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Abstract

Estimating 3D hand poses from a single RGB image is
challenging because depth ambiguity leads the problem ill-
posed. Training hand pose estimators with 3D hand mesh
annotations and multi-view images often results in signif-
icant performance gains. However, existing multi-view
datasets are relatively small with hand joints annotated by
off-the-shelf trackers or automated through model predic-
tions, both of which may be inaccurate and can introduce
biases. Collecting a large-scale multi-view 3D hand pose
images with accurate mesh and joint annotations is valu-
able but strenuous. In this paper, we design a spin match
algorithm that enables a rigid mesh model matching with
any target mesh ground truth. Based on the match algo-
rithm, we propose an efficient pipeline to generate a large-
scale multi-view hand mesh (MVHM) dataset with accu-
rate 3D hand mesh and joint labels. We further present
a multi-view hand pose estimation approach to verify that
training a hand pose estimator with our generated dataset
greatly enhances the performance. Experimental results
show that our approach achieves the performance of 0.990
in AUCy9.s0 on the MHP dataset compared to the previous
state-of-the-art of 0.939 on this dataset. Our datasset is
available at https://github.com/Kuzphi/MVHM.,

1. Introduction

Estimating 3D hand poses from images has attracted in-
creasing attention because it is essential to a wide range of
applications such as human-computer interaction (HCI) [1,
27, 126]], virtual reality (VR) [12l [18], augmented reality
(AR) [7ll, medical diagnosis [20], and sign language un-
derstanding [43]. Although extensive research efforts have
been made on this research topic for decades, there are still
several unsolved challenges. One of the most crucial chal-
lenges is to handle the issue of depth ambiguity present in
single view 3D hand pose estimation.

Conventional studies mainly focus on inferring 3D hand
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Figure 1. Our core idea. We build a synthetic dataset from a multi-
view perspective, e.g., rendering hand images from different a an-
gles. With the aid of this dataset, a single-view method takes the
image from each view and generates a possible hand pose can-
didate. We proposed a multi-view method takes different single-
view predictions as input and predicts the final result.

poses from either depth or RGB images directly. To ad-
dress the problems caused by depth ambiguity, Some pre-
vious studies [, |19, |8, 9] want to address this problem by
leveraging depthmap information. These works come up
with several ways to introduce depthmap into the training
procedure, such as making depthmap as intermediate su-
pervision [19] or using depth regularizer [S]. On the other
hand, recent studies [22| [50] point out that imposing 3D
hand shape (mesh) supervision can boost both the perfor-
mance of 3D hand pose and shape estimators. It is clear
that 3D hand shape brings richer hand structure information
than hand keypoints. Furthermore, a preset mesh serves as
a strong prior to reduce the freedom of the hand, therefore
mitigating depth ambiguity. Along this line, several meth-
ods such as [3 2, 145} 251 140, 139} 48l 47, |46]] are proposed.
Despite the potential, the aforementioned methods highly
rely on a preset hand model learned with a large number of
accurate 3D mesh annotations. Hence, a large-scale dataset
with accurate annotations of mesh vertices is in great de-
mand.

Accurate mesh ground truth is hard to be manually an-
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notated in general. The hand mesh annotations in most ex-
isting datasets are often annotated by hand shape estimator
which can be inaccurate because hand mesh estimation it-
self is an even more challenging task. Most existing meth-
ods leveraging mesh information for 3D hand pose estima-
tion are derived based on a single view. However, mere
mesh information is insufficient to address depth ambigu-
ity. Thus, 3D pose estimation still remains ill-posed in these
methods.

The issue of depth ambiguity can be tackled by multi-
view vision according to epipolar geometry. Multi-view
sensing systems can capture hand images from cameras in
different angles and therefore depth information of hands
can be accurately inferred as long as camera parameters are
known. Inspired by the above observations, we aim to build
a large-scale multi-view hand mesh dataset that provides
hand meshes and multi-view hand images simultaneously
for training pose estimators.

