and call are the analogous quantities when fine-
tuning all network units. In general, Eall > Eone and call > cone.

budget does not suffice for training such a model anyway.
In summary, even faster flex-tuning is a generalization of

fine-tuning the last unit of the network, as is often done in
practice, but instead the most promising unit is chosen by
a brief selection process. Table 1 summarizes the runtime
complexity of all proposed models, as well as the two main
baselines we use in our experiments: ft-fc, which fine-
tunes always the last unit (i.e. the fully-connected layer(s)),
and ft-all, which fine-tunes always all layers.

5. Experiments
In this section, we introduce our experimental setup, cov-

ering a large number of domain shifts and data scarcity sce-
narios. We then describe fine-tuning baselines commonly
used in the literature, and compare them to the proposed
methods, flex-tuning (flex), fast flex-tuning (fast-flex)
and even faster flex-tuning (faster-flex).

5.1. Experimental set-up

We build several domain shift scenarios, ranging from
simple parametric transformations to severe visual appear-
ance shifts. In order to explore the impact of data scarcity,
we additionally consider several subsampled versions of
each target dataset, ranging from a few images per class
to hundreds of them. The different settings are thus mainly
characterized by: (i) the depth of the base source network,
(ii) the size of the target dataset we tune on, and (iii) the type
of input domain shift: simple parametric transformations,
e.g. manipulating color channels, complex (non-trivially in-
vertible) parametric transformations, and general free-range
transformations. We summarize our setup in Table 2.

Medium-sized experiments. We first consider a small 4
layers network (which we decompose in 4 one-layer units:
2 convolutional layers followed by 2 fully-connected ones)
pretrained on a subset of MNIST training images. We use
the remaining samples (except 5000 of them that we keep
for validation) to build synthetic domain shifts such as affine
transformations (randomized or fixed for all images), or
random occlusions. Second, we build a 7 layers network (7
one-layer units: 5 convolutional and 2 fully connected ones)
that we pre-train on half of the CIFAR training set [20]. As

target domains, we consider several synthetic transforma-
tions of the remaining samples, as well as a subset of the
QuickDraw dataset [6]: We restrict ourselves to the object
classes they have in common, i.e. all CIFAR classes except
for “deer”. We also consider the converse setting, i.e. pre-
training on QuickDraw and using as target domains CIFAR
and synthetically generated blurry and noisy QuickDraw
samples. Since both aforementioned architectures have two
fully connected layers, we consider two baselines, ft-fc
(1) and ft-fc (2), corresponding to fine-tuning only the
last, or the last two fully-connected layers respectively.

Large-scale setting. Finally, we consider two large-scale
settings using the Inception2 architecture [13, 39, 37]. We
decompose the model so as to not separate layers belong-
ing to the same Inception module, which results in 13 units,
the last one being the single fully-connected classification
layer of the architecture. We first experiment on synthetic
transformations of natural images. For this setting, we use
a network pretrained on ILSVRC2012-train. We then split
ILSVRC2012-val in three parts. 25k images are used to
create target datasets, 5k are kept for validation and the
remaining 20k are used for testing. Second, we consider
the more challenging setting of stylistic transformations us-
ing the PACS dataset [23], initially introduced for the task
of domain generalization: We use art paintings, cartoons
and sketches, as target domains, which we further split into
train/val/test sets. In this setting, the target task is a sub-
set of the source ILSVRC classification task (ignoring the
“person” class in PACS as it does not have an equivalent).

Baselines. We first consider the two most common trans-
fer learning schemes as baselines. Starting with a network
initialized with the same weights and architectures as the
source pre-trained network, N : (i) ft-all consists in fine-
tuning all layers N1, . . . NL on the training set D from the
target domain, and (ii) ft-fc, which corresponds to fine-
tuning only the last fully-connected units of the network,
while keeping earlier units frozen. We also consider using
scaling and shifting operations as in [36] and refer to this
baseline as ft-ss: It consists in fine-tuning the last classi-
fication layer as well as lightweight kernel-scaling and bias-
shifting parameters at every layer. Thus ft-ss acts on all
levels of the architecture, but requires few additional learn-
ing parameters, hoping to prevent overfitting problems.

