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Abstract

Providing an explanation of the operation of CNNs that
is both accurate and interpretable is becoming essential in
fields like medical image analysis, surveillance, and au-
tonomous driving. In these areas, it is important to have
confidence that the CNN is working as expected and ex-
planations from saliency maps provide an efficient way of
doing this. In this paper, we propose a pair of complemen-
tary contributions that improve upon the state of the art for
region-based explanations in both accuracy and utility. The
first is SWAG, a method for generating accurate explana-
tions quickly using superpixels for discriminative regions
which is meant to be a more accurate, efficient, and tunable
drop in replacement method for Grad-CAM, LIME, or other
region-based methods. The second contribution is based on
an investigation into how to best generate the superpixels
used to represent the features found within the image. Using
SWAG, we compare using superpixels created from the im-
age, a combination of the image and backpropagated gradi-
ents, and the gradients themselves. To the best of our knowl-
edge, this is the first method proposed to generate explana-
tions using superpixels explicitly created to represent the
discriminative features important to the network. To com-
pare we use both ImageNet and challenging fine-grained
datasets over a range of metrics. We demonstrate experi-
mentally that our methods provide the best local and global
accuracy compared to Grad-CAM, Grad-CAM++, LIME,
XRAI, and RISE.

1. Introduction
As Convolution Neural Networks have become more

common in sensitive applications such as medical diagnos-
tics [37] or surveillance [38], the more techniques have be-
come necessary to explain a model’s predictions. In partic-
ular there is a conflict between how well a technique can

create explanations that precisely show how a model under-
stands an image, against how well an explanation aligns to
interpretable regions within the image. The latter is key to
allowing humans to understand an explanation, whilst the
former is key to explaining the model accurately. How then
does a technique meet these explainability requirements?
In particular, is there a technique that can generate explana-
tions which are both accurate and present themselves in an
interpretable way?

Doshi-Velez and Kim [8] raised a number of important
questions regarding explanations. Important to our work
are “cognitive chunks”, the basic units of explanations, and
task-related factors such as time constraints or whether the
explanation is to be local or global. Techniques are often
fixed in form and quantity of cognitive chunks present in
their explanation, i.e. Class Activation Mapping (CAM)
based methods [6, 24, 43] all rely on a coarse feature map
taken from the final convolution layer of the network to gen-
erate their explanations (i.e. 14×14 or 7×7 for VGG16 and
ResNet50 respectively). This results in a large cognitive
chunk, which could result in explanations being inaccurate,
or at worse, misleading. Gradient based methods such as
Deep Taylor [16] or Excitation Backprop [42] are limited
in their approach to giving every individual pixel a score
with no large-scale spatial coherency. In these approaches,
a cognitive chunk is therefore equal to one pixel, too low
level a feature to accurately explain a decision in a compre-
hensible way [39]. Black-box explanation methods such
as LIME [21] and RISE [19] are able to vary the number
of cognitive chunks (superpixels for LIME, grid cells for
RISE) by altering how they generate their perturbation re-
gions. However, this flexibility comes at the cost of hav-
ing to pass the same image thousands of times through the
network. Another limiting factor is that, as the number of
cognitive chunks is increased, the number of passes should
also be increased accordingly.

To address these issues, we propose a pair of com-



plementary techniques. The first is SWAG (Superpixels
Weighted by Average Gradients), a method that allows us to
produce explanations using discrete, moderately-sized cog-
nitive chunks, that perform well across a range of datasets
and input domains. SWAG uses superpixels as a basis for
the cognitive chunks, which are then weighted using the av-
erage of the back-propagated guided gradients [30]. How-
ever, concerns have been raised about using superpixels as
a basis for explanations, as they may not correctly capture
discriminative regions [19]. A recent method, XRAI, at-
tempts to alleviate this in two ways. The first is by having
multiple sets of overlapping superpixels, the second is by
artificially expanding the underlying superpixels by a fixed
amount. However, neither of these techniques take into ac-
count how the network is interpreting the image. We hy-
pothesise that introducing a pixel based saliency map such
as backpropagated gradients into the superpixel decision
making process will produce regions that better align with
the model’s use of features. We, therefore, investigate two
alternative methods for incorporating saliency maps (based
on Simple Linear Iterative Clustering (SLIC) [1]) when cre-
ating superpixels. The first method is to modify SLIC so
that it not only uses the pixel colour values from the im-
age, but also takes into account the importance of the pixels
to the model as determined by a saliency map. The sec-
ond method is to simply disregard the pixel values from the
image and only use the saliency map as a basis for creat-
ing the superpixels. The intuition behind generating super-
pixels using the contributions of a saliency map is that this
should cause superpixels to not solely form boundaries be-
tween colour regions as with traditional superpixels, but to
form boundaries between regions of high and low impor-
tance to the network.

