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Abstract

Real-world data is predominantly unbalanced and long-
tailed, but deep models struggle to recognize rare classes in
the presence of frequent classes. Often, classes can be ac-
companied by side information like textual descriptions, but
it is not fully clear how to use them for learning with unbal-
anced long-tail data. Such descriptions have been mostly
used in (Generalized) Zero-shot learning (ZSL), suggesting
that ZSL with class descriptions may also be useful for long-
tail distributions.

We describe DRAGON, a late-fusion architecture for
long-tail learning with class descriptors. It learns to
(1) correct the bias towards head classes on a sample-
by-sample basis; and (2) fuse information from class-
descriptions to improve the tail-class accuracy. We also
introduce new benchmarks CUB-LT, SUN-LT, AWA-LT for
long-tail learning with class-descriptions, building on ex-
isting learning-with-attributes datasets and a version of
Imagenet-LT with class descriptors. DRAGON outperforms
state-of-the-art models on the new benchmark. It is also a
new SoTA on existing benchmarks for GFSL with class de-
scriptors (GFSL-d) and standard (vision-only) long-tailed
learning ImageNet-LT, CIFAR-10, 100, and Places365-LT.

1. Introduction
Real-world data is predominantly unbalanced, typically

following a long-tail distribution. From text data (Zipf’s
law), through acoustic noise (the 1-over-f rule) to the long-
tail distribution of classes in object recognition [45], few
classes are frequently observed, while the many remaining
ones are rarely encountered.

Long-tail data poses two major challenges to learning:
data paucity and data imbalance. First, at the tail of the
distribution, classes are poorly sampled and one has to use
few-shot and zero-shot learning techniques. Second, when
training a single model for both richly-sampled classes
and poorly-sampled classes, the common classes dominate

(a) (b)

(c)

Figure 1: Training with unbalanced data leads to a “famil-
iarity bias”, where models are more confident and more
over-confident about frequent classes [48, 47, 6]. (a) Class
distribution of a long-tailed ImageNet [12]. Classes are or-
dered from left to right by decreasing number of samples.
(b) When training a ResNet-10 on ImageNet-LT, validation
(and test) predictions tend to have low confidence for tail
classes. We show the mean output of softmax for each class,
conditioned on samples from that class. (c) A reliability
graph for the model in b. Predictions are grouped based
on confidence. The model has larger confidence gaps (pink
boxes) for more confident predictions, which usually come
from head classes. This result suggests that overconfidence
is strongly affected by class frequency, and we can learn to
correct it if the number of samples is known.

training, and as we show below, this skews prediction con-
fidence towards rich-sampled classes.

To address data paucity of tail classes, note that visual
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examples can very often be augmented with class descrip-
tors. Namely, semantic information about classes given as
text or attributes [26, 36, 4, 52]. This approach, learning
with class-descriptors has been studied mostly for zero-
shot and generalized zero-shot learning [38, 32, 43, 52, 53].
Here, we propose to adapt it to generalized few-shot learn-
ing (GFSL) by fusing information from two modalities. A
visual classifier, expected to classify correctly head classes,
and a semantic classifier, trained with per-class descriptors
and is expected to classify correctly tail classes. We ex-
plain the subtleties of GZSL and GFSL in Section 2 (Re-
lated work).

To address data imbalance, we first note that learning
with unbalanced data leads to a familiarity effect, where
models become biased to favor the more familiar, rich-
sampled classes [48, 6]. Since deep models tend to be
overly confident about high-confidence sample predictions
[17, 25], they become over-confident about head classes
[48, 47, 6]. Figure 1 illustrates this phenomenon. It shows
that a model trained on unbalanced data (Figure 1a), has
higher confidence for head classes (Figure 1b). It is also an
over-estimate of the true accuracy (Figure 1c), especially
for head classes. See further analysis in Appendix A.

As an interesting side note, studies of human decision
making and preference learning show a similar bias towards
familiar classes. This effect is widely observed and has been
connected to the availability heuristic studied by Tversky
and Kahneman [44].

A natural way to correct the familiarity bias would be
to penalize high-frequency classes, either during training
using a balanced loss, or post-training [23]. However, it
would be a grave mistake to penalize all samples from rich
classes, because confidence is sometimes justified, as in the
case of ”easy” prototypical examples of a class. Indeed,
we show below that addressing the familiarity bias benefits
from per-sample debiasing, going beyond class-based debi-
asing. To summarize, model overconfidence is affected by
class frequency. It can be estimated by observing the full
vector of predictions to correct for overconfidence. Not
all samples of a class should be penalized for belonging
to a frequent class.

Importantly, the familiarity effect caused by data im-
balance has a crippling effect on model accuracy and on
aggregating predictions from multiple modalities. Several
approaches attempted calibrating predictions of deep net-
works to remedy the above biases (see e.g. a survey in
[17]) and some became common practice. Unfortunately,
the problem is still far from being solved.

We propose to address both the data-imbalance and the
data paucity learning challenges, using a single late-fusion
architecture. We describe an easy-to-implement debiasing
module that offsets the familiarity effect by learning to pre-
dict the magnitude of the bias for any given sample. It fur-

ther improves learning at the tail by learning to fuse and
balance information from visual and semantic modalities.
It can easily be reduced to address long-tail learning with a
single modality (vision only), where it improves over cur-
rent baselines.

The paper has four main novel contributions:
(1) A new late-fusion architecture (DRAGON) that learns
to fuse predictions based on vision with predictions based
class descriptors.
(2) A module that rebalances class predictions across
classes on a sample-by-sample basis.
(3) New benchmarks CUB-LT, SUN-LT, and AWA-LT for
evaluating long-tail learning with textual class descriptors
(LT-d). DRAGON is SoTA on these datasets, and also on
ImageNet-LT augmented with class descriptors and on ex-
isting two-level benchmarks.
(4) A new SoTA on existing (vision-only) long-tail learn-
ing benchmarks: CIFAR-10, CIFAR-100, ImageNet-LT and
Places365-LT.

2. Related methods
Long-tail learning: Learning with unbalanced data causes
models to favor head classes [6]. Previous efforts to ad-
dress this effect can be viewed as either algorithmic or data-
manipulations approaches.

Algorithmic approaches encourage learning of tail
classes using a non-uniform cost per misclassification func-
tion. A natural approach is to rescale the loss based on
class frequency [19]. [27] proposed to down-weigh the
loss of well-classified examples, preventing easy negatives
from dominating the loss. [37] dynamically rescaled the
cross-entropy loss based on the difficulty to classify a sam-
ple. [7] proposed a loss that encourages larger margins for
rare classes. [23] decoupled the learning procedure into rep-
resentation learning and classification and studied four ap-
proaches. Among them, LWS L2-normalizes the last-layer,
since the weight magnitude correlates with class cardinal-
ity. The effect of this approach is similar to that presented
in this paper, but here we apply recalibration dynamically
on a sample-by-sample basis.

Data-manipulation approaches aim to flatten long-tail
datasets to correct the bias towards majority classes. Pop-
ular techniques employ over-sampling of minority classes
(more likely to overfit)[10, 18], under-sampling the ma-
jority classes (wastes samples)[13], or generating samples
from the minority classes (can be costly to develop)[5].