Training. We measure performance as top-1 classifica-
tion accuracy, and top-5 for ILSVRC-based domains. We
use the same hyperparameters as were used during training
of the base source network. As is common, for finetun-
ing, we use a lower base learning rate: 10−3 for the small
convolutional networks, and 10−4 for the Inception2 net-
works. We train all models using the Adam [18] optimizer.
As mentioned previously, we also employ an early stopping
criterion based on validation accuracy, regularly computed

Source Target domains

MNIST (subset) [22]
25k images
10 classes
4-layers

top-1: 0.989

Blurry
top-1: 0.748

Occluded
top-1: 0.581

MNIST-M [9]
top-1: 0.439

Transform
(random)

top-1: 0.322
SVHN [26]
top-1: 0.211

Transform
(fixed)

top-1: 0.160

ratios ∼ 3, 30, 300 and 3k images per class

CIFAR (subset) [20]
18k images

9 classes
7-layers

top-1: 0.738

Noisy
top-1: 0.540

Blurry
top-1: 0.324

QuickDraw [6]
top-1: 0.291

ratios ∼ 2, 20, 200 and 2k images per class

ILSVRC [32]
(’12 train split)

1M images
1000 classes
Inception2

top-5: 0.918

YUV
top-5: 0.841

Fixed rotation
top-5: 0.743

Fixed scaling
(symmetric pad)
top-5: 0.519

Fixed scaling
(stretch pad)
top-5: 0.440

HSV
top-5: 0.384

ratios ∼ 2, 12 and 25 images per class

Art
top-1: 0.532

Cartoon
top-1: 0.346

Sketch
top-1: 0.142

ratios ∼ 2, 20 and 200 images per class

Table 2. Source domains and architectures (left) we consider, with
the corresponding target domains (right) and the training dataset
subsampling ratios we consider, as the average number of images
per class: the last entry corresponds to the full dataset size.

during training (every 5-10 epochs). This also dampens
the negative effect of overfitting in scenarios that are overly
prone to it (e.g. ft-all with small sample size and a large
network). Finally, in the very scarce data setting (∼ 1 image
per class) we report metrics averaged over 20 runs, to avoid
a potential bias towards the sampled training images.

5.2. Main results

In Table 3 we compare the proposed method and base-
lines on the MNIST, CIFAR and ILSVRC-based settings,
for one subsampling ratio of the target training set. Results
for other ratios show similar trends and are available in the
supplemental material. For the more challenging PACS sce-
nario, which exhibits both a strong visual shift and slight se-
mantic labels shift from the source task, we report complete
results across all subsampling ratios.

We observe that flex outperforms fine-tuning baselines

in almost all settings. It very rarely loses to the ft-fc
baseline, but is sometimes tied with ft-all, which is
a subcase of flex and fast-flex through the selec-
tion criterion. More precisely, over all subsampling ratios
and domain shifts we have in total 72 transfer scenarios.
Out of these, the two overall best methods are flex and
fast-flex, achieving best accuracy 60 and 41 times re-
spectively. Compared to this, ft-all only reaches the
best accuracy 26 times, mostly for large sample size and
medium-sized networks. It consistently loses due to over-
fitting in other scenarios. More interestingly, in terms of
absolute values, we observe that when flex strictly wins,
i.e. when it reaches the best accuracy and not in a tie with
ft-all, it typically does so by a higher margin than in the
reverse scenario, i.e. when one of the baselines strictly wins.
We detail our main observations in the rest of the section.

Comparison to baselines. In the medium network or
large sample size settings, flex-tuning expectedly generally
chooses to fine-tune all layers, i.e. flex recovers ft-all.
However, as the dataset size to network depth ratio de-
creases, fine-tuning all layers becomes more prone overfit-
ting. In that case, flex prefers to fine-tune a specific unit,
which generally performs better than the ft-fc baseline.
More generally, the behavior of ft-fc strongly correlates
with the difficulty of the input domain shift: it performs best
in settings where the source domain early layers generalize
well to the target domain, e.g. in the noisy CIFAR setting
where the small additive random noise does not impact ac-
tivations significantly. When the domain shift is more pro-
nounced however, ft-fc is often outperformed by flex,
fast-flex and faster-flex which pick a more ade-
quate unit to tune. This shows there is a benefit to having
the method pick the best unit to fine-tune, rather than re-
stricting transfer learning to the last fully-connected layers.
These conclusions also hold for ft-ss, although it pro-
vides a much stronger baseline than ft-fc and is some-
times on-par or outperforms the faster flextuning variants.
However, its performance seems to depend on the type of
domain shift: For instance, ft-ss performs moderately
well on the colorized-ILSVRC setting. We attribute it to the
fact that this setting involves a recombination of the chan-
nels which is not well captured by affine transformations of
the parameters. Finally, flex and its variants are easier
to implement in practice as they do not introduce additional
parameters nor require to know how layers actually operate.

