
Global Table Extractor (GTE): A Framework for Joint Table Identification and
Cell Structure Recognition Using Visual Context

Xinyi Zheng
University of Michigan
zxycarol@umich.edu

Douglas Burdick Lucian Popa
IBM Research-Almaden

{drburdic, lpopa}@us.ibm.com

Xu Zhong
IBM Research Australia
peter.zhong@au1.ibm.com

Nancy Xin Ru Wang
IBM Research-Almaden

wangnxr@ibm.com

Abstract

Documents are often used for knowledge sharing and
preservation in business and science, within which are ta-
bles that capture most of the critical data. Unfortunately,
most documents are stored and distributed as PDF or
scanned images, which fail to preserve logical table struc-
ture. Recent vision-based deep learning approaches have
been proposed to address this gap, but most still cannot
achieve state-of-the-art results. We present Global Table
Extractor (GTE), a vision-guided systematic framework for
joint table detection and cell structured recognition, which
could be built on top of any object detection model. With
GTE-Table, we invent a new penalty based on the natu-
ral cell containment constraint of tables to train our ta-
ble network aided by cell location predictions. GTE-Cell
is a new hierarchical cell detection network that leverages
table styles. Further, we design a method to automati-
cally label table and cell structure in existing documents to
cheaply create a large corpus of training and test data. We
use this to enhance PubTabNet with cell labels and create
FinTabNet, real-world and complex scientific and financial
datasets with detailed table structure annotations to help
train and test structure recognition. Our framework sur-
passes previous state-of-the-art results on the ICDAR 2013
and ICDAR 2019 table competition in both table detection
and cell structure recognition. Further experiments demon-
strate a greater than 45% improvement in cell structure
recognition when compared to a vanilla RetinaNet object
detection model in our new out-of-domain FinTabNet.

1. Introduction

In real world enterprise and scientific applications, cru-
cial information is often summarized in tabular form within

PDF or scanned documents [1]. Since neither of these
widely-used document formats preserve logical table struc-
ture, accurate table detection and cell structure recognition
techniques are required to reconstruct the table before its
contents can be leveraged for any subsequent analysis, such
as question answering [22], scientific leaderboard construc-
tion [12] or knowledge base population [25]. Accurate table
extraction is possibly the most important task and a major
pain point in document analysis for businesses where the
computer vision community can have a significant impact.
In fact, the reliance on rules, lack of labelled data and visual
nature of table recognition in documents resembles research
in the early days of object recognition in images. Table de-
tection refers to detecting the boundary of a table, while cell
structure recognition generates the logical relations of cells
and their contents inside a table, e.g., identification of all
cells within the same row or column inside the table. Al-
though straightforward for humans, accurately reconstruct-
ing table boundary and cell structure information from PDF
or image documents is difficult for automated systems due
to the wide variety of styles, layout and content tables have
across heterogeneous document sources [11]. Such visual
“clues” often conflict across sources, e.g., examples in Fig-
ure 1.

Unfortunately, conventional rule-based or statistical
techniques for table extraction often fail to generalize as
they rely heavily on hand-crafted features like graphical
lines or bold font, which are not robust to style variations
across different document formats. Compared to these ap-
proaches, vision-based deep learning methods have two ad-
vantages. First, by working directly on images, they can
be applied to any document renderable to an image, includ-
ing PDF. They do not rely on programmatic PDF encodings
such as graphical line, spacing and font attributes which
rule-based approaches require. Second, if a large annotated
dataset for tables is available, models can be pretrained and

ar
X

iv
:2

00
5.

00
58

9v
2

 [
cs

.C
V

]
 2

 D
ec

 2
02

0

Figure 1: Tables are challenging to extract as they can be
presented in a variety of styles and structures. Graphical
ruling lines sometimes do not exist (a) and when present
(b), may not be a necessary condition to delineate a cell
(red box).

then finetuned using a small amount of in-domain labels.
However, few vision-based deep learning models for table
extraction that have been proposed, with most existing deep
learning approaches directly use off-the-shelf object detec-
tors [24, 26, 18] without any major architectural adaptation.

To tackle cell structure recognition, rule-based and sta-
tistical machine learning approaches are commonly used
[8]. Recent deep learning approaches either output struc-
ture as text with a image-to-sequence method [34, 18], or
generate structure after detecting related objects in the ta-
ble. Although object detection also needs a box to struc-
ture conversion step when compared to end-to-end sequence
generation, the visualized bounding boxes of object detec-
tion methods are easier for humans to interpret and correct,
which leads to better results [11]. Most existing work on
object detection-based methods detect entire rows and col-
umn separately, and represents the intersection of detected
rows and columns as cells [26, 33]. Such an approach has
limitations in accurately detecting structure of complex ta-
bles with rows or columns which do not span the entire
table or align well. Our proposed Global Table Extractor
(GTE) adapts vision-based models to the table identifica-
tion and cell structure recognition problem, and achieves
state-of-the-art results by addressing limitations of existing
work as follows. First, GTE improves object detectors by
explicitly enforcing the model to learn the natural constraint
of tables: A table must contain certain amount of cells in-
side it and a cell cannot exist outside of the table. In other
words, the model should not only focus on the tables, but
also pay attention to the cells inside. Second, we propose

to detect each cell directly instead of detecting entire rows
and columns separately since cells are more visually dis-
tinct as object units and this approach naturally supports
tables with rows and columns not spanning the entire ta-
ble. Third, current object detection models focus on the
local area around objects, which neglects the global style of
tables that determine cell appearance. To leverage the infor-
mation of the whole table, we propose a hierarchical system
of networks where we discriminate the global context first,
the table style. The table image is then fed into different
object detectors specialized for different styles. After cell
bounding boxes are detected, we invent a cell cluster-based
algorithm to generate cell structures. In summary, our con-
tributions are as follows:

1. We present our systematic framework for vision-
guided joint table detection and cell structure recogni-
tion, GTE, which outperforms previous systems on the
ICDAR 2013 and 2019 table competition benchmark.