Another approach is to transfer meta-level-knowledge
from data-rich classes to data-poor classes. [49] gradually
transfer hyperparameters from rich classes to poor classes
by representing knowledge as trajectories in model space
that capture the evolution of parameters with increasing
training samples. [29] first learns representations on the
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Figure 2: The DRAGON architecture for long-tail learning with class-descriptors. The visual-expert and attribute-expert each
outputs a prediction vector fed to a fusion module. The fusion module combines expert predictions and debias them. Blue,
network components. Yellow, input to the fusion module. Green, the outputs of the fusion module.

unbalanced data and then fine-tunes them using a class-
balanced sampling and a memory module.
Learning with class descriptors: Learning with class de-
scriptors is usually applied to zero-shot learning (ZSL) [52,
26, 4], where a classifier is trained to recognize (new) un-
seen classes based on their semantic description, which can
include a natural-language textual description or predefined
attributes. In several ZSL studies, attributes detected in
a test image are matched with ground-truth attributes of
each class, and several studies focused on this matching
[26, 4, 42, 56, 55, 8].

A series of papers proposed to learn a shared representa-
tion of visual and text features (class-descriptors). As one
example, [43] learns such a shared latent manifold using au-
toencoders and then minimizes the MMD loss between the
two domains. Another recent line of work synthesizes fea-
ture vectors of unseen classes using generative models like
VAE of GAN, and then use them in training a conventional
classifier [32, 51, 14, 1, 31, 59, 38, 53]. The major base-
line we compare our approach with is CADA-VAE [38],
the current SoTA for Generalized FSL with class descrip-
tors. CADA-VAE uses a variational autoencoder that aligns
the distributions of image features and semantic (attribute)
class embedding in a shared latent space. A recent work,
[53], uses a mixture of VAEs and GANs. We could not di-
rectly compare with [53] because their FSL protocol devi-
ates from the standard benchmark of [38, 52] by fine-tuning
the CNN features. Without fine-tuning, their reported met-
rics for GZSL are similar to CADA-VAE.

Some studies fused information from vision and per
sample descriptors (e.g., [58]). This is outside the scope
of this paper because it may require extensive labeling.

Generalized ZSL (GZSL) and Generalized FSL:
GZSL extends ZSL to the scenario where the test data
contains both seen and unseen classes [9, 52, 40]. Re-
cently, GZSL extended to Generalized Few-Shot-Learning

with class descriptors (GFSL-d), where the unseen classes
are augmented with a fixed number of few training sam-
ples [38, 43]. Namely, the distribution of samples across
classes is a 2-level distribution, with many “head” classes
and a smaller set of “tail” classes all having the same (small)
number of samples per class. Both GZSL and GFSL-d can
be viewed as special cases of long-tail learning with class-
descriptors, but with a short-tailed unnatural distribution.

Most related GZSL approaches are [3, 40, 54]. They use
a gating mechanism to weigh the decisions of seen-classes
experts and a ZSL expert. The gating module is modeled
as an out-of-distribution estimator. The current paper dif-
fers from their work by (1) The problem setup is different.
Here, all samples are in-distribution and the distribution of
classes is smooth and long-tail with a much smaller number
of head classes. (2) DRAGON architecture first quantifies
and corrects the (smooth) familiarity effect. Then it learns
how to fuse the debiased decision of the two experts.

Early vs late fusion: When learning from multiple
modalities, one often distinguishes between early and late
fusion models [28]. Early fusion models combine features
from multiple modalities to form a joint representation.
Late fusion methods combine decisions of per-modality
models [22, 2, 35]. Our approach addresses the long-tail
setup, by leveraging the information in the familiarity bias
to debias experts predictions.

3. Long-tail learning with class descriptors
We start with a formal definition of the problem of learn-

ing over unbalanced distributions with class descriptors.
We are given a training set of n labeled (image) samples:

{(x1, y1), . . . , (xn, yn)}, where each xi is a feature vector
and yi is a label in {1, 2, . . . k}. Samples are drawn from a
distribution D = p(x, y) such that the marginal distribution
over the classes p(y) is strongly non uniform. For example,
p(y) may be exponential p(y) ∼ exp(−ky).

3



Figure 3: Architecture of the fusion-module for long-tail learning with class-descriptors. In blue, network components. In
yellow, inputs to the fusion-module and in green, activations or outputs of the fusion-module. The inputs PV denote the
softmax prediction vector of the Visual Expert, and PS that of the Semantic Expert. The outputs WV , WS and λ are used in
Eq. (1) for re-weighting the inputs. See Section 4.2 for more details.

As a second supervision signal, each class y is also ac-
companied with a class-description vector aj , j = 1, .., k,
in the form of semantic attributes [26] or natural-language
embedding [36, 59, 40]. For example, classes in CUB [46]
are annotated with attributes like Head-color:red.

At test time, a new set of m test samples
{xn+1, . . . ,xn+m} is given from the same distribution D.
We wish to predict their correct classes.

4. Our approach
Our approach is based on two observations: (1) Seman-

tic descriptions of classes are easy to collect and can be very
useful for tail (low-shot) classes, because they allow mod-
els to recognize classes even with few or no training sam-
ples [26, 52, 4] (and Appendix B). (2) The average predic-
tion confidence over samples of a class is correlated with
the number of training samples of that class (Figure 1).

Our architecture leverages these observations and learns
to (1) Combine predictions of two expert classifiers: A
conventional visual expert which is more accurate at head
classes and a semantic expert which excels at tail classes;
(2) Reweigh the scores of each class prediction, taking into
account the number of training samples for that class.

4.1. The architecture

The DRAGON architecture 1 follows two design consid-
erations: modularity and low-complexity. First, modularity;
DRAGON allows to plug-in existing multi-modal experts,
each trained for its own modality. Below we show exper-
iments with language-based experts and a visual expert, but

1Dragons, like many distributions, have long-tails and are cool. For
acronym lovers, DRAGON also stands for “a moDulaR Approach for
lonG-tail classificatiON”.

other modalities can be considered (e.g., mesh, depth, mo-
tion, or multi-spectral information). Second, limiting the
model to have a small number of parameters is important
because tail classes only have few training samples and the
model must perform well at the tail.

Our general architecture (Figure 2) takes a late fusion
approach. It consists of two experts modules: A visual ex-
pert and a semantic expert. Each expert outputs a prediction
vector which is fed to a fusion module. The fusion module
combines the expert predictions and learns to debias the fa-
miliarity effect, by weighing the experts and re-scaling their
class predictions.

4.2. A fusion-module

The fusion module takes as input the prediction vectors
of two experts pV , pS for a given image, and a vector con-
taining the number of training samples per class. It has three
outputs: λ ∈ (0, 1) is a scalar to trade-off the visual expert
against the semantic expert. wV ∈ (0, 1)k is a vector that
weighs the predictions of the visual expert. Similarly, wS

weighs the semantic expert predictions. Given these three
outputs, a debiased score is computed for a class y:

S(y) = λwV (y)pV (y) + (1− λ)wS(y)pS(y). (1)

Figure 3 describes the architecture of the fusion-module. It
has two main parts. The first part maps the prediction scores
to a meaningful joint space, by first aligning the prediction
of both classifiers, and then sorting according to confidence.

In more detail, the first part has four steps. (a) Stacking
together the predictions of two experts to a Y × 2 vector.
This makes the following convolution meaningful across
the 2 experts axis. (b) To make convolution meaningful
also along the classes axis, and since classes are categori-
cal, we reorder classes by their prediction score according
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to one of the experts. Section 4.3 explains the rationale of
this reordering. (c) Now that predictions are sorted, feed
the sorted scores to a Nfilters × 2 × 2 convolutional net-
work. (d) Follow with an average-pooling layer (per class),
yielding a (Y − 1)-dimensional vector h.