This allows us to create superpixels that both describe
important image features and the areas important to the net-
work. In this paper, we show that our proposed methods are
able to produce explanations that offer improved local and
global explanations over other comparable techniques. Our
method also has advantages over methods such as LIME,
RISE, and XRAI as it only requires a single forward and
backward pass to generate an explanation.

2. Related Work
There are multiple ways to create explanations of how

a network is behaving. These could broadly be split into
observing how the network itself functions, or how the net-
work interprets an input image. Examples of methods that
try to explain the the units within a network are Network
Dissection [4], Concept Activation Vectors [14] and Acti-
vation Maximization [17, 40]. As our proposed method at-
tempts to explain the input space, in this section we focus
on similar techniques.

A common method of creating explanations is to back-

propagate through the network to the input space. This was
first investigated in the works by Zeiler and Fergus [41], and
Simonyan et al. [27]. Here, the gradients are backpropa-
gated through the network as they would be at training time,
except instead of being backpropagated from a loss func-
tion, they are backpropagated from the prediction score for
the desired class. These techniques were further built upon
with the use of guided backpropagation [30], then expanded
by combining the gradient with the activations during back-
propagation in works such as Layer-wise Relevance Prop-
agation (LRP) [3], Deep Taylor [16], and Excitation Back-
prop [42]. Integrated Gradients [26] propose that, instead
of using a single input, it is better to have a range of scaled
inputs (i.e. from zeros to the original input values) and inte-
grate the corresponding gradients.

Using the final activation layer as a basis for explana-
tions has proved to be a popular method. First proposed by
Zhou et al. [43], Class Activation Maps (CAM) weight and
combine the final activation layer using a global average
pooling layer. This produces a coarse heat map that centres
around the region of the image that is important. This was
generalised with Grad-CAM [24] which removed the need
for the average pooling layer, instead weighting the activa-
tion maps using the mean of the gradient. Grad-CAM++ [6]
was later introduced to increase the weak-localisation abil-
ity of the method. Finally, creating explanations through the
use of multiple perturbations is common. The first example
of this for CNNs was the use of a sliding square to occlude
regions of the image [41]. As multiple images are passed
to the network with regions occluded, a heatmap of how
the network output varies due to the occlusion is built. Lo-
cal Interpretable Model-agnostic Explanations (LIME) [21]
uses superpixels as a foundation for the regions to perturb,
and then uses the output scores to learn a model to accu-
rately determine the importance of each superpixel to the
decision making process. Subsequently, a number of tech-
niques have made use of superpixels as the framework of
an explanation. Seo et al. [25] and Kapishnikov et al. [12]
have independently introduced methods of generating ex-
planations produced using multiple levels of superpixels be-
fore fusing them together to produce a single explanation.
XRAI uses integrated gradients as a method to weight the
superpixel regions. As with LIME, this is a computation-
ally expensive method of creating explanations. SHAP, an
explanation method based on shaply values, also makes use
of superpixels via KernelSHAP [15]. An alternative method
for creating explanations using perturbations is Random-
ized Input Sampling for Explanation of Black-box Mod-
els (RISE) [19]. This method generates random masks at
a lower resolution than the input and perturbs the input
space with these. Whilst the perturbation techniques all
have the ability to produce accurate explanations, they are
inefficient compared to other methods. This is due to the



multiple passes through the network required, for example
LIME typically uses 1,000 passes and RISE uses 4,000 (for
VGG16) and 8,000 (for ResNet50).