(a) We leverage a cell detection network to guide the
training of the table detection network.

(b) We present a hierarchical network and a novel
cluster-based algorithm for cell structure recog-
nition by classifying tables, detecting cells and
convert this into structure with spatial clustering.

2. We design a method to automatically create ground-
truth labels for table recognition and use it to enhance
PubTabNet[36] and create FinTabNet, which are large
datasets from real-world data sources with fine-grained
cell structure annotation for table related tasks. Pub-
TabNet enhancements are now available and we intend
to release FinTabNet publicly (subject to legal evalua-
tions) to address the lack of such labelled data.

2. Related Work
2.1. Table Detection

Rule-based methods were among the earliest proposed
approaches for locating tables inside a document [9, 10,
13, 5, 27]. Such rules mainly focus on text-block arrange-
ment, horizontal and vertical lines, and item blocks. Rule-
based systems perform well on some documents, but require
extensive human effort to summarize rules and often fail
to generalize to other domains or across heterogeneous ta-
ble formats. Statistical machine learning approaches have
been proposed to fill these gaps. Unsupervised methods use
bottom-up clustering of word segments [17]. Examples of
supervised methods include learning a MXY tree to repre-
sent a table [2], learning a Hidden Markov Model designed
for table structure [32] and learning a SVM to classify tables
using line information [15]. Semi-supervised methods have
also been proposed to leverage unlabelled documents [3].
Recently, data-driven vision based approaches have been

used to detect tables by adapting state-of-the-art object de-
tectors such as Faster-RCNN to table detection [26, 18, 6].

2.2. Cell Structure Recognition

Earliest successful system is the rule-based T-RECS by
evaluating horizontal and vertical structure of words [17].
Wang et al. presented a seven-step process similar to the
X - Y cut algorithm to improve the previous system with
statistical learning approaches from a training corpus [35].
Shigarov et al. decomposed tables by offering configuration
of algorithms, thresholds and rule sets based on PDF meta-
data [29]. Recently, there is a trend from rule-based and sta-
tistical machine learning to deep learning methods in table
recognition. Deep learning approaches include two cate-
gories: (a) End-to-end image-to-sequence models [18, 36];
(b) Object detection based methods [26, 33, 23].

2.3. Existing Datasets

During the development of GTE, we found few exist-
ing datasets with any kind of structure annotation. We re-
quired a dataset with a large number of labelled examples
where each table cell is annotated with its pixel-coordinate
location, logical coordinates inside the table structure (e.g.,
row-span and col-span) and cell text contents. Although the
ICDAR2013 dataset met the annotation requirements, only
254 table examples (96 train and 156 test from the com-
petition) were available, which were from European Union
and US Government reports [8]. TableBank has 145K la-
belled tables, but provides only logical coordinates of cells
in the table [18]. While in the enhanced PubTabNet and
FinTabNet dataset, annotations give detailed information on
the logical structure as well as the location and contents of
each cell, similar to the ICDAR2013 competition. Very re-
cently, a new ICDAR2019 table competition was held with
not PDF files but images of document pages [4]. It contains
in total 80 documents for table structure recognition, in-
cluding both modern and handwritten archival documents.
They do not have a training set for modern documents, only
some for testing. Other existing datasets only contain table
boundary information [28, 31].

3. PubTabNet, FinTabNet
As shown above, there is a lack of large scale datasets

for cell structure recognition. To fill this gap, we designed a
novel method to automatically match PDF and HTML doc-
uments in order to generate a large and comprehensive ta-
ble recognition dataset. We collaborated with the authors
of PubTabNet to enhance the dataset with cell labels, which
was originally sourced from PubMed scientific articles. We
also worked with them to make a subset of PubLayNet and
PubTabNet such that each page has full table and cell infor-
mation, which we call PubXNet. To generate the cell struc-
ture labels, we use token matching between the PDF and

HTML version of each article. From the HTML, we know
the logical structure of the table cells and from the PDF,
we know the cell and table boundary location. PubTabNet
contains more than 568k tables and PubXNet contains more
than 24K pages.

On top of enhancing PubTabNet, we also created FinTab-
Net, which is a large dataset containing complex tables from
the annual reports of the S&P 500 companies. Financial ta-
bles often have very different styles when compared to ones
in scientific and government documents, with fewer graph-
ical lines and larger gaps within each table and more colour
variations. There are more than 70K pages with full ta-
ble bounding box and structure annotations (train/val/test=
61801/7191/7085) and more than 110k tables with cell
bounding boxes (train/val/test= 91596/10635/10656). The
test and validation split are retrieved at the company level
with 50 companies in each and companies were selected to
have a similar number of tables such that the test sets are
not biased towards a particular company.

4. Methods

As shown in Figure 2, our full GTE framework consists
of a series of vision-based neural networks. Each of the
main object detection networks use context from the output
of the other networks. The framework could be adapted to
any kind of object detector. The table boundary network
(GTE-Table) uses a cell detection network by leveraging
the fact that tables must contain at least some cells. The
cell structure recognition network (GTE-Cell) uses table
boundaries from the table boundary network(GTE-Table)
and table-level style information (Attributes Net).