In this work, we present an effective mechanism to syn-
thesize 3D hand joint and mesh annotations, and establish
a large-scale multi-view hand mesh (MVHM) dataset. We
acquired a hand mesh model with a rigging system, and 3D
hand ground truth from existing datasets, and a rigged hand
model to match the given ground truth to perform various
gestures. We render the hand model from different angles
to collect multi-view images, as well as the 3D keypoints
and mesh annotations to built MVHM. Then, we determine
if the generated MVHM dataset can be used to improve
3D hand pose estimators. To this end, a multi-view based
approach is developed for inferring 3D hand poses. The
experimental results show that the resultant pose estimator
can be greatly boosted by leveraging the generated MVHM
dataset, and performs favorably against existing methods.
This work makes three major contributions, which are sum-
marized as follows:

1. We propose an effective mechanism for compiling a
large-scale multi-view hand mesh (MVHM) dataset for
3D hand pose estimator training. To the best of our
knowledge, this is the first large-scale hand dataset
with multi-view hand images, accurate mesh annota-
tions, hand joint keypoints labels.

2. We present a multi-view hand pose estimation ap-
proach based on an end-to-end trainable graph convo-
lutional neural network where information from multi-
view images is utilized to predict 3D hand poses.

3. Our proposed approach achieves the state-of-the-art
performance on the benchmark, the MHP dataset, in
both single-view and multi-view settings.

2. Related Work
2.1. RGB based 3D Hand Pose Estimation

RGB cameras are much more widely used than depth
sensors. Estimating 3D hand poses merely from monocu-

lar RGB images are more practical and active in the litera-
ture [15, 110, (19,129} 137, 411 149, 24) 23| [11]. The pioneering
work by Zimmermann and Brox [49] utilizes convolutional
neural networks (CNN) to extract image feature, and feed
camera parameters with these features to a 3D lift network
where depth information is then estimated. Based on [49],
Igbal et al. [19]] leverage depth maps as intermediate super-
vision. Meanwhile, Cai et al. [5] propose a weakly super-
vised approach that reconstructs the depth map and uses it
as a regularizer during model training.

2.2. 3D Hand Mesh Estimation

3D hand pose estimation provides sparse joint locations.
However, many computer vision applications would ben-
efit more from hand shape information than sparse joints.
Therefore, 3D hand mesh estimation, an effective shape
representation, has emerged as an increasingly popular
topic [16} 13} 2, 21} |45]. Most methods [3} 2| 45} 25, 140]
are developed around a pre-defined deformable hand mesh
model called MANO [32]]. Because of the high degree of
freedom and complexity of the hand gesture, searching for
the right hand mesh in such a high dimensional space is
quite challenging. Using this MANO model often relies
on strong prior to constrain the model to only regress low-
dimensional model parameters, and may ignore the high-
dimensional information. Ge et al. [16] argue that mesh is
a graph-structure data, and propose to directly regress 3D
mesh vertices through graph convolutional neural network
(GCN) with a pre-defined mesh graph.

2.3. Multi-View Hand Pose Estimation

Unlike single-view pose estimation, few research efforts
focus on 3D hand pose estimation from multi-view data.
Ge et al. [15] first introduce multi-view CNN to formu-
late it as an estimation problem. Their method assumes that
hand joint locations independently follow 3D Gaussian dis-
tributions, and uses CNN to estimate the mean and variance
of the location distribution of each joint. The main draw-
backs of their method include 1) its inability to train in an
end-to-end manner and 2) its impractical assumption about
the independence among different joint locations. Simon ef
al. [33] propose a multi-view system which is trained to pro-
gressively improve hand keypoints detection. Their method
would work well on fine-tuning a well pre-trained estimator
but could not train a 3D hand pose estimator from scratch.

2.4. 3D Hand Pose Benchmark

There exist extensive research efforts such as [36} 138,135}
42,144,149, 34} 130, 281, 125} 150] on building hand datasets for
3D hand pose estimation. We summarize the publicly avail-
able hand datasets and our dataset in Table [II Most exist-
ing datasets do not contain mesh information, since labeling



Table 1. Comparison between our dataset with publicly available datasets. Auto in field Annotation represents that the annotation is
made by some algorithms and therefore may not be accurate.Mano means the emsh annotaion is fitted by Mano Model

Dataset || RGB Depth Image Type  Resolution  Annotation Dataset Size Multi-View Mesh
ICVL [36] X v real 320 x 320 tracking 18K X X
NYU [38] X v real 648 x 480 tracking 243K X X
MSRA [33] X v real 1920 x 1080  tracking 76K X X
BigHand2.2M [42]] X v real 640 x 480 marker 2.2M X X
STB [44] v v real 640 x 480 manual 36K X X
RHP [49] v v synthetic 640 x 480 synthetic 44K X X
Dexter+Object v v real 640 x 480 manual 3K X X
EgoDexter [30] v v real 640 x 480 manual 3K X X
MHP v X real 480 x 480 auto 80K v X
FreiHand [50] v X real 224 x 224 auto 134K X Mano
InterHand [28]] v X real 512 x 334 auto 2.2M v Mano
Youtube Hand v X real 256 %256 auto 47K X Mano
Ours v v synthetic 256x256 synthetic 320K v v

hand meshes manually is almost infeasible for human anno-
tators.