The goal of the second part is simply to predict a debias-
ing coefficient for each prediction, namely, learn a function
from ny to (0, 1)k. We know from Figure 1 that the bias
is inversely related to the number of samples. Aiming for a
simple model, we train a polynomial regression that takes as
input the number of samples and outputs a debiasing weight
(wV (y)). The coefficients of this polynomial v0, ..., vd−1
are learned as a deep function over h. Similarly for fS(y).

More formally, let ny be the number of training samples
of class y, and let n̄y = ny/maxy ny be the normalized
counts, then we have

wV (y) = σ
[ d−1∑
j=0

vj(h)n̄jy

]
, wS(y) = σ

[ d−1∑
j=0

sj(h)n̄jy

]
,

(2)
where d is the polynomial degree and σ denotes a sigmoid
that ensures that the resulting scale is in [0, 1].

Finally, the fusion module also predicts the trade-off
scalar λ to control the relative weight of the visual and se-
mantic experts. This is achieved using a fully connected
layer over h. Section 9 analyzes the contribution of each
component of the approach with an ablation study.

4.3. Architecture design decision

DRAGON is designed with a small number of model pa-
rameters so it can improve predictions at the tail, where very
few samples are available.

Debiasing based on all expert predictions. To achieve
the above goals, DRAGON implicitly learns how frequent
is a class of a given sample. Namely, when the model re-
ceives a new test sample, it predicts if it is from a head class,
a tail class, or somewhere between, and adjusts the confi-
dence of the experts accordingly. To do this, it has been
shown in the context of zero-shot learning that profile of
confidence values are a good predictor if a sample comes
from a seen or unseen class [3]. DRAGON generalizes this
idea to long-tail distributions. To do this it takes as input all
class predictions from both experts (Figure 3a).

Using order statistics over predictions. To process
expert prediction, we point out that order statistics over
the prediction vector – the maximum confidence, 2nd max,
etc. . . – provides a strong signal about confidence calibra-
tion. Using the maximum of a vector is a very common op-
erator in deep learning, known as max pooling. Here how-
ever, there is additional important information the gap be-
tween subsequent order statistics, like max−2nd max. As
an intuitive example, a maximal prediction of 0.6 should be
interpreted differently if the 2nd max is 0.4 or 0.1.

Order statistics can be easily computed by sorting the
vector of predictions (Figure 3b). Sorting also increases
the sample efficiency for learning, because later layers have
each order statistic located at a fixed position in their in-
put regardless of class. The function learned over order-
statistics gaps is therefore shared across all classes.

The 2 × 2 convolution (Figure 3c) works well with the
sorted expert predictions. Its filters capture two signals: (1)
the confidence gaps between the two experts for each class;
and (2) the confidence gaps between order-statistics for each
expert alone.

5. Experiments
We evaluate DRAGON in three unbalanced benchmark

scenarios. (1) “Smooth-Tail”, the long-tailed distribution of
classes decays smoothly (Figure 4) and each class is accom-
panied with textual class descriptors. (2) “Two-Level”, the
distribution has a step-shape as in [38]; Most classes have
many samples and the rest have few samples (Figure 5).
(3) ”Vision-only”, a long-tail setup, as in Smooth-Tail, but
without class descriptors.

We compare DRAGON with SoTA approaches on stan-
dard benchmarks for each of these three scenarios. See Ap-
pendix D for implementation details.

Code available at https://github.com/
dvirsamuel/DRAGON

5.1. Overview of main results

For Smooth-Tail distributed data, we evaluated
DRAGON on four benchmarks that we created from exist-
ing datasets. We added textual descriptors to ImageNet-LT
[29], and generated long-tail versions of CUB, SUN and
AWA. Dragon outperforms all baselines on various metrics.

For Two-Level distributed data, DRAGON surpasses
the current SoTA [38], tested using their experimental setup.

For Vision-only long-tail data, we tested the calibration
component of DRAGON (without fusion). It achieves a new
SoTA on ImageNet-LT [29], Places365-LT [29], Unbal-
anced CIFAR-10/100 [7] and comparable results on iNat-
uralist2018 [20].

6. Smooth-Tail distribution
6.1. Datasets

To evaluate long-tail learning with class descriptors,
we created benchmark datasets in two ways. First, we
created long-tail versions of existing learning-with-class-
descriptors benchmarks. Second, we augmented existing
long-tail benchmark (ImageNet-LT) with class descriptors.

Specifically, we created new long-tail variants of
the 3 main learning-with-class-descriptors benchmarks:
CUB [46], SUN [33] and AWA [26], illustrated in Figure 4.
We ranked classes by the number of samples in each class
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Figure 4: Long-tailed versions of CUB, SUN, AWA and ImageNet. Number of samples for the training, validation and test
sets are shown respectively by blue, yellow and green.

CUB-LT SUN-LT AWA-LT

Train # samples 2,945 4,084 6,713
Val # samples 600 1,434 1,250
Test # samples 2,348 2,868 6,092
Train Set Properties
Max # samples 43 12 720
Min # samples 3 2 2
Mean # samples 14.725 5.696 123.460
Median # samples 11 5 35

Table 1: Properties of CUB-LT, SUN-LT and AWA-LT.

after assigning tail classes to be consistent with those in the
Two-Level benchmark [51, 38] (See Appendix D.2 for more
details). We then computed a frequency level for each class
following an exponentially decaying function of the form
f(class) = ab−rank(class). a and b were selected such that
the first class has the maximum number of samples, and the
last class has 2 or 3 samples depending on the dataset. We
then drew a random subset of samples from each class based
on their assigned frequency f(class). To create the valida-
tion set, we randomly drew a constant number of samples
per class, while keeping an overall size of 20% of the train-
ing set. See dataset statistics in Table 1.

As a second type of benchmark, we used the existing
long-tailed ImageNet [29] and augmented it with class de-
scriptors. Specifically, we used the word2vec embeddings
provided by [8], which are widely used in the literature.
Their word embeddings were created by training a skip-
gram language model on a Wikipedia corpus to extract a
500-dimensional word vector for each class. See [8] Figure
4 for visualization.

Together, this process yielded the following datasets:
1. CUB-LT, based on [46], consists of 2,945 training vi-
sual images of 200 bird species. Each species is described
by 312 attributes (like tail-pattern:solid, wing-color:black).
Classes have between 43 and 3 images per class.
2. SUN-LT, based on [33], consists of 4,084 training im-
ages, from 717 visual scene types and 102 attributes (like
material:rock, function:eating, surface:glossy). Classes

have between 12 and 2 images per class.
3. AWA-LT, based on [26], consists of 6,713 training
images of 50 animal classes and 85 attributes (like tex-
ture:furry, or color:black). Classes have between 720 and
2 images per class.
4. ImageNet-LT-d, based on [29], consists of 115.8K im-
ages from 1000 categories with 1280 to 5 images per class.
We use Word2Vec [30] class embeddings features provided
by [8], as textual descriptors.

6.2. Training scheme

The familiarity effect is substantial in the validation and
test data, but not in the training data, where models may
actually become more confident on rare classes. We ob-
served this effect in CUB-LT, SUN-LT, and AWA-LT. Since
we wish to train the fusion module using data that exhibits
the familiarity bias, we hold-out a subset of the training data
and use it to simulate the response of experts to test sam-
ples. Note that in large-scale datasets, like ImageNet-LT-d,
no hold-out set is needed and DRAGON is trained on the
training set. There, the familiarity bias is also present in the
training data, as the models did not overfit the tail classes.
Appendix C illustrates this effect in more detail.