4.1. GTE-Table

In the training stage, besides the regression and classifi-
cation loss, we add a piecewise constraint loss. It penalizes
the detection probability of unrealistic tables when consid-
ering cell locations. This novel cell constraint based loss
function may be added to any detection network. We for-
malize the terminologies of this section here. We make
the following definitions in Fig. 3. We used the guided
cell network to generate a set of cell bounding box(es)
Bcells = {bcell,i|i}. The cells are detected by a simpler
non-hierarchical version of our GTE-Cell network that is
trained on only original full-page document pages, without
knowing the location of the tables. Given Bcells, we define
two Boolean operators where inputs are an inner box(bibox)
and outer box(bobox), which define the boundaries of the

Figure 2: Our full GTE Framework consists of several networks for table (GTE-Table) and cell (GTE-Cell) boundary de-
tection. The input is an image form of a document page for both sub-frameworks, but note GTE-Cell depends on table
boundaries output by GTE-Table to generate cell structures for each specific table.

Figure 3: Definition of Operators used in Sec 4.2.

mask input area:

C(bibox, bobox) =
{
SLC(M(Bcells), bobox)

− SLC(M(Bcells), bibox)
}

<
{
α · (A(bobox)−A(bibox))

}

D(bibox, bobox) =
{
SLC(M(Bcells), bobox)

− SLC(M(Bcells), bibox)
}
> 0

Where C is true if the area covered by the cells between
bobox and bibox is at most α times the area of the bobox minus
area of the bibox. D is true if any cells exist in the area
between bibox and bobox. The penalty indicator I(btbl) is
defined as

I(btbl) =C((0, 0, 0, 0), btbl) ∨ C(S(btbl, µ1), btbl)∨
D(S(btbl, µ2), S(btbl, µ3)) ∨ C(U(btbl, µ4), btbl)

The penalty indicator is true when any of the following con-
ditions are true:

• C((0, 0, 0, 0), btbl) : Less than α of the whole table has
cells.

• C(S(btbl, µ1), btbl) : Less than α of the area just inside
the table has cells.

• D(S(btbl, µ2), S(btbl, µ3)): The area just outside of
the table contains any cells.

• C(U(btbl, µ4), btbl): Less than α of the area at just in-
side the bottom of the table has cells.

Then the constraint loss(CL) is
Btbl∑

btbl

I(btbl)P (btbl) + γ1(1− I(btbl))(1− P (btbl)) (1)

where P (·) is the table detection probability function. We
choose µ1 = −5, µ2 = 5, µ3 = 10, µ4 = −10, α = 1/8,
γ1 = 1/10 in our experiments. Additionally, one of the
input image channels to the table network is replaced with
a mask generated from the prediction of cells to further aid
training.

In the inference stage, instead of the widely used
non-max suppression, our ranking of proposed bounding
boxes not only consider detection probabilities, but also
the presence of cells inside and outside the table. We
define Constraint Coefficient(CCoef) for each bounding
box, whereCCoef(btbl) = SLC(M(Bcell), S(btbl, µ5))−
SLC(M(Bcell), btbl) − γ2 · (SLC(M(Bcell), btbl) −
SLC(M(Bcell), S(btbl, µ6))). For each boundary of the
table bounding box, we calculate the amount of cells just

outside subtracted by the amount of cells just inside the ta-
ble. For any pair of bounding boxes bi, bj overlapped with
each other more than δ%, and |P (bi) − P (bj)| < ε, we
discard the bounding box with higher CCoef . We choose
µ5 = −20, µ6 = {0.25 ∗ (x2 − x1), 0.25 ∗ (y2 − y1)},
γ2 = 0.1, ε = 0.1, δ = 25 in our experiments. The hyper-
parameters are described in more details in Supplemental
material. Here it suffices to say that they are chosen, in
a straightforward way, based on characteristics of tables in
typical documents; to give some intuition of the concrete
values, in the above, a value of 5 reflects half of the height
of a character (10 pixels), while 20 corresponds to two lines
of text.

4.2. GTE-Cell

Tables in the real world often adhere to a global style
that determines the rules and meanings of its components.
For example, there are some tables that have visible verti-
cal and horizontal ruling lines for every row and column,
easily defining cell boundaries. However, there are other
styles that have no ruling lines or only intermittent breaks.
In such a case, a model that only looks at its local surround-
ings, such as most object detection networks, would not be
able to ascertain whether a ruling line represents the start of
a new cell. Empirically, we also found that mixing different
styles of tables in training worsens model performance on
some data, even though this used more training data. In our
framework, we first train an attribute network aimed at clas-
sifying the presence of vertical graphical ruling lines in the
table. The output of this network determines which of two
cell detection networks is used, which were trained with dif-
ferent augmentation schemes. The “no lines” scheme erases
all existing graphic lines and “full boundaries” adds in ver-
tical and horizontal boundaries for every row and column
at the median point between cells. The network specialized
on tables with graphical lines is trained on the original plus
“full boundaries” data while the other network is trained on
the original and all augmentations.

To convert the bounding box output into a logical struc-
ture, we first align cell boxes to text lines as extracted
from the PDF. Then, we determine the number of rows and
columns by sampling in the vertical and horizontal direc-
tions, respectively. Before sampling in the vertical direc-
tion to determine the number of rows, we expand the left
and right edges of cells while it is not overlapping with ex-
isting cells, to account for rows with missing cells. If there
are graphical lines available, we ensure that the number of
rows or columns detected are at least equal to the number
of unique inner lines plus one. Then, we infer the verti-
cal and horizontal alignments of the table by which edge
of the cell box has the best alignment with other cells. We
use K-means clustering on cell bounding box coordinates
to define row and column locations. Then, we assign row

and column positions to each cell based on their box loca-
tions, merging cells when necessary. Finally, we leverage
the fact that cell content generally starts with a capital let-
ter. Therefore, cells that start with a small case is likely a
case of over-splitting. We merge these cells with the cell
above. Also, we perform some post-processing steps. This
includes assigning locations to leftover text boxes that were
not overlapping with any detected cells and we split cells
in certain cases when there are gaps nearby. Before pro-
ducing the final logical structure of each cell in the table,
we increase the row and column span of cells when the text
box intersects with neighboring empty rows or columns as
this is likely a hierarchical cell spanning multiple rows or
columns. Our clustering-based algorithm is more efficient
than a greedy or exhaustive search method that selects each
cell sequentially. As well, many of our steps are designed
to be robust against cell detection errors. For more details,
see Algorithm 1 in the supplementary material.