Selecting the best unit. We observe that the most promis-
ing unit selected by flex-tuning is often an intermediate one
and does not follow an obvious pattern, showing that dif-
ferent domain shifts affect layer representations at different
depths of the architecture: This is illustrated in Figure 2.
On the same figure, we see that fast flex-tuning and even
faster flex-tuning are good approximations of flex-tuning as

ILSVRC
flex ft-

flex fast faster fc ss all

ratio: 2 images per class
Art (0.53) 0.669 0.703 0.655 0.626 0.630 0.628
Cartoon (0.32) 0.639 0.683 0.593 0.618 0.647 0.507
Sketch (0.14) 0.625 0.606 0.414 0.554 0.581 0.337

ratio: 20 images per class
Art (0.53) 0.870 0.851 0.861 0.729 0.849 0.724
Cartoon (0.32) 0.912 0.893 0.841 0.820 0.887 0.709
Sketch (0.14) 0.852 0.638 0.638 0.766 0.801 0.542

ratio: 200 images per class
Art (0.53) 0.906 0.906 0.823 0.791 0.887 0.746
Cartoon (0.32) 0.958 0.956 0.952 0.868 0.956 0.925
Sketch (0.14) 0.924 0.924 0.890 0.767 0.916 0.875

Table 3. Break-down of results comparing our proposed flex,
fast-flex and faster-flex, to fine-tuning baselines, ft-all
and ft-fc. In each table, the first column lists each source→ tar-
get domain shifts, with the base accuracy reached by the pretrained
source network on the target test set. Bold entries indicate the score
is better than that of all baselines (ft-). For space reason, we only
report results for a specific subsampling ratio for settings other than
PACS (roughly 30 images per class for MNIST, 20 for CIFAR, 12 for
ILSVRC). Full results are in the supplemental material.

MNIST
flex ft-

flex fast faster fc (1) fc (2) ss all

Blurry (0.75) 0.926 0.926 0.926 0.921 0.928 0.928 0.921
Occluded (0.58) 0.806 0.806 0.801 0.785 0.801 0.792 0.806
MNIST-M (0.44) 0.683 0.683 0.671 0.615 0.670 0.675 0.683
SVHN (0.21) 0.669 0.669 0.572 0.451 0.595 0.657 0.669
Transf. (rnd) (0.32) 0.644 0.644 0.644 0.573 0.638 0.624 0.625
Transf. (fix) (0.16) 0.908 0.887 0.879 0.839 0.875 0.866 0.887

CIFAR
flex ft-

flex fast faster fc (1) fc (2) ss all

Blurry (0.32) 0.577 0.577 0.512 0.444 0.501 0.569 0.577
Noisy (0.54) 0.624 0.624 0.624 0.583 0.597 0.618 0.621
QuickDraw (0.29) 0.518 0.517 0.517 0.475 0.525 0.495 0.501

QuickDraw
flex ft-

flex fast faster fc (1) fc (2) ss all

Blurry (0.19) 0.642 0.631 0.560 0.426 0.468 0.707 0.631
Noisy (0.63) 0.801 0.801 0.795 0.788 0.792 0.805 0.801
CIFAR (0.20) 0.424 0.424 0.401 0.333 0.347 0.388 0.424

ILSVRC
flex ft-

flex fast faster fc ss all

YUV (0.84) 0.893 0.893 0.893 0.835 0.699 0.808
HSV (0.38) 0.856 0.856 0.856 0.533 0.646 0.687
Scaling (stretch) (0.44) 0.724 0.696 0.696 0.502 0.584 0.653
Scaling (sym.) (0.52) 0.770 0.757 0.757 0.663 0.650 0.716
Rotation (0.74) 0.826 0.832 0.812 0.667 0.652 0.771