3. Improved CNN Explanation via SWAG and
Gradient-Based Superpixels

Explanations for CNNs can take many forms; however,
when explaining how an input image is interpreted by the
network, we can broadly split these into either pixel-based
(an individual score for every pixel), or region-based (larger
regions are used). The popularity of techniques such as
Grad-CAM or LIME suggest that region-based techniques
offer an increased level of interpretability, that is, they pro-
duce an explanation that is easier to understand. However,
using these methods comes at the trade-off of the spatial ac-
curacy of the explanation. Pixel-based explanations, where
each pixel is individually scored, offer the explanation that
can most precisely identify pixels important to the network.
Intuitively this makes sense as it has been shown repeat-
edly through adversarial examples that, by changing only a
small selection of pixels, the accuracy of the model can be
compromised [32]. Although pixel-based explanations are
accurate, they are often described as being of low-quality or
less interpretable [35]. In this section, we propose SWAG,
a method of weighting superpixels using a backpropagated
gradient, and discuss complimentary methods, for generat-
ing superpixels using the backpropagated gradient that bet-
ter capture the discriminative regions of the image.

3.1. SWAG

The core idea of our method is to take gradient values
backpropagated to the input and pool them into discrete re-
gions. This requires two separate elements to be generated
and combined. To generate the gradients, we use guided-
backprop [30] as we found this to perform marginally better
when compared to regular backpropagated gradients [27].
This is expanded upon further in a sanity check in Sec-
tion 4.1.3. For the network architectures of interest this pro-
duces an image M ∈ R224×224×3. As per [27], each pixel
(i, j) in the final gradient is obtained by taking the max of
the absolute values: Mi,j = maxc|Mi,j,c|, where c is the
colour channel. Now each pixel represents a score relating
to how important it is to the network’s decision.

To define the discrete regions with which to pool the
gradients, we use superpixels. We use Simple Linear It-
erative Clustering (SLIC) [1], a fast method that accurately
adheres to object boundaries [31]. Using SLIC, we are able
to control the number of superpixels we generate. Through
experimentation we found that starting with 300 superpix-
els provides a good balance between accuracy and weak-
localisation ability (see Section 4.3). With a method for
generating superpixels and the values to weight them, we

produce an explanation Ei ∈ R by weighting each super-
pixel region Ri (where Ri is the set of pixels belonging to
the ith superpixel), with the mean values of M found within
that superpixel:

Ei =
1

|Ri|
∑

M ∩Ri. (1)

Justification for the use of the mean can be found in the
supplemental materials.

3.2. Gradient-Based Superpixels

A number of previous methods have used superpixels as
the basis for their explanations [12, 21, 25]. However, it has
been noted in previous work [19] that the use of superpixels,
whilst aligning well the boundaries of the image, may not
align well to regions of the image important to the network.
Indeed, in the XRAI method [12], superpixel boundaries are
artificially dilated by 5 pixels to incorporate additional edge
regions within the superpixel.

In this section, we propose two novel ways of generating
the underlying superpixels for use in explanations. This is
done by incorporating guided backpropagated gradients as a
basis upon which to build the superpixels. We propose cre-
ating superpixels using only the backpropagated gradients,
as well as a combination of both the image and the gradient.

We first begin by examining how SLIC works us-
ing a colour image. SLIC generates superpixels by
clustering pixels in both colour and co-ordinate space:
[li, ai, bi, xi, yi], where l, a and b represents the CIELAB
colour space [7], and x, y are pixel co-ordinates. SLIC pro-
ceeds to cluster these to produce cluster centres Ci. Super-
pixels are allowed to expand or contract within a limited
range, in the original SLIC algorithm this is fixed at 2ws

from the cluster centre point. Here ws =
√
N/K, where

N is the number of pixels in the image, and K is the de-
sired number of superpixels. To determine whether a pixel
(position j) belongs to a given superpixel, its distance to the
centre value of the superpixel (at position i) is measured.
Here, distance is defined as a combination of both colour
distance dc, and spatial distance ds:

dc =
√
(lj − li)2 + (aj − ai)2 + (bj − bi)2, (2)

ds =
√
(xj − xi)2 + (yj − yi)2. (3)

These distances are then combined to give a single distance
value D′ for each pixel within a superpixel:

D′ =

√(
dc
wc

)2

+

(
ds
ws

)2

. (4)

Due to the differing scales of dc and ds, a scaling compo-
nent is used for each. For scaling colour distances, a value
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Figure 1: Qualitative comparison between methods using ImageNet and ResNet50. Best viewed in colour. Further examples
are in the supplementary materials

wc is used. When this is large, priority is given to the spa-
tial component, and when it is small, priority is given to the
colour distance. The original paper uses a wc value of 10.
Spatial distance is scaled by ws which seeks to maintain the
grid like structure of the superpixels. Clustering proceeds
iteratively as in k-means clustering.