5. Experiments

5.1. Datasets

We perform extensive experiments on both the table de-
tection and cell structure recognition tasks in the widely
used ICDAR2013 table competition [8]. This dataset is
considered as a standard benchmark dataset in PDF table
extraction. It contains 96/156 tables for training/testing col-
lected from European Union and US Government reports.
Since the in-domain dataset is very small, pretraining the
model on other datasets is required. For table detection, we
pretrain the model on the combination of TableBank([18])
and PubTabNet; For cell structure recognition, we pretrain
the model on PubTabNet.

We also conduct additional experiments on ICDAR2019
as well as the PubTabNet and FinTabNet datasets.

5.2. Evaluation Metrics

For ICDAR2013, We use the official evaluation script of
ICDAR2013 table competition [8]. For ICDAR 2013 table
detection, the metrics are character-level Recall (Rec.), Pre-
cision (Prec.) and F1-measure op(F1), averaged per docu-
ment, along with Purity (Pu) and Completeness (Cpt). Con-
sider N is the set of test documents, then they are defined
as follows:

Pu =
∑

n∈N

bRec(n)c Cpt =
∑

n∈N

bPrec(n)c

For cell structure recognition, the metrics are precision,
recall and F1-measure for generated adjacency matrices.
Additional details are available in [7] and [8].

(a) (b) (c) (d)

Figure 4: (a) Correct detection (b) Partial under-detection (c) Mis-detection (d) Over-detection

Table 1: Table Detection Percent Results on ICDAR2013. We also provide purity and completeness scores when available.
There are a few other methods[30, 14, 16] that could not be compared directly in this table as they are using a measure based
on Intersection-over-union(IOU) where the IOU threshold=0.5. Our method achieves F1=0.997 by this measure, which is
higher than reported by the other methods. We observe the character-based measure computed by the competition script
better measures table quality than a measure based on IOU threshold of 0.5, since the latter counts as correct for predictions
capturing only half of a ground-truth table which have little practical use. Also, [23, 26] used different train/test split from
the original competition without publishing their split and so cannot be compared directly. For brevity, we present only the
highest performing method in each category. The full table is in the supplement

Category Method Input type Recall Precision F1 Cpt Pu
Commercial Softwares FineReader PDF 99.71 97.29 98.48 142 148

Non Deep Learning Nurminen[8] PDF 90.77 92.10 91.43 114 151
Deep Learning TableBank [18] Image / / 96.25 / /

Ours GTE Image 99.77 98.97 99.31 147 146

Ablation Detection-Base Image 84.64 90.65 84.65 68 97
GTE-Table-Sep Image 95.71 98.18 95.71 140 150

5.3. Experimental Setup

5.3.1 Training and Inference Details

We leverage TableBank and PubTabNet table boundary to
pretrain the object detection network before fine-tuning
on the ICDAR train set for the table boundary detec-
tion task[20]. We use the architecture of RetinaNet with
Resnet50-FPN backbone as our base object detection model
[20, 19]. We use resolution of 643 by 900 for tables, and
965 by 1350 for cells, as cells need higher resolutions to
distinguish. We redesigned the feature pyramid network for
tables and cells such that there are fewer detection layers
than a typical object detection network but this allows for
finer-grained anchor boxes for cells and larger object boxes
for tables without sacrificing computational efficiency. We
add anchors with aspect ratio 0.1 and 0.25 for each feature
map to catch commonly appearing wide tables and cells.
In the cell network, since the objects are really dense, we

use anchors of sizes 0.5, 0.7, 1, 1.2, 1.6 of the set of as-
pect ratio anchors. We add additional smaller scale anchors
because many cells are much smaller than the anchors. In
the table network, we run each page at test time at multi-
ple zoom scales to help improve detection of abnormally
small or large tables. All the object detection models in
GTE are initialized with the parameters pretrained on MS
COCO dataset [21].

5.4. Experimental Results

5.4.1 Table Detection

As reported in Table 1, GTE-Table achieves the best
character-level F1 measure among all methods. Although
FineReader slightly outperforms GTE on purity, the higher
F1-measure for GTE indicates GTE produces higher qual-
ity boundaries closer to ground-truth. Since the purity met-
ric penalizes all incorrect table boundaries equally, it does
not provide “partial-credit” for almost correct answers in

the same manner as character F1-measure for cases where
the predicted boundary only includes a few extra charac-
ters. Figure 4 shows some correctly detected table bound-
aries as well as some failures. In general, we see three types
of errors, partial under-detection, where some parts of the
ground truth table is missing, partial over-detection, where
some text outside of the ground truth is mistakenly included
and mis-detection, where a non-table entity such as a chart
was misidentified as a table. We do not see any cases of
table non-detection in our ICDAR2013 test results and only
one case of mis-detection. Overall, most partial detections
are only missing or adding one or two extra lines, such as a
short captions in the table.