PACS

Art
flex
fast-flex
faster-flex

QuickDraw Cartoon

MNIST Blurry QuickDraw Sketch

Blurry Noisy QuickDraw ILSVRC

Occluded CIFAR YUV

MNIST-M CIFAR HSV

SVHN Blurry CIFAR Scaling (stretch)

Transform (rnd) Noisy CIFAR Scaling (sym)

1 2 3 4
Layer

Transform (fix)
1 2 3 4 5 6 7

Layer

QuickDraw
1 2 3 4 5 6 7 8 9 10 11 12 13

Layer

Rotation

Figure 2. Individual units selected by flex, fast-flex and faster-flex, based on validation set accuracy. Triangles denote
actual picks for flex, fast-flex (if ignoring the option to fine-tune all units) and faster-flex. The background values is obtained
by summing the selection ranks of each unit across ratios, based on their test performance: in other words, the darker the color, the
best performance fine-tuning this unit yields on the test set. We observe that flex-tuning’s selection criterion generally chooses the best
performing unit. The two variants’ choices are more scattered, but overall positively correlate with flex-tuning’s decisions.

they often pick similar units. Similarly in Table 3 we ob-
serve that they both often outperform fine-tuning baselines,
although still being somewhat subpar to flex. This shows
that only a few gradient updates, as is done in even faster
flex-tuning, are enough to pin-point relevant units.

Effect of the domain shift on flex. From Figure 2,
we distinguish three input domain shifts categories: For
local pixel-level transformations, such as noisy CIFAR,
or YUV/HSV ILSVRC, flex-tuning tends to choose early
units. This coincides with the fact that (i) early layers are
most affected by local pixel-level changes, and (ii) such
transformations are easy to correct in early layers: e.g. YUV
is a linear transformation of RGB. For geometric affine

transformations, flex-tuning picks more central units of the
architecture. In fact, such transformations do not change
the global appearance of images and, moreover, most mod-
ern deep learning architecture are trained for invariance
to small geometric manipulations (e.g. flip, rotations) via
synthetic data augmentation, hence earlier layers are more
easily transferable across these domain shifts. The free-
transform scenarios are harder to generalize: First, we ob-
serve that natural images features transfer particularly well
across various domains. As such, flex-tuning often picks
later layer in the architecture for general transforms scenar-
ios with natural images as their source domain, e.g. photo→
{art, cartoon, sketch}. However, this does not seem to be

YUV HSV Art Cartoon Sketch
ft-fc 0.80 0.47 0.66 0.53 0.39
ft-all 0.75 0.52 0.80 0.83 0.85
flex 0.85 0.85 0.88 0.86 0.86

Table 4. mAP@10 retrieval results for the fine– and flex-tuned net-
work embeddings, queried against the source domain embeddings

the case in the reverse scenario, e.g. QuickDraw→ CIFAR
and MNIST→ SVHN, which indicates that features learned
from the simple structure and particular distribution of bi-
nary sketches do not generalize as well to natural images.
Second, in some complex settings such as PACS, it can be
the case that two non-consecutive units are good fine-tuning
candidates. This suggests that units sometimes interact in
complex patterns and that considering combination of units
rather than single ones is an interesting future direction.

5.3. Retrieval Experiments

A benefit of fine-tuning the last layer only is that it pre-
serves a common feature representation across domains.
However this property breaks in our setting: Images visu-
ally different from the training set fall out of the usual op-
eration zone of the feature extractor. One can still learn a
good classifier from these features [30], but the representa-
tions themselves are meaningless with respect to the initial
source domain. On the other hand, tuning an intermediate
unit instead could help to “mend” the representation. To
evaluate this, we use a retrieval experiment: We extract fea-
tures for the initial source validation domain through the
source network, and for the target domain through the flex-
tuned or finetuned network. For each target sample, we re-
trieve its top-k nearest neighbors in the source domain and
consider them correctly retrieved if they share the same se-
mantic class, and evaluate the average precision (AP@k).
For space reasons, we only report AP@10, on the most
challenging scenarios, in Table 4. Full results are reported
in the supplemental material. The results follow our previ-
ous observations: For small networks (MNIST, CIFAR) the
result of fine-tuning all layers is often better aligned with
the initial representations. However for the larger architec-
tures, tuning an intermediate unit better recover the initial
source embedding space as shown in Table 4.