Superpixels are designed to adhere to boundaries within
an image which makes them useful as a starting point for
CNN explainability methods [21]. However, by confining
a superpixel method to only taking into account the colour
space and distance when generating superpixels, we are po-
tentially creating superpixels in a way that does not lead
to producing the most accurate explanations. For example,
this process could be splitting an important region of an im-
age across superpixels, when it may be beneficial to have
it represented by a single superpixel. We, therefore, pro-
pose a method of incorporating a gradient component into
the SLIC algorithm. To begin with, we introduce a gradi-
ent component g to the initial superpixel description vec-
tor: Ci = [li, ai, bi, xi, yi, gi]

T . Here, g is a pixel within
our gradient-based explanation M that provides a single
score for each pixel. Here, M is scaled between [0, 100]
to match the range of LAB values. To compute the dis-
tance between pixels and the superpixel centre dg , as with
the spatial and colour distances, we calculate the Euclidean
distance: dg =

√
(gj − gi)2. Following this, we alter the

distance function D′ to incorporate dg:

D′ =

√(
dc
wc

)2

+

(
ds
ws

)2

+

(
dg
wg

)2

. (5)

We also introduce a new parameter wg that allows us to con-
trol the weighting of the newly introduced gradient element.
These give superpixels that are created by combining both
the image and gradient, by removing the dc component we

are able to produce superpixels using only the gradient:

D′ =

√(
ds
ws

)2

+

(
dg
wg

)2

. (6)

Superpixels created using both the image and gradient
are labelled with a subscript I+G, whilst those with only
the gradient are labelled with a subscript G. For example,
SWAGI+G and SWAGG respectively.

Examples of SWAG using both regular superpixels and
our modified methods can be seen in Figure 1 in the
columns marked SWAG, SWAG I+G, and SWAGG.

4. Image Experiments
In this section, we conduct a number of experi-

ments to examine accuracy (both local and global), weak-
localisation ability, and efficiency. We report results across
multiple datasets: ImageNet [23], Caltech-UCSD Birds
200(CUB200) [36], Stanford Dogs [13], and Oxford Flow-
ers 102 [18]. Excepting ImageNet, these are all fine-
grained datasets, presenting an additional challenge to ex-
isting explainability methods where discriminative features
may occupy a small region of the image. All work is con-
ducted with PyTorch using pre-trained VGG16 [28] and
ResNet50 [10] networks for ImageNet. These models were
fine-tuned for the fine-grained datasets for 50 epochs with
a learning rate of 0.001 for both VGG16 and ResNet50.
Top-1 validation accuracies for VGG16 and ResNet50 re-
spectively are: CUB200 (82.22%, 85.42%), Stanford Dogs
(79.60%, 85.09%), and Oxford Flowers (94.95%, 92.24%).

We compare against the following region-based tech-
niques: Grad-CAM, Grad-CAM++, LIME, XRAI, and
RISE. We show results using SLIC superpixels generated
from both the image and gradient independently, as well as
using our combined image and gradient method. Baselines



are often used to evaluate how well a technique performs.
In the work by Hooker et al. [11], random noise and So-
bel edge detection [29] are used as baselines to compare
against various saliency map techniques. However, as we
are explicitly comparing against region-based explanation
approaches, we instead use two additional baselines based
on the Euclidean distance from a specific pixel. We use
both a centre point Euclidean distance map (referred to as
centre), as well as the Euclidean distance to a uniformly
randomly chosen pixel (referred to as random). Whilst we
believe it is unfair to compare pixel based methods against
region based methods due to their inherent precision, we
include results for Guided-Backpropagation as it is used for
weighting our superpixels. We will see that it provides good
local accuracy compared to all region based methods, but
poor global accuracy. Our method performs well for both.