5.4.2 Table Detection Ablation Study
As shown by the additional experimental results in Table 1,
the base detection network trained to perform the cell and
table detection task simultaneously (Detection-base) per-
forms far worse than the more specialized networks. There
are two main reasons behind this. First, TableBank data
cannot be leveraged when pretraining the networks because
it lacks cell bounding boxes annotations [18] so it is only
trained of PubTabNet and finetuned on ICDAR training
data. Second, tables and cells are of two completely dif-
ferent scales where it is hard to choose an appropriate res-
olution to generate anchors fitting the two scales. On the
other hand, it is still important for the cell network and ta-
ble network to leverage each other’s information, as shown
by the nearly 3% boost in F1 accuracy as compared to the
regular object detection losses (GTE-Table-Sep) that do not
use information from other networks.

5.4.3 Cell Structure Recognition

Figure 5: Partial cell detections with correct cell structure

As reported in Table 2, GTE-Cell outperforms all previ-
ous methods and commercial software in all metrics even
without using any PDF encodings (ruling lines, rendering

techniques, etc). All results are from cell detection on out-
puts produced from table detection by each framework, not
the ground truth table. When analyzing the qualitative re-
sults in Figure 5, we see cell boundary detection often gen-
erates a detection box that is too short for very long lines of
text. This is a key limitation of the anchor-based object de-
tection system, which has difficulties with aspect ratios dif-
fering greatly from ones in the configuration. As well, in the
case of tables without graphical lines at every row and col-
umn, the model may mistakenly merge multiple cells into
one. In many cases, our post-processing boundary to struc-
ture algorithm is robust to some of these mistakes are still
able to generate a correct or nearly correct structure out-
put. We see three main types of detection errors that can
lead to incorrect structure output. There are overmerged cell
detection, where two or more cells are incorrectly merged
together, oversplit cell detection, where one cell has been
incorrectly split into multiple cells and cell non-detection,
where there is no predicted bounding box that includes such
a cell. These errors can lead to a number of inaccuracies in
the boundary to cell structure process, including incorrect
number of rows and columns, alignment and of course final
cell location assignment as well. Examples of such errors
are in the supplementary material.

5.4.4 Cell Structure Ablation Study

Table 2: Cell Structure results on ICDAR2013 show that
GTE improves previous state-of-the-art in cases where the
ground truth table border (GT?) was and was not used.
For brevity, we are only presenting the highest performing
method in each category. The full table is in the supplement.

Method GT? Rec. Prec. F1
Nurminen[8] N 80.78 86.93 83.74

GTE N 92.72 94.41 93.50
Tensmeyer[33] Y 94.64 95.89 95.26

GTE Y 95.77 96.76 96.24
Detection-Base Y 76.66 80.63 78.10

GTE-Cell-Style-Mix Y 89.78 89.30 89.43-no-pt
GTE-Cell-Style-Mix Y 92.39 94.20 93.15

GTE-Cell-Border Y 91.60 93.67 92.48

To analyze our GTE-Cell network further, we compare
the several variations in Table 2 using ground truth table
borders. Firstly, the baseline detection network (Detection-
Base) that performs both cell and table detection has very
poor recall and precision. For networks specialized for cell
detection, we see that the model pretraining on the Pub-
TabNet dataset gives a boost when compared to GTE-Cell-
Style-Mix-no-pt. We also test each of the sub detection
networks (GTE-Cell-Style-Mix for the network trained on

all augmentations and GTE-Cell-Border trained on origi-
nal and graphical line augmentations). The full hierarchi-
cal model GTE-Cell-Hierarchical performs better than both
individual sub-models, showing that it is indeed helpful to
first determine the style of the table and then use the model
trained on data most similar to it. Out of 156 total test ta-
bles in ICDAR2013, there are 108 with at least some verti-
cal graphical lines (69.23%). To note, our attributes network
(graphical line table classifier) was correct in 123 out of 156
tables (78.84%). The errors generally come from very small
tables or tables with vertical graphical lines that only span
the header, which is an ambiguity also present in the train-
ing data. To help mitigate this error, during the row and
column sampling step, we keep track of the standard devi-
ation of the sampling points. If this value is high, it likely
indicates that the cell detection model used was not suitable
for the given table as tables tend to have similar number of
columns and rows throughout, thus we would then use the
alternate cell model.

5.4.5 Experiments with Additional Datasets

To demonstrate the robustness of our network on more com-
plex tables and ones outside of the training data domain,
we tested the same model on ICDAR2019, PubTabNet, and
FinTabNet (Table 3). For ICDAR2019 table border task
(Table 4), our score is comparable to the top method. How-
ever, it can be difficult to really differentiate as we found
that many of our table detections are correct but the anno-
tations themselves are inconsistently including or exclud-
ing whitespace. Therefore, we believe that the IOU=0.9
measure is not reliable without determining the amount of
text correctly included. We also adapt our model output for
task B2 for modern documents (trained on FinTabNet as no
training data is provided) to demonstrate our full recogni-
tion system and we show significant improvements to both
the competition top-performer as well as more recent re-
sults(Table 5). We believe that the IOU at lower thresholds
is a more accurate measure for this task similar to our rea-
soning for table border as we found that many of our struc-
ture is exactly correct when looking at the text extracted
but is shown as 0 at IOU=0.9 as the small text boxes are a
bit shifted from the label without cutting off any text so we
show results for IOU=0.1 as well. Examples of this ambi-
guity is displayed in the supplement.

For PubTabNet and FinTabNet data, we use TEDS scor-
ing (see details in [36]) to be consistent with the original
PubTabNet paper. However, these numbers are not directly
comparable as our results are on the PDFs from the valida-
tion set. The test set has not been made available. Addi-
tionally, we noticed that the original dataset inconsistently
included bolding and italics that are not in the original table
image, we therefore modified the original evaluation script

to ignore these styling tags. Nevertheless, our TEDS of
93.01 compares well to the original score of 88.38. We
also show good table and structure recognition scores on
our new FinTabNet dataset both in cases where the model
was and was not finetuned. It performs much better than
the detection-base, showing that our model improvements
transfer to other document domains.