To address the issue of labor-intensive annotations, re-
cent studies [50} 25} 9] propose semi-automatic ways to la-
bel RGB images. FreiHand (Zimmermann et al. [30]) use
an iterative process where the trained models first make pre-
dictions on the images and then the annotators are asked
to make necessary adjustments. YoutubeHand (Kulon et
al. [25]) run OpenPose [6] to get 2D annotations, upon
which the parameters of the MANO model are regressed.
Thresholding according to confidence scores is applied to
remove those with low confidence, and hence ensures an-
notation quality. Despite the progress on efficiency and ef-
ficacy of labeling RGB images, the accuracy of annotation
relies heavily on the pre-trained models used in the pro-
cess. In addition, these methods rely on the MANO model
as the ground-truth mesh generator, which could lose high-
dimensional information of hands, as mentioned in Sec-
tion 2.2 Compared to existing datasets, our dataset con-
sists of large-scale RGB images and includes a variety of
sequences. In addition, synthetic nature provides 100% ac-
curate annotation for both hand joints and mesh. We make
the first attempt to collect the dataset that provides large-
scale, multi-view training images, thereby enhancing pose
estimator training with a multi-view perspective.

3. Generating Muti-View Dataset

Currently, there exists no dataset providing both large-
scale mesh and multi-view annotations of 3D hands, al-
though many potential applications can benefit from such
a dataset. Therefore, we create a new dataset called Multi-
View Hand Mesh (MVHM) dataset for training multi-view
hand pose estimators. To get accurate mesh and joint anno-

tation, we use a well-made hand model from TurboSquicﬂ

Ihttps://www.turbosquid.com

(a) (b)
Figure 2. An example of hand joint and bone labels and their or-
ders adopted in this work. (a) Joint labels. (b) Bone labels, which
are used by Algorithm [T]during spin matching. (c) A failure case
when directly rigging the hand mesh based on the bone coordi-
nates without using Algorithm[T]

which provides around 2000 mesh vertices as well as an ar-
mature system to form various hand gestures. We render the
images in the open-source software Blendelﬂ

In order to generate images and meshes from different
gestures, we deploy the NYU dataset [38]] which provides
various hand pose and accurate keypoints annotation and
rigged hand bone in our model to match with the given
groundtruth. The hand bone in the rigged system consists of
7 degrees of freedom, 3 for its bone head, 3 for its bone tail,
and 1 for its spin. The first 6 degrees of freedom determine
the location of the bone and the last one represents its orien-
tation. In order to rig the hand joints and the mesh surface
correctly, we need to consider both location and orientation.
Figure 2fc) shows an example of a distorted mesh obtained
when we do not perform orientation match but simply move
the bone location.

For this purpose, we define a bone vector as the differ-
ence between the bone tail and head. Assume u as the bone
vector of the current bone we are working on. We take its

Zhttps://www.blender.org
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Figure 3. Some examples of the MVHM dataset. Column 1 to Column 8 shows the image with 2D annotation from view 1 to view 8§,

Column 9 shows the mesh. Column 10 shows the 3D annotation

adjacent bone’s vector as the spin reference re f. We define
spin sign vector as u X ref X u, and make sure this vector
does not change after matching bone with groundturth. The
detailed algorithm is summarized in Algorithm|[I]

For each ground-truth gesture, we set 8 different camera
positions that are evenly located on a circle within the plane
perpendicular to the palm. All 8 cameras point to the center
of the palm to ensure that the hand locates at the center of
each rendered image. Figure [4] shows the scene when we
render hand images.

To increase the diversity of the collected MVHM, we
randomly change the intensity of the light and global illu-
mination in the blender. In addition, we select some back-
ground scenes from online sources, and randomly use them
as background during our rendering. We render 320, 000
images of resolution 256 x 256 for MVHM construction.