6.3. Baselines and variants

We compared DRAGON with long-tail learning and
unbalanced data approaches: Focal Loss [27], Anchor
Loss [37], Range Loss [57], and LDAM Loss [7] are
loss manipulation approaches for long-tail distributions.
FSLwF [16], OLTR [29] and Classifier-Balancing (CB)
[23] are algorithmic approaches in the long-tail learning
benchmarks. Mixture and Class Balanced Experts [39]
are late fusion approaches. Mixture resembles mixture-of-
experts (MoE) [21] without EM optimization. It fuses the
raw outputs of the two experts by a gating module. As with
standard MoE models, the gating module is trained with
visual-features as inputs.

For CUB-LT, SUN-LT, and AWA-LT, the visual expert
was a linear layer over a pre-trained ResNet from [52, 50],
which we trained with a balanced xent loss (CE Loss). The
semantic expert was LAGO [4]. For ImageNet-LT-d, we
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(a) CUB-LT SUN-LT AWA-LT
Method AccPC AccLT AccPC AccLT AccPC AccLT

Vision-only
CE Loss* (VE) 53.0 65.5 33.7 40.0 73.7 93.4
Focal Loss [27]* 46.4 61.3 30.1 37.4 73.5 91.8
Anchor Loss [37]* 48.3 64.7 28.2 36.2 69.1 93.2
Range Loss [57]* 48.5 65.3 27.9 36.0 68.9 93.5
LDAM Loss [7]* 50.1 64.1 29.8 36.4 69.1 93.5
CB LWS [23]* 53.1 65.7 33.9 40.2 73.4 93.6

Multi-modal
LAGO [4]* (SE) 54.8 66.0 18.2 18.3 74.0 93.0
CADA-VAE [38]* 48.3 57.4 32.8 35.1 73.5 89.5

Late Fusion
Mixture 54.8 66.0 34.0 40.3 74.0 93.7
DRAGON (ours) 57.8 67.7 34.8 40.4 74.1 94.1
DRAGON + Bal’Loss (ours) 60.1 66.5 36.1 38.5 76.2 92.2

(b) ImageNet-LT ResNet-10 ResNeXt-50
Method AccPC AccMS AccMED AccFS AccPC

Vision-only
CE Loss* (VE) 34.8 65.9 37.5 7.7 44.4
FSLwF [16] 28.4 - - - -
Focal Loss [27] 30.5 - - - -
Range Loss [57] 30.7 - - - -
OLTR [29] 35.6 - - - 37.7
CB LWS [23] 41.4 60.2 47.2 30.3 49.9

Multi-modal
DEM [56]* (SE) 18.1 16.5 13.0 50.8 19.5
CADA-VAE [38]* 42.1 57.4 43.7 27.0 49.3

Late Fusion
Mixture 40.7 63.8 36.3 23.9 45.1
Sharma et al. [39] 39.2 - - - -
DRAGON (ours) 43.1 66.0 38.3 47.6 51.2
DRAGON + Bal’Loss (ours) 46.5 62.0 47.4 50.2 53.5

Table 2: Smooth-tail distribution: Rows with * denote results reproduced by us. The rest were taken from [23, 29]. VE and
SE refer to the visual-expert and semantic-expert that were used to train DRAGON. Bal. refers to training DRAGON with a
balanced loss. (a) Comparing DRAGON with baselines on the long-tailed benchmark datasets. We report Per-Class Accuracy
AccPC and Long-Tailed Accuracy AccLT . (b) Comparing DRAGON with baselines on the long-tailed ImageNet with word
embeddings.

followed [23] and set the visual expert to be ResNet-10 or
ResNeXt-50. The semantic expert was DEM [56].

6.4. Evaluation metrics and protocol

Evaluation Protocol: The experiments for CUB-LT,
SUN-LT, and AWA-LT follow the standard protocols set
by [38, 52, 50], including their ResNet-101 features. Their
split ensures that none of the test classes appear in the
training data used to train the ResNet-101 model. For

ImageNet-LT-d we used the protocols in [29, 23] with the
pre-trained ResNet-10 and ResNeXt-50 provided by [23].

Evaluation metrics: We evaluated DRAGON on the
Smooth-Tail benchmark with the following metrics:
(a) Per-Class Accuracy (AccPC): Balanced accuracy met-
ric that uniformly averages the accuracy of each class
1
k

∑k
y=1Acc(y), where Acc(y) is the accuracy of class y.

(b) Long-Tailed Accuracy (AccLT ): Test accuracy, where
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CUB-LT AccPC AccLT

Max. 57.3 70.8
Avg. 57.0 70.0
Product 56.9 70.3
Mixture 53.7 66.5

DRAGON (ours) 60.0 70.9

Table 3: Comparing DRAGON against common late-fusion
approaches on the validation set of CUB-LT.

the distribution over test classes is long-tailed like the train-
ing distribution. This is expected to be the typical case in
real-world scenarios. See Appendix D.1 for more details.
(c) Many-Shot, Medium-shot and Few-Shot accuracies:
For ImageNet-LT-d, we follow [29] and report accuracy for:
AccMS (>100 training images), AccMED (20-100 images)
and AccFS (< 20 images).

6.5. Results with smooth-tail distribution

Table 2 (a) provides the test accuracy for three long-
tail benchmark datasets and compares DRAGON to base-
lines and individual components of the DRAGON model.
DRAGON achieves higher accuracy compared with all com-
peting methods, both with respect to class-balanced accu-
racy (AccPC) and to test-distribution accuracy (AccLT ).
Improving AccLT indicates that DRAGON effectively
classifies head classes, which are heavily weighted in
AccLT . At the same time, improving AccPC indicates that
DRAGON also effectively classifies tail classes, which are
up-weighted in AccPC .

Table 2 (b) provides the AccPC accuracy for ImageNet-
LT-d. We can directly see the benefit of fusion information
between modalities - the visual expert excels on many-shot
classes, AccMS , while the semantic expert excels only on
few-show classes, AccFS . DRAGON recalibrate and fuse
both experts to excel in all classes.

We further trained DRAGON with a balanced cross-
entropy loss (Bal.). This strategy has a synergistic effect
with DRAGON (last row in Table 2): It improves tail accu-
racy AccPC for all benchmarks while only marginally hurt-
ing head accuracy AccLT .

Table 3 compares DRAGON against common late fusion
strategies, on the validation set of CUB-LT: AVG (averag-
ing expert predictions), Max (taking the largest prediction),
Product (multiplying expert predictions) and Mixture. We
show that those approaches, which late fuse predictions of
the two experts, are usually better at head classes (AccLT )
while giving less accurate results for tail classes (AccPC).
DRAGON achieves better results on both metrics because it
also calibrates expert predictions. In the ablation study (Ta-
ble 8) we compare our fusion module to more ablated fusion

Figure 5: Two-level variants of CUB, SUN and AWA as in
[38]. Blue: training set, green: test set.

components.

7. Two-Level (GFSL-d) benchmark
We follow the protocol of [38] on the original CUB,

SUN, and AWA (Figure 5), to compare DRAGON in a Two-
Level setting.

For those datasets, many-shot classes are kept as in the
original train-set, while few-shot classes have an increasing
number of shots: 1,2,5,10 and 20 (in SUN up to 10 shots).

7.1. Baselines and variants

We compared DRAGON with LDAM Loss [7] and with
SoTA multi-modal GFSL-d approaches: ReViSE [43], CA-
VAE [38], DA-VAE [38] and CADA-VAE [38]. Their re-
sults were obtained from the authors of [38], while LDAM
results were reproduced by us.