5.4. Towards pixel-level adaptation

An alternative to tuning a pre-trained network is to in-
stead learn to map target samples back to the source domain
while keeping the network’s weights untouched; This has
the advantage of only depending on the domain shift and not
on the architecture. Such image-to-image mapping mod-
ules have been studied for domain adapation, but typically
require data from both source and target domains [4, 43].

Building on this idea, we introduce an image-to-image
transformation unit as a pre-processing module before the
feature extraction phase of the pre-trained source network.

(a) Blurry MNIST (b) Blurry QuickDraw (c) MNIST-M

(d) Transformed (rnd) (e) YUV (1 layer) (f) Scaling (symmetric)

Figure 3. Example images generated by the pre-processing mod-
ule. For each pair, the left image is the input from the target do-
main and the right one is the pre-processed output.

The resulting architecture is considered as a new model
selection option for flex-tuning, where only the image-to-
image unit’s weights are trained and the rest of the net-
work is frozen. We implement this image-to-image unit as a
small Pix2Pix network [14] except in a few secnarios where
we leverage our prior knowledge of the domain shift: For
example, color channel transformations occur pixel-wise,
thus we build the preprocessing module for YUV and HSV
ILSVRC with 1x1 convolutions. Similarly, for geometric
transforms, we use a Spatial Transformer Network [15].
Figure 3 shows exemplary outputs of the learned image-to-
image units. Quantitative results are in the supplemental
material. The specialized pre-processing modules performs
very well for simple parametric transformations, and results
are also encouraging on simple domain shifts such as blur,
noise and added random background. We believe this to be
a consequence of the skip connections in the Pix2Pix archi-
tecture, which enforce local pixel constraints between the
input and output. In all these succesful cases, flex-tuning’s
selection criterion also selects the image-to-image unit as
the most promising unit to tune. For complex transforma-
tions, e.g. photo→ sketch, the pre-processing module per-
forms poorly. Nevertheless, flex-tuning is able to notice this
and falls back to one of the other units to adapt.

6. Conclusions

We introduce a new transfer learning method for neural
networks, flex-tuning, that adapts a pre-trained network to a
new domain by tuning just a single network unit (e.g. a layer
or block layers). Our experiments on a variety of scenarios
show that this is a surprisingly strong adaptation technique,
as long as the right unit is chosen. Specifically, we study the
case where output classes stay consistent but the input data
characteristics change, potentially dramatically, e.g. from
images to sketch drawings. We find that, contrary to com-
mon practice, it is then rarely the last fully-connected unit,
but rather an intermediate or early unit, that leads to the best
adaptation results, and flex-tuning reliably identifies it. We
also introduce two accelerated variants that perform almost
equally good but are significantly more computationally ef-
ficient in selecting the unit to be fine-tuned.

References
[1] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and

S. Carlsson. Factors of transferability for a generic ConvNet
representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence (T-PAMI), 2016. 2

[2] A. Babenko and V. S. Lempitsky. Aggregating local deep
features for image retrieval. In International Conference on
Computer Vision (ICCV), 2015. 2

[3] P. Ballester and R. M. Araujo. On the performance of
GoogLeNet and AlexNet applied to sketches. In Conference
on Artificial Intelligence (AAAI), 2016. 1

[4] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Kr-
ishnan. Unsupervised pixel-level domain adaptation with
generative adversarial networks. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 2, 8

[5] S. A. Cadena, M. A. Weis, L. A. Gatys, M. Bethge, and A. S.
Ecker. Diverse feature visualizations reveal invariances in
early layers of deep neural networks. In European Confer-
ence on Computer Vision (ECCV), 2018. 2

[6] S. Cheema, S. Gulwani, and J. LaViola. QuickDraw: Im-
proving drawing experience for geometric diagrams. In Con-
ference on Human Factors in Computing Systems (SIGCHI),
2012. 3, 5, 6

[7] B. Chu, V. Madhavan, O. Beijbom, J. Hoffman, and T. Dar-
rell. Best practices for fine-tuning visual classifiers to new
domains. In ECCV Workshop TASK-CV: Transferring and
Adapting Source Knowledge in Computer Vision, 2016. 2

[8] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. DeCAF: A deep convolutional acti-
vation feature for generic visual recognition. In International
Conference on Machine Learing (ICML), 2014. 2