We emphasize that each sample in MVHM comes with
full annotations of 21 hand joint and 2651 mesh vertices.
Following the setting in [49]], each finger is fully repre-
sented by 4 keypoints (Metacarpophalangeal, Proximal in-
terphalangeal, Distal interphalangeal and fingertip), addi-
tionally. Carpometacarpal joints are also labeled in MVHM.
Figure 2Ja) shows a sample of the hand joint labels. In
addition, we also release the hand segmentation mask, the
camera intrinsic matrix, and the optical flow for each sam-
ple. Nevertheless, we in this paper only use the multi-view
and mesh information from the collected MVHM dataset
for hand pose estimator training.

4. Methodology

4.1. Overview

Given an RGB image of a hand I € R *# >3 our goal
is to estimate the 3D joint locations of the hand P; € RF*3,
where W and H denote the image height and width re-
spectively, and K is the number of the hand joints. Recent
studies [16} 3] have demonstrated that using the mesh dis-

tance loss as an intermediate supervision during training can
boost the performance of the learned hand pose estimator.
Inspired by the approach [16], we define a hand mesh as a
bidirectional graph G(V, A), where V is the vertex set and
A is the adjacency matrix. We also assume that V contains
N different elements (i.e., points on the mesh) and our mesh
estimator would predict the 3D locations P,,, € RY*3 for
all vertices in V.

In our single-view approach, we use the stacked hour-
glass as the CNN backbone to extract hand features
from an image. The graph convolution network (GCN) is
applied to estimate the 3D pose and mesh. Figure [5]shows
the architecture of our single-view network, which consists
of three major components: the 2D evidence network, mesh
evidence network, and 3D pose estimator. These compo-
nents are elaborated in the following subsections.

4.2. 2D Evidence Network

The 2D evidence network offers two main functionali-
ties. First, it estimates hand keypoint heatmaps to obtain the
2D hand joint locations. Second, it extracts image features
that then serve as the input to the mesh evidence network.
We denote the estimated heatmaps as H € REXHXW A
shown in Figure 5] the hourglass backbone gives two out-
puts, including the estimated hand joint heatmaps and the



Algorithm 1: Spin matching Algorithm for rigging
hand mesh base on 3D hand pose ground truth

Input:
C is the array of 3D keypoints ground truth that we
want our mesh to match with.
B is the array of hand bones in the rig system. Each
bone has two attributes, head and tail, which
represent the beginning and end location of the
bone.
B and C'is stored in an array whose orders are
shown in Figure [2J(a) and [2|b)
begin
Move BJ0].tail to location C[0] ;
// spin the bone inside the palm
fori € {1,5,9,13,17} do
// bone vector
u < BJ[i].tail - B[i].head;
v < Cl[i] - C[0] ;
adj < i+ 4;
if 7 = 17 then
‘ adj « 1 —4;
end
// reference vector
refo; <—B[adj].tail - B[adj].head;
refyn <—Cladj] - C[0] ;
Move B[i] to match groundturth;
// sign vector
e1 = u X refoy X u;
eg = v X refap X v
Spin B[i] with the angle between e; & es;
end
for i < 1to 21 do
if i mod 4 # 1 then
Move B[i] to match groundturth;
B[i] performs the same spin as B[i-1] ;
end

end

end

extracted features. The ground-truth heatmaps H are ob-
tained by smoothing the keypoint location k" with Gaus-
sian blur. To train the 2D evidence network, we apply the
heatmap loss L} to each hourglass block as supervision.
The heatmap loss is defined by

S K
_ 1 s r7 2
Eh—S*K;;HHk Hyl[;

where S and K denote the number of the hourglass blocks
and keypoints, respectively.
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Figure 5. Overview of our single-view method. Given a single-
view RGB image, the 2D evidence network predicts its heatmap
and outputs the encoded image features. The mesh evidence net-
work takes image features as input and outputs the hand mesh.
Based on the estimated mesh, the 3D pose estimator gives final
hand pose prediction.

4.2.1 Mesh Evidence Network

Our mesh evidence network is built on the basis of spectral
GCN [4]. Given the image features extracted by the 2D
evidence network, our mesh evidence network estimates the
3D hand mesh. A 3D hand mesh is represented by a set of
vertex coordinates P,,, € RV*3 where N is the number of
the vertices in the hand mesh. We represent a hand mesh
as a graph G(V, A), where V is the vertices set, and A is
the adjacency matrix. A; ; is 1 if there is an edge between
vertex ¢ and vertex j, otherwise it is 0.