Table 3: Table detection and structure results on scientific
paper PubTabNet (PTN) and out-of-domain financial filings
FinTabNet (FTN) before and after finetuning (FT?).

Dataset Method Task FT? Table F1 TEDS

PTN GTE Structure Y NA 93.01

FTN Det-Base Table N 81.17 NA
FTN GTE Table N 89.97 NA
FTN GTE Table Y 95.29 NA

FTN Det-Base Structure N NA 41.57
FTN GTE Structure N NA 87.14
FTN GTE Structure Y NA 91.02

Table 4: Table detection results ICDAR 2019 competition.

Method IOU = 0.8 IOU = 0.9 Weighted F1P R P R
NLPR-PAL [4] 93 93 86 86 93
TableRadar[4] 95 94 90 89 94

GTE 96 95 90 89 94

Table 5: Cell structure results for ICDAR 2019 competition
Task B2-Modern.

Method IOU Weighted F10.1 0.5 0.6
NLPR-PAL [4] - 36.5 30.5 20.6

CascadeTabNet[23] - 43.8 35.4 23.2
GTE 77.5 54.8 38.5 24.8

6. Conclusion and Future Work
In summary, we have demonstrated a vision based table

extraction framework with state-of-the-art results. It can
perform the full pipeline of table recognition, from docu-
ment to table structure, which can be used easily for down-
stream analysis. Our framework leverages the global vi-
sual context of tables, including the style and rules in the
relationship between cells and tables. As well, we have
released the enhanced PubTabNet dataset and will release
FinTabNet, which we hope will help others using data hun-
gry methods to tackle table-related problems. Our vision
based method is very easily merged with Optical Character
Recognition (OCR) methods to perform table recognition
fully from images.

References
[1] D. Burdick, M. Danilevsky, A. V. Evfimievski, Y. Katsis, and

N. Wang. Table extraction and understanding for scientific
and enterprise applications. Proceedings of the VLDB En-
dowment, 13(12):3433–3436, 2020.

[2] F. Cesarini, S. Marinai, L. Sarti, and G. Soda. Trainable ta-
ble location in document images. Object recognition sup-
ported by user interaction for service robots, 3:236–240
vol.3, 2002.

[3] M. Fan and D. S. Kim. Table region detection on large-
scale PDF files without labeled data. CoRR, abs/1506.08891,
2015.

[4] L. Gao, Y. Huang, H. Déjean, J.-L. Meunier, Q. Yan, Y. Fang,
F. Kleber, and E. Lang. Icdar 2019 competition on table de-
tection and recognition (ctdar). In 2019 International Con-
ference on Document Analysis and Recognition (ICDAR),
pages 1510–1515. IEEE, 2019.

[5] B. Gatos, D. Danatsas, I. Pratikakis, and S. J. Perantonis.
Automatic table detection in document images. In ICAPR,
2005.

[6] A. Gilani, S. R. Qasim, M. I. Malik, and F. Shafait. Ta-
ble detection using deep learning. 2017 14th IAPR Inter-
national Conference on Document Analysis and Recognition
(ICDAR), 01:771–776, 2017.

[7] M. C. Göbel, T. Hassan, E. Oro, and G. Orsi. A methodol-
ogy for evaluating algorithms for table understanding in pdf
documents. In ACM Symposium on Document Engineering,
2012.

[8] M. C. Göbel, T. Hassan, E. Oro, and G. Orsi. Icdar 2013 table
competition. 2013 12th International Conference on Docu-
ment Analysis and Recognition, pages 1449–1453, 2013.

[9] E. J. Green and M. S. Krishnamoorthy. Recognition of tables
using grammars. 1995.

[10] Y. Hirayama. A method for table structure analysis using dp
matching. Proceedings of 3rd International Conference on
Document Analysis and Recognition, 2:583–586 vol.2, 1995.

[11] J. Hoffswell and Z. Liu. Interactive repair of tables extracted
from pdf documents on mobile devices. In CHI, 2019.

[12] Y. Hou, C. Jochim, M. Gleize, F. Bonin, and D. Ganguly.
Identification of tasks, datasets, evaluation metrics, and nu-
meric scores for scientific leaderboards construction. arXiv
preprint arXiv:1906.09317, 2019.

[13] J. Hu, R. S. Kashi, D. P. Lopresti, and G. T. Wilfong.
Medium-independent table detection. In Document Recog-
nition and Retrieval, 1999.

[14] Y. Huang, Q. Yan, Y. Li, Y. Chen, X. Wang, L. Gao, and
Z. Tang. A yolo-based table detection method. In 2019 Inter-
national Conference on Document Analysis and Recognition
(ICDAR), pages 813–818, 2019.

[15] T. Kasar, P. Barlas, S. Adam, C. Chatelain, and T. Paquet.
Learning to detect tables in scanned document images using
line information. In 2013 12th International Conference on
Document Analysis and Recognition, pages 1185–1189, Aug
2013.

[16] I. Kavasidis, S. Palazzo, C. Spampinato, C. Pino, D. Gior-
dano, D. Giuffrida, and P. Messina. A saliency-based convo-

lutional neural network for table and chart detection in digi-
tized documents. ArXiv, abs/1804.06236, 2018.

[17] T. Kieninger and A. Dengel. The t-recs table recognition and
analysis system. In Document Analysis Systems, 1998.

[18] M. Li, L. Cui, S. Huang, F. Wei, M. Zhou, and Z. Li. Table-
bank: Table benchmark for image-based table detection and
recognition. ArXiv, abs/1903.01949, 2019.

[19] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and
S. J. Belongie. Feature pyramid networks for object detec-
tion. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 936–944, 2016.