4.1. Accuracy (Images)

Explanation accuracy is a measure of how well a method
can score regions or pixels of an image important to the
network. Whilst some methods have used humans to help
evaluate the trustworthiness of an explanation [6, 21], it
has been shown that these are vulnerable to confirmation
bias [2]. It has also been noted that human-centric evalua-
tions are potentially unreliable as they are measuring how
a human interprets the input image, rather than how the
network does [19]. To this end, we rely on automatic ac-
curacy measures. Whilst a number of methods for deter-
mining accuracy have been proposed, scoring or ranking
methods can be inconsistent between different techniques
as they can seek to evaluate different aspects of the expla-
nation [33]. In particular, we note the difference between
measuring the accuracy for local explanations versus global
explanations. Measuring the accuracy of a local explanation
allows us to see how well an explanation captures which re-
gions of the input image are important to the network when
a specific decision is made. In contrast, global accuracy
pertains to how well an explanation is at finding all regions
of the image that have the potential to influence the net-
work’s decision, regardless of whether they are used for the
local explanation [8]. We conduct experiments to measure
both the local and global accuracy. For a local metric, we
use the deletion technique by Petsiuk et al. [19]. For the
global metric, we use Remove and Retrain (ROAR) from
Hooker et al. [11].

4.1.1 Local Accuracy: Deletion

In this set of experiments, a saliency value is computed for
each pixel. (For techniques that use superpixels, all pixels
within a superpixel are assigned the same value.) Pixels are
then iteratively removed (by setting to 0). Pixels are deleted
in order of importance, most important first. As in Petsiuk’s

experiment [19], pixels are deleted in batches of 1792 ( 1
28

of the total number of pixels). At each iteration the image
is evaluated by the network and the softmax score recorded.
We do this for the all the dataset’s validation sets and av-
erage the softmax scores. Note that to ensure fairness we
run all experiments using the original implementations for
LIME [22], RISE [20] and XRAI [12]. The only alteration
made is to support a PyTorch backend where required. The
deletion metric offers a view of what determines local accu-
racy. It measures both how well a method can determine the
regions of the image used by the network and how precise
the explanation is. The intuition is that deleting the regions
important to a network will force the network to alter its de-
cision. Therefore, as the important regions of the image are
deleted, the softmax score will decrease accordingly. This
local metric measures the area under the curve (AUC) as
features are deleted from the input image. The deletion re-
sults can be found in Table 1 and Figure 2.

SWAG is shown to be able to generate better expla-
nations using superpixels generated using either regular
SLIC or our modified version across all datasets and mod-
els tested, apart from one (Stanford Dogs with ResNet50).
We believe that LIME performs well for the Stanford Dogs
dataset as the number of superpixels used in LIME seems to
better match discriminative regions (typically a dogs head)
than SWAG (which tends to focus on the eyes and mouth).
Qualitative examples of the Stanford Dogs dataset can be
found in the supplemental material. The complementary
techniques of SWAG alongside our proposed superpixel
methods improve upon all other techniques by a significant
margin, except the Dogs / ResNet50 combination.

4.1.2 SWAGI+G Optimisation

We use the test for local accuracy as a basis to understand
how the colour and gradient weights within SWAGI+G in-
fluence the performance. We perform a grid search using
ResNet50 and Stanford Dogs over the wc and wg values
from 4 to 20 in steps of 2. We chose these values as in
the original SLIC implementation, a value of 10 is chosen.
By increasing to 20, it halves the influence of the channel,
whilst decreasing to 5 doubles its influence. We found that
a wc value of 20 gave best results. Figure 3 shows how the
AUC score alters depending on wg , reaching a minimum at
wg = 8. Further discussion can be found in the supplemen-
tal material.

4.1.3 Sanity Check

As a sanity check, we perform the local accuracy measure-
ment using SWAG with the standard image superpixels. In
addition to using guided-backpropagation to weight the su-
perpixels, we use random noise, Sobel edges and vanilla
gradients. Results in Table 2.