Specifically, we first normalize the adjacency matrix A
via graph Laplacian operation and obtain a normalized ad-
jacency matrix L = I — D~:AD"z, where D is the
degree matrix of graph G and I is an identity matrix.
Graph spectral decomposition is then used to decompose
the normalized adjacency matrix L as U AU, where A =
diag(A1, Mg, ..., \n) consists of the eigenvalues of the L,
where A\, is the largest eigenvalue of L.

Following [13]], we define the convolution kernel A in
GCN as

S s
A =diag(d_ aidi, . Y idG), )
i=0 i=0

where « is the kernel parameter and S is a pre-set hyper-
parameter used to control the receptive field.
Thus, the GCN convolutional operation is defined by

S
F'=UAU"F0;,=> o, L'F0;, 3)

i=0
where F € RY*Fin and F' € RV >*Fon indicate the input
and output features respectively, and 0; € RFin>*Fou jg train-



uﬂ_.{ Single-view }_ I

Method

N(21) * C(3M)
N(21)* C(4)

N(15) * C(4)

N(4) * C(32)

Method

I
I
} I
h’m_.{ Singloview |__E
|
!
I

”&3__{ Singl;-view }__

Method

N(21) * C(3M)
N(21)* C(4)
N(15) * C(4)

—+ FClayer

— Graph Pool
N(4) * C(32
@*C62 — Graph Convolution

View M

[ N =) J{Nay = oy - N

) ] — + Concatenate

Figure 6. Overview of the multi-view method. The single-view method first predicts the hand pose for each view independently. A graph
U-Net takes the concatenation of these single-view predictions as input, and estimates the final pose estimation. N (-) and C/(+) represent
the number of nodes in the graph and feature size of each node, respectively.

able parameter used to refine the input feature and control
the output channel size.

Since our hand mesh surface is composed of 2561 ver-
tices, it takes a huge computational cost to apply the above
operation to each vertex because the time complexity of
matrix multiplication for L* is O(N?3). Therefore, we uti-
lize the Chebyshev polynomial approximation to reduce the
complexity. The convolutional operation is then defined by

S
F' = oTi(L)e;, )
=0

where T}, (z) is the k' Chebyshev polynomial and L =
2L /Apax — I is used to normalize the input features.

To enable our model to learn both local and global fea-
tures, we adopt a scheme that is used in [13} [16] for gen-
erating hand meshes from coarse to fine. We leverage the
heavy-edge matching algorithm to coarsen the graph by
three different coarsening levels, and record the mapping
between graph nodes in every two consecutive levels. In
the forward pass, our model first constructs the most coarse
hand mesh and then up-samples more nodes from the coarse
graph to the fine graph based on the stored mappings.

At the last layer of the GCN, we set Fy, to 3 to repre-
sent the 3D coordinate vertices. Also, we apply the [5 loss
between the ground-truth mesh and prediction map as the
mesh loss function:

1 _
ﬁm:NHPm_ mH% &)

4.3. 3D Depth Evidence Network

The proposed 3D evidence network infers the depth of
3D hand keypoints P, from the predicted hand mesh P,
by the mesh evidence network. Taking P, as the input, we
adopt a two layers GCN with a similar structure of the mesh
evidence network to predict the pose features. These pose
features are then fed to two fully connected layers to regress

the depth of 3D hand keypoint locations. The corresponding
loss is defined by

1 _
Lq=+|ID - D%, (©)

where D € RX and D € R¥ represent the predicted and
the ground-truth joint depths, respectively.

To infer the 3D hand keypoints, we use non-maximum
suppression to get the 2D coordinates from the estimated
heatmaps. With the estimated 2D coordinates and the depth
map calculated by the 3D depth evidence network, we then
obtain 3D coordinates in the camera coordinate system.
Since the camera parameters are known, we are then able
to infer hand keypoints in the world system.

4.4. Multi-view Method

Based on our single-view method, we propose a simple
yet effective multi-view approach to hand pose estimation.
Figure[6illustrates the core idea of our approach.

Our single-view method predicts the 3D hand pose for
each view independently. We concatenate these view-
specific predictions on their coordinate channel. The con-
catenated prediction serves as the input features to a graph
U-Nets[14] and predicts the final 3D hand keypoints. We
utilize the Lo distance as the loss function in our multi-view
network, i.e.,

1 _
Lo = 7 |1P; = Pyl[f, ™)

where P; and P; represent the predicted and the ground-
truth joint depth, respectively.