[20] T.-Y. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Fo-
cal loss for dense object detection. 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2999–3007,
2017.

[21] T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Gir-
shick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014.

[22] P. Pasupat and P. Liang. Compositional semantic parsing on
semi-structured tables. In ACL, 2015.

[23] D. Prasad, A. Gadpal, K. Kapadni, M. Visave, and K. Sultan-
pure. Cascadetabnet: An approach for end to end table detec-
tion and structure recognition from image-based documents.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 572–573,
2020.

[24] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster r-cnn:
Towards real-time object detection with region proposal net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39:1137–1149, 2015.

[25] M. Rotmensch, Y. Halpern, A. Tlimat, S. Horng, and D. Son-
tag. Learning a health knowledge graph from electronic med-
ical records. Scientific reports, 7(1):1–11, 2017.

[26] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed.
Deepdesrt: Deep learning for detection and structure recog-
nition of tables in document images. 2017 14th IAPR Inter-
national Conference on Document Analysis and Recognition
(ICDAR), 01:1162–1167, 2017.

[27] F. Shafait and R. Smith. Table detection in heterogeneous
documents. In Document Analysis Systems, 2010.

[28] A. Shahab, F. Shafait, T. Kieninger, and A. Dengel. An open
approach towards the benchmarking of table structure recog-
nition systems. In Document Analysis Systems, 2010.

[29] A. O. Shigarov, A. A. Mikhailov, and A. Altaev. Con-
figurable table structure recognition in untagged pdf docu-
ments. In DocEng, 2016.

[30] S. A. Siddiqui, M. I. Malik, S. Agne, A. Dengel, and
S. Ahmed. Decnt: Deep deformable cnn for table detection.
IEEE Access, 6:74151–74161, 2018.

[31] N. Siegel, N. Lourie, R. Power, and W. Ammar. Extracting
scientific figures with distantly supervised neural networks.
In JCDL, 2018.

[32] A. C. e. Silva. Learning rich hidden markov models in docu-
ment analysis: Table location. In Proceedings of the 2009
10th International Conference on Document Analysis and
Recognition, ICDAR ’09, pages 843–847, 2009.

[33] C. Tensmeyer, V. I. Morariu, B. Price, S. Cohen, and T. Mar-
tinez. Deep splitting and merging for table structure decom-
position. In 2019 International Conference on Document
Analysis and Recognition (ICDAR), pages 114–121. IEEE,
2019.

[34] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and
tell: A neural image caption generator. 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3156–3164, 2014.

[35] Y. Wang, I. T. Phillips, and R. M. Haralick. Table struc-
ture understanding and its performance evaluation. Pattern
Recognition, 37:1479–1497, 2004.

[36] X. Zhong, E. ShafieiBavani, and A. J. Yepes. Image-
based table recognition: data, model, and evaluation. arXiv
preprint arXiv:1911.10683, 2019.

1 Visualization of different structure format

<tabular><tr><cell_y></tr><tr><cell_y><cell_y></tr></tabular>TableBank Structure

1
2 3

<table><cell start-row=0 start-col=0 end-row=0 end-col=1>
<bounding-box x1=10 x2=90 x3=10 x4=30><content>’1’</content></cell>
<cell start-row=1 start-col=0 end-row=1 end-col=0>
<bounding-box x1=10 x2=50 x3=30 x4=50><content>’2’</content></cell>
<cell start-row=1 start-col=1 end-row=1 end-col=1>
<bounding-box x1=50 x2=90 x3=30 x4=50><content>’3’</content></cell></table>

ICDAR2013 Structure

Figure 1: TableBank versus ICDAR2013 structure annotations

2 Experimental Details

2.1 GTE-Table Network

We make a few changes to the original RetinaNet model in GTE-Table. We add anchors with aspect ratio {0.1, 0.25} to each
feature map for wide tables. The input image size is 900 ∗ 643.

2.2 GTE-Cell Network

The GTE-Cell Network is composed of a line classifier network at the top of the hierarchy and two object detection models
that specialize on different styles of tables. The graphic line classifier network is a ResNet50 model with a binary classifier
on top. This network is first pretrained with the attributes derived from SD-Tables dataset and then fine-tuned on the
ICDAR train dataset. The ground truth data is derived from the presence of nearby vertical graphical lines (as detected by
a PDF parser) for each cell. We make the following changes to the original RetinaNet model in GTE-Cell for cell object
detection. Since the scale of cell is generally small, we use pyramid levels P3 and P5. We find that skipping P4 allows
us to add additional anchors while keeping a similar level of computational efficiency. We add anchors with aspect ratio
{0.1, 0.25} to each feature map to better detect very wide cells. For denser scale objects, at each level we use anchors of sizes
{0.5, 0.7, 1, 1.2, 1.6} of the set of aspect ratio anchors. We add additional smaller scale anchors because the majority of cells
are much smaller than the anchors generated from P3. The input image size is 965 ∗ 1350.

2.3 Hyper-parameter Selection

For joint training, our hyper-parameters are selected from characteristics of the ICDAR training data. On average, the height
of a character is 10 pixels. We wanted to check the text density of tables just inside and just outside of the table; we chose
5 pixels (or half a character height) for this purpose. As a result, we chose µ1 = 5 and µ2 = 5. We also chose α = 1/8 (the
density threshold) as we calculated the cell density of tables in the training set and found that the value at the lower end
of the density scale (5th percentile) was around 1/8. We did not select the minimum (which was around 0.1) in case there
are outliers in the training set. Finally, γ1 = 1/10 in Eq.?? gives less penalty to false negative bounding boxes to better
reflect the proportion between false positive and false negative bounding boxes (as we found that an equal penalty caused
the iterative training to become unstable very quickly).