The visual expert was a linear layer over a pre-trained
ResNet from [52, 50], which we trained with a balanced
cross-entropy loss. The semantic expert was LAGO [4].

7.2. Evaluation metrics

Following [38], we evaluated the Two-Level benchmark
with the Harmonic mean metric (AccH ): It quantifies the
overall performance of head and tail classes, by AccH =
2(AccmsAccfs)/(Accms + Accfs). Where, Accms is the
per-class accuracy over many-shot classes and Accfs is the
per-class accuracy over few-shot classes.

7.3. Results with two-level distribution

Table 4 compares DRAGON with SoTA baselines on the
Two-Level setup. Our model wins in CUB and SUN on all
shots but loses on AWA for fewer than 10 samples. Fur-
thermore, DRAGON gains better results when the number
of shots increases in contrast to complex generative models
like CADA-VAE [38]. Appendix E.1 provides results for
Accfs and Accms with 1,2,5,10,20 shots.

8. Vision-only long-tail learning
The approach presented in this paper focuses on learning

from two modalities, vision and language. To understand
the effect of re-calibrating we now study a simpler vari-
ant of DRAGON that can be applied to the more common
vision-only long-tail learning. We name it smDRAGON for
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Two-Level CUB SUN AWA
# shots 1 2 5 10 20 1 2 5 10 1 2 5 10 20

LDAM [7]* 2.4 10.9 36.0 52.2 61.5 4.3 11.5 26.6 37.0 12.4 24.8 41.1 57.0 68.6

REVISE [43] 36.3 41.1 44.6 50.9 - 27.4 33.4 37.4 40.8 56.1 60.3 64.1 67.8 -
CA-VAE [38] 50.6 54.4 59.6 62.2 - 37.8 41.4 44.2 45.8 64.0 71.3 76.6 79.0 -
DA-VAE [38] 49.2 54.6 58.8 60.8 - 37.8 40.8 43.6 45.1 68.0 73.0 75.6 76.8 -
CADA-VAE [38] 55.2 59.2 63.0 64.9 66.0 40.6 43.0 46.0 47.6 69.6 73.7 78.1 80.2 80.9

CE Loss* (VE) 1.2 6.9 30.2 50.2 60.9 1.8 8.9 25.1 38.3 11.0 20.0 47.8 69.9 73.9
LAGO* (SE) 23.0 33.2 49.0 58.6 64.8 19.5 23.2 25.6 27.8 20.2 33.0 59.0 68.7 75.8
DRAGON (ours) 55.3 59.2 63.5 67.8 69.9 41.0 43.8 46.7 48.2 67.1 69.1 76.7 81.9 83.3

Table 4: Two-Level distributions: Comparing DRAGON on Two-Level CUB, SUN and AWA with SoTA GFSL models and
baselines and with increasing number of few-shot training samples. Values denote the Harmonic mean AccH . VE and SE
refer to the visual-expert and semantic-expert that were used to train DRAGON.

Figure 6: Architecture of vision-only smDRAGON.

single-modality-DRAGON, and show that it achieves new
state-of-the-art results, compared to uni-modals baselines,
on ImageNet-LT, Places365-LT, CIFAR-10 and CIFAR-
100. On iNaturalist smDRAGON is comparable to SoTA. To
adapt to single-modality, we train smDRAGON only on the
predictions of the visual-expert. It outputs a single set of
coefficients {wV (y)}y∈Y to rescale the predictions of the
visual expert, instead of two sets of coefficients. Subse-
quently, Eq. (1) reduces to S(y) = wV (y)pV (y).

In other words, smDRAGON is a simplified version of
DRAGON that is trained on the predictions of the visual-
expert only (no class descriptors being used). smDRAGON
takes the predictions of a freezed visual-expert and rescale
it by learning a single set of polynomial coefficients. Dur-
ing inference, smDRAGON balances the visual-expert pre-
dictions in a sample-by-sample basis.

Tables 5 and 6 compare smDRAGON against approaches
in the unbalanced CIFAR-10 and CIFAR-100 bench-
marks, as presented in [7]: CE Loss, Resample [11],
Reweight [11], Focal [11] and LDAM Loss [7]. DRW [7]
denotes models that were trained with the training schedule
proposed by [7].

Table 7 compares smDRAGON with popular baselines
and recent long-tail learning approaches in the ImageNet-
LT and Places-LT benchmarks. Those are the same base-
lines as in the Smooth-Tail setup (Section 6).

The results demonstrate that (1) smDRAGON outper-
forms all baselines and (2) combining smDRAGON with
SoTA approaches (LDAM or DRW) has a synergistic effect.

Table 10 compares DRAGON with smDRAGON on CUB-

LT. It shows that fusing information between modalities
(third row) gives better results than re-scaling expert predic-
tions alone (first and second rows). Finally, on iNaturalist
2018, smDRAGON is comparable to SoTA, reaching 69.1%
compared to 69.5% (CB-LWS [23]).

9. Ablation study
To understand the contribution of individual components

of DRAGON, we carried ablation experiments. We report
results on the validation set, which were consistent with the
test set (Appendix E.2).

Fusion-Module Architecture: Table 8 compares the
performance of various components of the fusion-module
on CUB-LT. (1) F.C.: predicts λ using a fully-connected
layer over pV ,pS , no re-balancing (wV (y) = wS(y) =
1,∀y). (2) F.C. & 1/ny rescale: learns λ as in F.C., rescales
experts predictions by ny . (3) F.C. & non-parametric
rescale: learns λ as F.C. and rescales both experts predic-
tions by a learned non-parametric weight for each class in-
stead of a polynomial. (4) Conv. & non-parametric rescale:
like (3), then applies sorting and convolution (Section 4.2).
(5) Conv. & single parametric rescale replaces the non-
parametric re-scaling weights by a single polynomial of
parametrized weights. (6) DRAGON is our full approach de-
scribed in Section 4. The comparison shows that rescaling
expert predictions significantly improves AccPC and that
reducing the number of parameters using the convolutional
layer is important.

To quantify the contribution of per-sample weighting,
Table 9 compares it against per-class weighting on three
long-tail benchmarks: ImageNet-LT, Places365-LT and
CIFAR100-LT. To keep the comparison fair, this was done
using vision-only (λ = 1), and sweeping over the same set
of hyper parameters. To gain more intuition on how per-
sample weighting helps, Fig. 7 plots the per-sample weights
of four images from a ImageNet-LT head class (mouse-
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Vision-Only Unb. CIFAR-10 Unb. CIFAR-100
Imbalance Type long-tail two-level long-tail two-level
Imbalance Ratio 100 10 100 10 100 10 100 10
[11] ReSample 29.45 13.21 38.14 15.41 66.56 44.94 66.23 46.92
[11] ReWeight 27.63 13.46 38.06 16.20 66.01 42.88 78.69 47.52
[11] Focal 25.43 12.90 39.73 16.54 63.98 42.01 80.24 49.98
CE [7] 29.64 13.61 36.70 17.50 61.68 44.30 61.45 45.37
CE* (VE) 29.81 13.12 36.61 17.78 61.72 43.77 61.59 45.75
Focal [27] 29.62 13.34 36.09 16.36 61.59 44.22 61.43 46.54
LDAM [7] 26.65 13.04 33.42 15.00 60.40 43.09 60.42 43.73
smDRAGON (ours) 22.08 12.17 27.10 12.38 58.01 42.22 54.43 40.97

Table 5: Vision-only long-tail. Error rate of ResNet32 on unbalanced CIFAR-10 and CIFAR-100 [7], comparing smDRAGON
and SoTA techniques. smDRAGON was trained over predictions of the cross-entropy model (CE*). Reported values are the
top-1 validation error. Asterisks * denote results reproduced using published code.