ImageNet CUB200 Stanford Dogs Flowers 102
Method VGG16 ResNet50 VGG16 ResNet50 VGG16 ResNet50 VGG16 ResNet50

Random 0.274 0.303 0.296 0.317 0.337 0.371 0.446 0.425
Centre 0.153 0.177 0.153 0.168 0.200 0.233 0.221 0.223

Grad-CAM 0.105 0.142 0.060 0.099 0.097 0.150 0.237 0.235
Grad-CAM ++ 0.111 0.147 0.069 0.101 0.104 0.149 0.217 0.234

LIME 0.105 0.125 0.059 0.074 0.087 0.107 0.214 0.218
RISE 0.116 0.124 0.057 0.072 0.113 0.129 0.250 0.244
XRAI 0.105 0.137 0.053 0.063 0.090 0.117 0.227 0.188

SWAG 0.092 0.119 0.051 0.062 0.083 0.123 0.206 0.168
SWAGI+G 0.084 0.109 0.050 0.060 0.080 0.118 0.195 0.151
SWAGG 0.073 0.095 0.046 0.057 0.077 0.110 0.177 0.137

Guided-Backprop 0.051 0.074 0.040 0.046 0.042 0.080 0.122 0.086

Table 1: Area under the curve for the deletion experiment. Lower is better. Numbers in bold are the best region based
explanations. Note how well the pixel based method performs.
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Figure 2: Local accuracy AUC charts. Best viewed in a PDF viewer with zoom ability. Zoomed in graphs featuring the
bottom left hand region can be found in the supplemental material.

4.1.4 LIME - Alternative Superpixels

We propose that our method for creating superpixels using
the backpropagated gradient can be used as an alternative
for other explanation techniques based on superpixels. In
this experiment we compute the local accuracy results us-
ing LIME with the I, I+G, and G methods for generating

superpixels using SLIC with 50 superpixels. Our results us-
ing ImageNet are found in Table 3. Note the image only
superpixel is different to the scores in Table 1 as here we
use SLIC whereas by default LIME uses Quick Shift [34].
From these results we can see that by using our superpixel
methods as a drop in replacement for Quick Shift we are
able to obtain much better local accuracy results.
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better.

Method Explanation VGG16 ResNet50

SWAGImage

GB 0.092 0.119
Van 0.134 0.190

Rand 0.170 0.210
Sobel 0.154 0.188

Table 2: Sanity check showing how the use of other pixel
scoring methods does not perform as well. Lower is better.

Method VGG16 ResNet50
LIMEI 0.107 0.126
LIMEI+G 0.090 0.108
LIMEG 0.082 0.099

Table 3: Local accuracy results for LIME. Changing Quick
Shift to SLIC and our variants (I+G and G). Lower is better.

4.1.5 Global Accuracy: Remove and Retrain (ROAR)

The previous deletion experiment seeks to gain an under-
standing of how well a technique explains how a model has
learnt to represent a class by the removal of image regions.
However, work by Hooker et al. [11] suggests that there is
a subtlety with this experiment as the images with regions
removed are passed back into the network, fall out of the
distribution used for training. They argue that it becomes
unclear if the performance degradation of a technique in the
previous experiment comes from the change in data distri-
bution, or because the technique is genuinely removing im-
portant features. They propose an alternative method that
requires retraining the network after every stage of feature
removal (for removal percentages of [0, 10, 30, 50, 70, 90]).
To ensure fairness, they repeat the experiment five times
for each method tested. For every explanation technique
tested, 30 models are trained, each requiring a new dataset
of training and validation images with the correct percent-
age of pixels removed. Due to the high storage and compu-
tational requirements, we are only able to show results for
the smaller datasets of CUB200 and Stanford Dogs using

Method CUB200 Dogs
Centre 0.284 0.393
Grad-CAM 0.219 0.344
G-CAM++ 0.218 0.342
LIME 0.210 0.364

SWAG 0.173 0.320
SWAGI+G 0.172 0.319
SWAGG 0.179 0.324

Guided Backprop 0.231 0.435

Table 4: ROAR AUC results. Lower is better.
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Figure 4: ROAR results. A sharper drop is better.

ResNet50. We also omit RISE and XRAI as the amount of
time taken to generate explanations makes this metric infea-
sible. We again measure the AUC to obtain a quantitative
result, these are shown in Table 4 and Figure 4.