[9] Y. Ganin and V. Lempitsky. Unsupervised domain adap-
tation by backpropagation. In International Conference on
Machine Learing (ICML), 2015. 6

[10] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky. Domain-
adversarial training of neural networks. Journal of Machine
Learning Research (JMLR), 2016. 2

[11] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style trans-
fer using convolutional neural networks. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 2

[12] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for
object recognition: An unsupervised approach. In Interna-
tional Conference on Computer Vision (ICCV), 2011. 2

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
Journal of Machine Learning Research (JMLR), 2015. 5

[14] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2017. 2, 8

[15] M. Jaderberg, K. Simonyan, A. Zisserman, and
K. Kavukcuoglu. Spatial transformer networks. In
Conference on Neural Information Processing Systems
(NIPS), 2015. 8

[16] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European
Conference on Computer Vision (ECCV), 2016. 2

[17] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to
discover cross-domain relations with generative adversarial
networks. In International Conference on Machine Learing
(ICML), 2017. 2

[18] D. P. Kingma and J. L. Ba. Adam: a method for stochas-
tic optimization. In International Conference on Learning
Representations (ICLR), 2015. 5

[19] S. Kornblith, J. Shlens, and Q. V. Le. Do better ImageNet
models transfer better? In Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 1

[20] A. Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.
3, 5, 6

[21] G. Larsson, M. Maire, and G. Shakhnarovich. Learning rep-
resentations for automatic colorization. In European Confer-
ence on Computer Vision (ECCV), 2016. 2

[22] Y. LeCun and C. Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. 1, 6

[23] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Deeper,
broader and artier domain generalization. In International
Conference on Computer Vision (ICCV), 2017. 5

[24] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015. 2

[25] Deep Learning Model Zoo. https://modelzoo.co/.
1

[26] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng. Reading digits in natural images with unsupervised fea-
ture learning. In NIPS Workshop on Deep Learning and Un-
supervised Feature Learning, 2011. 6

[27] C. Olah, A. Mordvintsev, and L. Schubert. Feature vi-
sualization. Distill, 2017. https://distill.pub/2017/feature-
visualization. 2

[28] N. Papernot, M. Abadi, Ú. Erlingsson, I. J. Goodfellow, and
K. Talwar. Semi-supervised knowledge transfer for deep
learning from private training data. In International Con-
ference on Learning Representations (ICLR), 2017. 2

[29] G. Parascandolo, N. Kilbertus, M. Rojas-Carulla, and
B. Schölkopf. Learning independent causal mechanisms.
In International Conference on Machine Learing (ICML),
2018. 2

[30] A. Rahimi and B. Recht. Weighted sums of random kitchen
sinks: Replacing minimization with randomization in learn-
ing. In Conference on Neural Information Processing Sys-
tems (NIPS), 2008. 8

[31] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.
You only look once: Unified, real-time object detection.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 2

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 2015. 1, 2, 6

http://yann.lecun.com/exdb/mnist/
https://modelzoo.co/

[33] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-
sual category models to new domains. In European Confer-
ence on Computer Vision (ECCV), 2010. 2

[34] S. Shalev-Shwartz and S. Ben-David. Understanding ma-
chine learning: From theory to algorithms. Cambridge Uni-
versity Press, 2014. 3

[35] M. Simon and E. Rodner. Neural activation constellations:
Unsupervised part model discovery with convolutional net-
works. In International Conference on Computer Vision
(ICCV), 2015. 2

[36] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. Meta-transfer
learning for few-shot learning. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 5

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2015. 5

[38] TensorFlow Hub. https://www.tensorflow.org/
hub/. 1

[39] TensorNets. https://github.com/taehoonlee/
tensornets. 1, 5

[40] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-
ferable are features in deep neural networks? In Conference
on Neural Information Processing Systems (NIPS), 2014. 2

[41] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In European Conference on Com-
puter Vision (ECCV), 2014. 2

[42] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a percep-
tual metric. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2

[43] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired
image-to-image translation using cycle-consistent adversar-
ial networks. In International Conference on Computer Vi-
sion (ICCV), 2017. 2, 8

https://www.tensorflow.org/hub/
https://www.tensorflow.org/hub/
https://github.com/taehoonlee/tensornets
https://github.com/taehoonlee/tensornets