Vision-Only Unb. CIFAR-10 Unb. CIFAR-100
Imbalance Type long-tail two-level long-tail two-level
Imbalance Ratio 100 10 100 10 100 10 100 10
CE-DRW* (VE1) 24.73 13.52 28.65 13.90 59.23 42.19 58.93 45.00
M-DRW [15] 24.94 13.57 26.67 13.17 59.49 43.49 58.91 44.72
LDAM-DRW [7] 22.97 11.84 23.08 12.19 57.96 41.29 54.64 40.54
LDAM-DRW* [7] (VE2) 22.96 11.84 23.41 12.20 57.89 41.61 54.65 43.48
VE1 + smDRAGON 20.37 12.06 21.54 11.94 56.50 42.11 53.32 40.66
VE2 + smDRAGON 21.22 11.84 20.64 12.37 56.70 41.23 54.07 40.35

Table 6: Vision-only long-tail: smDRAGON was trained on top models trained with DRW (VE1) or LDAM-DRW (VE2)
[7]. Similar to Table 5 except that all models were trained with DRW schedule [7]. Reported values are top-1 validation error.
Asterisks * denote results that we reproduced using code published by the authors of [7].

Vision-Only Places365-LT ImageNet-LT
ResNet-50 ResNet-10 ResNeXt-50

CE Loss* (VE) 30.2 34.8 44.4
Bal’ Loss 32.4 33.1 -
Lifted Loss [41] 35.2 30.8 -
Focal Loss [27] 34.6 30.5 -
Range Loss [57] 35.1 30.7 -
FSLwF [16] 34.9 28.4 -
OLTR [29] 35.9 34.1 37.7
CB τ−norm [23] 37.9 40.6 49.4
CB LWS [23] 37.6 41.4 49.9

smDRAGON (ours) 38.1 42.0 50.1

Vision-Only iNaturalist
ResNet-50

[11] Focal 61.1
LDAM [7] 64.6
LDAM-DRW [7] 68.0
CB τ−norm [23] 69.3
CB LWS [23] 69.5

smDRAGON (ours) 69.1

Table 7: Vision-only long-tail: Baseline results where copied directly from [7] and [23]. Left: smDRAGON achieves better
AccPC on Places365-LT and ImageNet-LT. Right: Comparing smDRAGON on long-tailed iNatrualist. smDRAGON achieve
comparable results compared to SoTA baselines.

trap). Per-sample weighs more strongly ”easy” samples
(low entropy) than non-typical samples. This illustrates that

per-sample weighting does not penalize “justified” high-
confidence predictions if they happen to arrive from a head
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AccPC AccLT #params

F.C. 54.0 67.1 403
F.C. & 1/ny RESCALE 56.7 60.3 403
F.C. & NON-PARAMETRIC RESCALE 58.2 68.0 81,406
CONV. & NON-PARAMETRIC RESCALE 58.7 68.2 40,612
CONV. & SINGLE PARAMETRIC RESCALE 59.0 67.5 613
DRAGON (OURS) 60.0 70.9 1,015

Table 8: Ablation study, comparing different fusion and re-scaling approaches. The results show the contribution of the
convolutional backbone and the re-scaling method for the two experts (validation set, CUB-LT).

Places365-LT ImageNet-LT CIFAR100-LT
ResNet-50 ResNet-10 ResNeXt-50 ResNet-32

CE Loss (VE) 30.2 34.8 44.4 38.3
Per-class 36.9 40.0 49.2 40.5
Per-sample 38.1 42.0 50.1 42.0

Table 9: Ablation of per-sample weighting on vision-only
benchmarks. VE refers to visual-expert.

Figure 7: Using per-sample weighting, images typical for
the class Mousetrap (softmax has low-entropy) are weighed
more strongly than non-typical images (softmax has high-
entropy). Per-class weighting reweighs all samples for that
class the same (0.7), hurting recognition of typical images.

AccPC AccLT

VISUAL EXPERT + SMDRAGON 55.8 66.0
SEMANTIC EXPERT + SMDRAGON 57.7 63.4
DRAGON (OURS) 60.1 67.7

Table 10: Ablation study, comparing smDRAGON to
DRAGON on CUB-LT: Fusing information between modal-
ities improves performance (test set, CUB-LT).

Sorting AccPC AccLT

No Sorting 58.7 68.2
Sorting By Visual Expert 60.0 70.9
Sorting By Semantic Expert 60.0 70.8

Table 11: Ablation study, quantifying the contribution of
sorting the fusion-module inputs (validation set, CUB-LT).

class. At the same time, per-sample weighting gives more
chance to tail classes, reducing the familiarity bias.

Sharing order statistics (sorting): Table 11 quantifies
the benefit of sorting expert predictions. As discussed in
Section 4.3, sorting enables sharing of information across
classes by fixing the input location of each order statistic
(max, 2nd max etc.).

10. Conclusion
This paper discussed two key challenges for learning

with long-tail unbalanced data: A “familiarity bias”, where
models favor head classes, and low accuracy over tail
classes due to lack of samples. We address these challenges,
with DRAGON, a late-fusion architecture for visual recog-
nition that learns with per-class semantic information. It
outperforms existing methods on new long-tailed versions
of ImageNet, CUB, SUN, and AWA. It further sets new
SoTA on a Two-Level benchmark [38]. Finally, a single-
modality variant of DRAGON improves accuracy over stan-
dard long-tail learning benchmarks, including ImageNet-
LT, Places365-LT, and unbalanced CIFAR-10/100. These
results show that information about the number of samples
per-class can be effectively used to reduce prediction biases.

Strongly unbalanced data with a long-tail is ubiquitous in
numerous domains and problems. The results in this paper
show that a light-weight late-fusion model can be used to
address many of the challenges posed by class imbalance.
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A. Additional analysis of the familiarity effect
Here we provide a deeper analysis showing that

DRAGON effectively addresses the “familiarity bias”.
The familiarity bias causes models to incorrectly fa-

vor head classes: Figure S8(a) shows the confusion matrix
of a standard ResNet-101 trained on CUB-LT, as computed
on the validation set. Classes, of the confusion matrix, are
ordered by a decreasing number of training samples, with
class #1 having many samples and class #200 have few sam-
ples. Black dots denote count larger than 15.

It illustrates two effects. First, the trained model cor-
rectly classifies head classes, based on the fact that the top
rows have no incorrect (off-diagonal) predictions. Second,
for mid and tail classes, predictions are clearly biased to-
wards the head, since there are many more off-diagonal pre-
dictions to the left (head class predictions).

DRAGON corrects for the familiarity bias: Figures
S8(b) and S8(c) demonstrate that DRAGON learns to offset
the familiarity bias. The left panel (b) shows the familiarity
effect on CUB-LT before recalibration. The right panel (c)
shows that DRAGON corrects the familiarity bias and pro-
duces a more balanced average confidence across the head
and tail classes.

DRAGON re-calibrate predictions: In the main paper
(Figure 1(c)) we showed that a model that is trained on un-
balanced data has higher confidence for head classes and
it over-estimate them. By reversing the familiarity bias,
smDRAGON, implicitly, also re-calibrate experts pre-
dictions. Figure 9 compares the reliability diagrams for
smDRAGON against raw ResNeXt-152, Temp Scaling [17]
and Dirichlet Calibration [25] (common and SoTA calibra-
tion approaches). We report both per-class-accuracy (ACC)
and expected-calibration-error (ECE) for each model.