We see that for both datasets our methods performs bet-
ter than all the other methods tested at locating features
of global importance. Interestingly, despite its strong lo-
cal accuracy performance SWAGG performs the worst of
our proposed methods, with SWAGI+G performing the best.
There is potential scope for improvement for this score as
we tuned it to work better as a local interpretability method
through the use of the wc and wg values. It is imprac-
tical to perform hyper parameter optimisation using the
ROAR technique. It is interesting to note that despite its
strong local accuracy results, guided-backpropagation per-
forms poorly. This suggests that whilst the gradients can
find regions important to the network, they are overly pre-
cise to achieve good global accuracy.

4.2. Weak-Localisation (Images)

A common experiment explores an explanations ability
to locate a salient object within an image. We used the
well-established method [5, 9, 42] of weakly localising the
bounding boxes found in the ImageNet validation set. Lo-
calisation error is calculated using Intersection over Union



VGG16 ResNet50
Val Mea Eng Val Mea Eng

Random 57.43 58.96 57.39 57.43 58.96 57.39
Centre 47.57 48.18 47.68 47.57 48.18 47.68
Grad-CAM 52.06 49.76 51.80 45.94 45.89 44.35
Grad-CAM ++ 47.32 47.25 46.08 45.76 45.83 43.85
LIME 54.82 52.40 52.82 53.08 50.77 51.19
RISE 55.01 57.94 49.68 52.73 53.82 50.53

SWAG 55.06 46.10 45.01 56.73 52.50 50.65
SWAGI+G 54.57 46.44 44.95 56.33 52.10 50.70
SWAGG 54.16 45.95 44.86 56.69 52.07 52.02

Guided Backprop 55.28 46.32 49.63 56.44 51.53 52.35

Table 5: Weak-localisation results as % of localisation error.
Lower is better.

(IOU), where an overlap greater than 50% is counted as cor-
rect. Implementation details can be found in the supple-
mental material. While a useful proxy to get insight for the
cohesiveness of an explanation, weak localisation experi-
ments do not directly measure the accuracy or quality of
an explanation [19]. The results for the weak-localisation
experiment are shown in Table 5. For the VGG16 net-
work, we obtain a better overall localisation score than
Grad-CAM based methods. Interestingly for VGG16 our
method performs better than all others when thresholding
using the mean or the energy. However, our method per-
forms poorly when thresholding by pixel value, most likely
due to the uneven distribution of values between superpix-
els. For ResNet50 our method does not perform well when
compared to Grad-CAM and Grad-CAM++. Our method
mirrors, and sometimes beats guided backpropagation. As
it is used to weight, and in some cases define our super-
pixels, it is possible that using an alternative method could
yield better results.

4.3. Effect of Superpixel Count

Varying the number of superpixels alters the perfor-
mance of SWAG (Figure 5). We observe that increasing the
number of superpixels improves the local AUC score. How-
ever, whilst the accuracy improves, we note that the ability
for SWAG to weakly-localise decreases after 200–300 su-
perpixels. The number of superpixels presents a trade-off
between the desired granularity of the explanation and the
spatial accuracy (large superpixels can extend beyond the
object boundaries, whereas small superpixels cause expla-
nations to become less human-interpretable).

4.4. Efficiency

We measure the mean time to compute an explanation
for the first 1,000 images of the ImageNet validation set,
cropped to 224×224. Results were computed using an
NVidia Titan X GPU. Results are shown in Table 6. From
the results we see that there is a wide gap between tech-
niques such as LIME, RISE and XRAI compared to other
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Figure 5: Variation in local accuracy (top row) and weak
localisation (bottom row) over a range of superpixels.

Method VGG16 ResNet50
Grad-CAM 0.03 0.03
Grad-CAM++ 0.03 0.03
LIME 5.80 4.76
RISE 13.19 17.48
XRAI 31.10 30.57

SWAG 0.12 0.18
SWAGI+G 0.12 0.18
SWAGG 0.07 0.10

Table 6: Mean computation time in seconds

gradient based methods. Whilst our technique is marginally
slower than Grad-CAM or Grad-CAM++ we note that a
much higher accuracy is achieved for only a minimal loss
of efficiency.

5. Conclusion
In this paper we have introduced a complementary pair

of novel techniques for weighting superpixels with guided
gradients and for generating superpixels that better match
discriminative regions within an image. We have shown the
technique to be effective for both local and global explana-
tions on a range of image datasets.
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