For inference time, we found there may be overlapping tables that can be quite different in shape while having similar
confidence levels. Thus, we choose a set of parameters (µ5, µ6, γ2, ε, δ) to prioritize tables with the most tabular character-
istics. In particular, we prioritize tables not having any cells within 2 lines of text outside the table (µ5 = −20 pixels) that
are not contained already by other non-overlapping tables, while having many cells just inside the table, up to 0.25 of area
(i.e., µ6 = {0.25 ∗ (x2− x1), 0.25 ∗ (y2− y1)} pixels).

3 Cluster-based Algorithm for Generating Cell Structure

4 Additional cell detection examples

See Figures 2 and 3.

1

ar
X

iv
:2

00
5.

00
58

9v
2

 [
cs

.C
V

]
 2

 D
ec

 2
02

0

Algorithm 1 Cell Boundary to Structure Cluster Algorithm

1: procedure Preprocess Cell Bounding Boxes
2: for b in cellboxes do
3: if not INTERSECT(b, textboxes) then
4: DELETE b
5: if INTERSECT(b, textboxes) then
6: b.bounding box = MAX(b.bounding box, textbox.bounding box)

7: if INTERSECT(b, cellboxes) then
8: b.bounding box = MAX(b.bounding box, cellbox.bounding box)

9: procedure Assign Cell Row and Column Location
10: while not INTERSECT(b, cellboxes) do
11: b.x1← b.x1− 5
12: b.x2← b.x2 + 5

13: for b in cellboxes do
14: numcol ← MAX(CNT INTERSEC(b.midx, cellboxes), numcol)
15: numrow ← MAX(CNT INTERSEC(b.midy, cellboxes), numrow)

16: alignmentx, alignmenty ← GET XY ALIGNMENT(cellboxes)
17: for b in cellboxes do
18: b.alignx ← ALIGN DATA(b.x1, b.midx, b.x2, alignmentx)
19: b.aligny ← ALIGN DATA(b.y1, b.midy, b.y2, alignmenty)

20: colposx ← KMeans(cellboxes.alignx, numcol)
21: rowposx← KMeans(cellboxes.aligny, numrow)
22: for b in cellboxes do
23: b.col← ALIGN TO COL(b.alignx, colposx, alignmentx)
24: b.row ← ALIGN TO ROW(b.aligny, colposy, alignmenty)

25: procedure Assign Text Lines to Table
26: for b in textboxes do
27: if INTERSECT(b, cellboxes) then
28: b.col← cellbox.col
29: b.row ← cellbox.row
30: else
31: b.col← ALIGN TO COL(b.alignx, colposx, alignmentx)
32: b.row ← ALIGN TO ROW(b.aligny, colposy, alignmenty)

33: procedure Split Cell Text Lines When Neighbor is Empty
34: for r in numrow do
35: for c in numcol do
36: if IS EMPTY(r, c) then
37: neighbortext ← GET CELLS(r − 1, c) + GET CELLS(r + 1, c)
38: for b in neighbortext do
39: b.col← ALIGN TO COL(b.alignx, colposx, alignmentx)
40: b.row ← ALIGN TO ROW(b.aligny, colposy, alignmenty)

2

Figure 2: Additional cell boundary to structure examples

5 Detailed ICDAR13 Results

See Tables 1 and 2.

Table 1: ICDAR 2013 table detection results with additional comparisons

Category Method Input type Recall Precision F1 Cpt Pu
Commercial Softwares FineReader PDF 99.71 97.29 98.48 142 148

OmniPage PDF 96.44 95.69 96.06 141 130
Nitro PDF 93.23 93,97 93.60 124 144

Acrobat PDF 87.38 93.65 90.40 110 141
Non Deep Learning ICST-Table[?] PDF 26.97 74.96 39.67 28 41

TableSeer[?] PDF 33.35 88.36 48.64 0 29
Nurminen[?] PDF 90.77 92.10 91.43 114 151
TABFIND[?] PDF 98.31 92.92 95.54 149 137
pdf2table[?] PDF 85.30 63.99 73.13 100 94
TEXUS[?] PDF 90.23 88.32 89.26 114 138

Deep Learning Hao[?] Image 97.24 92.15 94.63 / /
DeepDeSRT[?] Image 96.15 97.40 96.77 / /
TableBank[?] Image / / 96.25 / /

Ours GTE Image 99.77 98.97 99.31 146 146

3

Table 2: Cell Structure results on ICDAR2013 with additional comparisons

Category Method GT Border? Rec. Prec. F1
Commercial Softwares FineReader N 88.35 87.10 87.72

OmniPage N 83.80 84.60 84.20
Nitro N 67.93 84.59 75.35

Acrobat N 72.62 81.59 76.85
Academic Systems Nurminen[?] N 80.78 86.93 83.74

TEXUS[?] N 84.23 81.02 82.59
KYTHE[?] N 48.11 57.40 52.20
pdf2table[?] N 59.51 57.52 58.50
TABFIND[?] N 70.52 68.74 69.62

Ours GTE N 92.72 94.41 93.50
Academic Systems Tensmeyer[?] Y 94.64 95.89 95.26

Nurminen[?] Y 94.09 95.12 94.60
Khan[?] Y 90.12 96.92 93.39

TABFIND[?] Y 64.01 61.44 62.70
Ours GTE Y 95.77 96.76 96.24

6 ICDAR19 evaluation metric ambiguities

See Figure 4.

4

Figure 3: Example Cell detection errors

(a) Correct cell detection (b) Oversplit cell detection

(c) Missing Cell detection

(d) Overmerged cell detection

5

Figure 4: The detected cell bounding boxes in the following images seem to be correct by eye and include all characters in
the ground truth cell but has zero matches at IOU=0.9.

6