B. Visual experts are better at the head,
semantic experts excel at the tail

Here we provide supporting evidence to our observation
from Section 4 of the main paper that semantic experts are
better at the tail: “Semantic descriptions of classes can be
very useful for tail (low-shot) classes, because they allow
models to recognize classes even with few or no training
samples [26, 52, 4]”. Additionally, we demonstrate that the
visual expert is better for the many-shot regime.

We focus on the Two-Level CUB distribution, and eval-
uate the accuracy for the many shot classes when restricting
predictions to these classes (many-among-many), and sep-
arately the accuracy for the few-shot classes when predic-
tions are restricted to these tail classes (few-among-few).

Figure S10(a) shows the accuracy over few-shot classes
of both experts in few-among-few setting. The semantic ex-
pert outperforms the visual one, and this effect stronger with
fewer samples. For example, with 1-shot learning, the se-

(a)

(b) (c)

Fig. S 8: DRAGON learns to offset the familiarity bias. (a)
A confusion matrix of a ResNet101 trained on CUB-LT as
a function of the number of samples per class. The ma-
trix shows markers for pairs of (gt, predicted) whose count
is larger than 15. (b) Average-confidence per-class of the
classifier. (c) Similar curve as (b) but for DRAGON. Black
lines depict a linear regression line. DRAGON per-class con-
fidence has smaller dependence on the number of samples
in the train.

mantic expert is almost 100% better than the Visual Expert.
Additionally, when we measure the accuracy of the many-
shot classes in the many-among-many setup (accuracy at
the head), the visual expert is better than the semantic ex-
pert Figure S10(b).

C. Training the fusion-module in small scale
datasets

Our goal is to have the fusion-module learn to capture the
correlations between the number of training samples and the
output confidence (the familiarity bias), so it can adjust for
it. Unfortunately, while the familiarity effect is substantial
in the validation data and the test data, it may not present
in the training data in small scale datasets. The reason is:
Models tend to overfit and become overconfident over rare
classes in the training set. This effect is illustrated in Figure
S11(a) (compare Train versus Validation curves) for CUB-
LT. We observed the effect in also in SUN-LT and AWA-LT.

To address this mismatch, we hold-out 50% of the sam-
ples of the tail classes and 20% of the samples of the head
classes of the training data and use it to simulate the re-
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(a) (b)

(c) (d)

Fig. S 9: Reliability Diagrams on ImageNet-LT, for (a) raw
ResNext-50, (b) smDRAGON, (c) Temperature-Scaling [17]
and (d) Dirichlet-Calibration [25]. We report expected-
calibration-error (ECE) and per-class accuracy (ACC)

(a) Few-among-few (b) Many-among-many

Fig. S 10: Accuracy as a function of number of samples at
the tail, of the Visual Expert and the Semantic Expert used
in our study. (a) Accuracy among few-shot classes; The Se-
mantic expert outperforms the visual expert. (b) Accuracy
among many-shot classes; The Visual expert outperforms,
regardless of the number of samples at the tail.

sponse of experts to test samples. This set is used for train-
ing the fusion-module.

Note, that after training the fusion module, we re-train
the experts on all the training data (including the hold-out
set), in order to use all data available. (See Section D for
more details).

In large-scale datasets, like ImageNet-LT, no hold-out set
is needed and DRAGON is trained on the training set. There,
the familiarity bias is also present on the training data (Fig-
ure S11(b)), as the models did not overfit the tail classes.

(a) (b)

Fig. S 11: The familiarity bias effect: (a) On CUB-LT
the effect is strong on validation samples (blue) but not on
training samples (orange). (b) On ImageNet-LT the effect
is prominent on both train and validation samples.

D. Implementation details
Training: Considering the observation from Section C,
regarding CUB-LT, SUN-LT and AWA-LT, we train the ar-
chitecture in three steps: First, we train each expert on the
training data excluding the hold-out set. Second, we freeze
the expert weights and train the fusion-module on all the
training set. Finally, we re-train the experts on all the train-
ing data in order to use all data available. For the hold-out
set, we randomly draw half the samples of the tail classes
and 20% of the samples of the head classes. For inference,
we use the fusion-module trained at the second step with the
experts trained at the third step.
Platt-scaling: We used Platt-scaling [34] to tune the combi-
nation coefficient λ by adding constant bias β and applying
a sigmoid on top of its scores: λ = σ

[
f0 − β

]
, where β is

a hyperparameter selected with cross validation.
Fusion-module: We trained the fusion-module using
ADAM [24] optimizer. For large-scale datasets, like
ImageNet-LT, Places-LT and iNaturalist, we used L2 regu-
larization, selected by hyperparameter optimization using
grid search ∈ {10−5, 10−4, 10−3}], to avoid overfitting.
Hyper-parameter tuning: We determined the number
of training epochs (early-stopping), selected architecture
alternatives, and tuned hyperparameters using the valida-
tion set, using AccLT for Smooth-Tail and Vision-only, and
AccPC for Two-Level.
For DRAGON: We optimized the following hyper-
parameters: (1) Number of filters in the convolu-
tion layer ∈ {1, .., 4}. (2) Degree of polynomial in
Eq.2 ∈ {2, 3, 4}. (3) Learning rate ∈ {10−5, 10−4, 10−3}.
(4) Bias term of Platts rescaling β ∈ [−2, 2].
For CADA-VAE [38]: We applied a grid
search for the latent embedding space ∈
[12, 25, 50, 64, 100, 200, 250], variational-autoencoder
learning rate ∈ [0.0001, 0.00015, ..., 0.015] and classifier
learning rate ∈ [0.0001, 0.0005, ..., 0.1]. We used a batch
size of 64.
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Sorting AccPC AccLT

No-Sorting 58.5 57.0
Sorting-By-Visual-Expert 60.1 67.7
Sorting-By-Semantic-Expert 59.8 67.7

Table S 12: Ablation study, quantifying the contribution of
sorting the fusion-module inputs (test set, CUB-LT).

For Focal Loss [27]: We applied a grid-search for gamma
∈ [1, 2, ..., 15] and alpha ∈ [0.1, 0.2, 0.5, 0.75, 0.9, 1].
For Range Loss [27]: We applied a grid-search
for alpha ∈ [0.1, 0.2, 0.5, 0.75, 0.9, 1] and beta
∈ [0.1, 0.2, 0.5, 0.75, 0.9, 1].
For Anchor Loss [27]: We applied a grid-
search for gamma ∈ [0.1, 0.5, 1, ..., 15] and slack
∈ [0.001, 0.005, 0.01, ..., 0.5].
For LDAM Loss [27] we applied a grid-search for C
∈ [0.1, 0.2, ..., 0.9].

D.1. Computing AccLT :

AccLT measures the accuracy over a test distribution
that resembles the training distribution. However, the test
and validation samples of CUB-LT, SUN-LT and AWA-
LT have a different distribution because they were origi-
nated from an approximate uniform distribution. Thus, to
compute AccLT we measure the accuracy for each indi-
vidual class, and then take a weighted sum according to
the class frequencies in the training set. Specifically, for
each class, we assign a weight Ptrain(y) according to the
train-set distribution such that 0 < Ptrain(y) < 1 and∑

y ptrain(y) = 1. Then we compute the accuracy per
class and report the weighted average across all classes:
AccLT =

∑k
y=1 ptrain(y)acc(y). This is equivalent to

transforming the test set to have the same distribution as
the train set.

D.2. A clarification about the Smooth-Tail
benchmark

In this section, we explain how the long-tail bench-
mark was aligned with the two-level benchmark, as was
mentioned in the paragraph that describes the long-tailed
datasets (Section 6 of the main paper).

To align the long-tail benchmark with the two-level
benchmark, we first ordered the classes according to their
number of samples in the two-level distribution. Then we
calculated the number of samples for each class according
to the required long-tail distribution, and accordingly drew
samples to construct the training set.

Architecture AccPC AccLT

F.C. 56.4 66.3
F.C. & 1/ny re-scale 56.4 56.2
F.C. & non-parametric re-scale 58.2 64.3
Conv. & non-parametric re-scale 58.4 67.1
Conv. & single parametric re-scale 59.3 64.3
DRAGON (ours) 60.1 67.7

Table S 13: Ablation study, comparing different fusion and
re-scaling approaches. The results show the contribution of
the convolutional backbone and the re-scaling method for
the two experts (test set, CUB-LT).

Training Process AccPC

All-Train 56.6
End-To-End 46.4
Three-Stage-Training 60.1

Table S 14: Ablation study, quantifying the contribution the
effect of three-stage training as proposed in Section D. (test-
set, CUB)

D.3. Training CADA on Smooth-Tail benchmark

In this section, we explain how we trained CADA-
VAE [38] for the long-tail benchmark.

To evaluate CADA-VAE [38] on long-tail benchmarks
we used the code published by the authors and followed the
training protocol exactly as they used for the two-level dis-
tribution. Since the protocol relies on a hard distinction be-
tween head classes and tail classes, we had to choose where
to partition the smooth long-tail distribution to head and
tail. Our solution is simple. It is based on the fact that
we aligned the order of classes in the long-tail distribution
to be the same order as in the two-level split (Section D.2).
The alignment allowed us to use the same partition to head
and tail as used for the two-level benchmark.

E. Additional metrics
E.1. Accfs and Accms on Two-Level benchmarks

Table S15 provides the results of Accfs and Accms (de-
scribed in section 7) for the Two-Level benchmark. We
show results for 1,2,5 and 10-shots. At the main paper we
reported the results for the AccH metrics, which is derived
from Accfs and Accms reported here.

E.2. Ablation results on the test set

In the main paper (9) we described results for ablation
study on the validation set. Here we report results for the
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Model Accms Accfs AccH

Most Common Class* 0.7, 0.7, 0.7, 0.7 0, 0, 0, 0 0, 0, 0, 0
LDAM [7]* 71.5, 71.9, 71.6, 71.5 1.2, 5.9, 24.1, 41.2 2.4, 10.9, 36.0, 52.2
REVISE [43] - - 36.3, 41.1, 44.6, 50.9
CA-VAE [38] 58.2, 57.6, 60.0, 62.2 44.8, 51.6, 59.4, 62.3 50.6, 54.4, 59.6, 62.2
DA-VAE [38] 50.6, 56.0, 56.8, 56.8 47.9, 53.2, 61.0, 65.4 49.2, 54.6, 58.8, 60.8
CADA-VAE [38] 59.6, 60.9, 62.3, 63.1 51.4, 57.5, 63.6, 68.8 55.2, 59.2, 63.0, 64.9
CE Loss* (VE) 72.7, 72.9, 72.7, 72.0 0.6, 3.7, 19.1, 38.6 1.2, 6.9, 30.2, 50.2
LAGO [4]* (SE) 69.2, 69.0, 69.0, 68.1 13.8, 21.9, 38.1, 51.5 23.0, 33.2, 49.0, 58.6
DRAGON (ours) 58.0, 62.9, 63.3, 66.1 52.8, 55.9, 63.8, 69.6 55.3, 59.2, 63.5, 67.8

(a) Two-Level CUB

Model Accms Accfs AccH

Most Common Class* 0.2, 0.2, 0.2, 0.2 0, 0, 0, 0 0, 0, 0, 0
LDAM [7]* 43.7, 44.0, 44.2, 44.3 2.2, 6.6, 19.0, 31.8 4.3, 11.5, 26.6, 37.0
REVISE [43] - - 27.4, 33.4, 37.4, 40.8
CA-VAE [38] 35.8, 37.5, 37.5, 39.0 40.0, 46.5, 53.8, 55.7 37.8, 41.4, 44.2, 45.8
DA-VAE [38] 34.8, 37.3, 38.6, 38.2 41.4, 45.1, 50.2, 54.8 37.8, 40.8, 43.6, 45.1
CADA-VAE [38] 37.6, 38.2, 39.4, 41.9 44.1, 49.0, 55.3, 55.1 40.6, 43.0, 46.0, 47.6
CE Loss* (VE) 46.3, 46.3, 46.2, 45.6 0.9, 4.9, 17.2, 33.0 1.8, 8.9, 25.1, 38.3
LAGO [4]* (SE) 30.6, 30.4, 30.7, 31.0 14.4, 18.7, 21.9, 25.2 19.6, 23.2, 25.6, 27.8
DRAGON (ours) 37.2, 39.2, 40.5, 41.6 45.5, 49.6, 55.1, 57.2 41.0, 43.8, 46.7, 48.2

(b) Two-Level SUN

Model Accms Accfs AccH

Most Common Class* 2.5, 2.5, 2.5, 2.5 0, 0, 0, 0 0, 0, 0, 0
LDAM [7]* 90.7, 90.7, 90.5, 90.5 6.6, 14.4, 26.6, 41.6 12.4, 24.8, 41.1, 57.0
REVISE [43] - - 56.1, 60.3, 64.1, 67.8
CA-VAE [38] 73.4, 77.7, 81.0, 81.0 56.8, 66.0, 72.8, 77.1 64.0, 71.3, 76.6, 79.0
DA-VAE [38] 74.0, 74.6, 73.5, 73.9 63.0, 71.4, 77.7, 79.8 68.0, 73.0, 75.6, 76.8
CADA-VAE [38] 76.6, 79.4, 81.9, 82.6 63.8, 68.7, 74.8, 78.0 69.6, 73.7, 78.2, 80.2
CE Loss* (VE) 90.7, 90.9, 89.7, 87.9 5.9, 11.2, 32.6, 57.9
LAGO [4]* (SE) 82.6, 81.9, 81.7, 81.5 11.5, 20.6, 46.2, 59.4 20.2, 33.0, 59.0, 68.7
DRAGON (ours) 74.5, 76.7, 79.2, 81.7 61.1, 62.9, 74.3, 82.1 67.1, 69.1, 76.7, 81.9

(c) Two-Level AWA

Table S 15: Comparing DRAGON with SoTA GFSL models and baselines with increasing number of few-shot training
samples on the CUB, SUN and AWA datasets. We report per-class Accms, Accfs and AccH . Each cell represents 1-shot,2-
shot,5-shot and 10-shot accuracies

same model variant on the test set.

Tables S12 and S13 show the results of the ablation study
on the test set. It shows the same behavior as the ablation
study on the validation set that was reported in the main pa-
per. Table S14 compares three different training protocols:
(1) All-Train: Training the DRAGON fusion-module naively
without a hold-out set. (2) End-To-End: Training all the ar-
chitecture (both experts and fusion-module) end to end in
an early fusion manner. (3) Three-Stage-Training: Training

our models as explained in section D.
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