5. Experiment Setting

5.1. Datasets for Evaluation

We evaluate our single-view approach on two benchmark
hand pose datasets, including the Stereo Tracking Bench-
mark (STB) Dataset [44] and the Multi-view 3D Hand Pose



Figure 7. Examples of the two hand pose datasets used for eval-
uation. The first row shows images with the annotated hand poses
from the STB dataset while the second row shows those from
the MHP dataset [[17].

(MHP) dataset [17]. The proposed multi-view approach is
evaluated on the MHP dataset. Both the MHP and STB
datasets provide real hand video sequences performed by
different people in various backgrounds. The hand joint an-
notations of the STB dataset are manually labeled while the
annotations of the MHP dataset are obtained by using the
Leap Motion sensor. The MVHM dataset we build is used
in all of our experiments. We aim at determining if training
the hand pose estimators with the MVHM dataset can be
effectively improved in different experimental settings.

For the STB dataset, we use its SK subset, which con-
tains 6 different hand videos, to evaluate our approach. Fol-
lowing the train-validation split setting in [16], we take the
first video as the validation set while the rest videos serve
as the training set.

The MHP dataset includes 21 different hand motion
videos. Each hand motion video provides hand RGB im-
ages and multiple types of annotations in each sample, in-
cluding bounding boxes and 2D/3D hand joint locations.
Figure [7] displays some examples of the STB and MHP
datasets. We follow [5, 49] and apply the standard data pre-
processing for both of the STB and MHP datasets. During
data pre-processing, we firstly crop the images to remove
the irrelevant background and make sure the hands are lo-
cated at the center of the images. All the cropped images are
then resized to resolution 256 x 256. Secondly, we follow
the mechanism used in to change the hand center from
the palm center to the joint of the wrist for data in both of
the STB and MHP datasets.

5.2. Metrics

We follow the settings from previous researches
and adopt the average end-point-error (EPE,,), and the
area under the curve (AUC) on the percentage of correct
keypoints (PCK) within a threshold range as the metrics to
evaluate model effectiveness. We report the performance
in both AUC on PCK between Omm and 50mm as well as
between 20mm and 50mm.

Table 2. Ablation studies of 3D hand pose estimation on the STB
and MHP datasets. 1 higher is better; |: lower is better; The mea-
suring unit of EPE is millimeter(mm). SV stands for the single-
view method and MV represents the multi-view method.
AUCo.50 T AUCys0 T EPE,, |

MHP Dataset

SV w/o MVHM 0.604 0.802 22.13
SV w/ MVHM 0.660 0.857 18.09
MV w/o MVHM 0.832 0.985 8.43
MV w/ MVHM 0.895 0.990 5.20
STB Dataset

SV w/o MVHM 0.820 0.987 8.95
SV w/ MVHM 0.832 0.991 8.38

Table 3. Results on the MHP dataset. 1: higher is better.

AUCy.50 T
Zimmermann et al. [50]] 0.717
Cai etal. 0.928
Chen et al. [§]] 0.939

Our multi-view method 0.991

5.3. Implementation Details

We implement our single-view and multi-view ap-
proaches in Python with PyTorch. In the training phase,
we set the batch size as 8, and use the Adam solver with
an initial learning rate 0.01. Both models are trained on a
server with four GeForce GTX 1080-Ti GPUs.

When training the single-view network, we use a multi-
stage training strategy. In the first stage, we train our 2D
evidence network with the heatmap loss £,. In the sec-
ond stage, we fix the weights of the 2D evidence network
and train the mesh network with mesh loss L£,,,. In the third
stage, we fix the weights of both of the 2D evidence network
and mesh network, and focus on training the joint depth net-
work with loss £4. In the final stage, the whole network is
optimized end-to-end.

For training the multi-view network, we apply the same
multi-stage training strategy. In the first stage, we use the
pre-trained weights from the single-view network for ini-
tializing the 3D hand single-view network, and keep this
part fixed for training the 3D hand fusion network. In the
second stage, we activate both networks and fine-tune the
whole network architecture in an end-to-end manner.

6. Experimental Results
6.1. Multi-view task

To evaluate the effectiveness of the proposed multi-
view method, we compare our single-view method with our
multi-view method on the MHP dataset under the setting of
with or without using data from the MVHM dataset. Table2]
and Figure 8[a) show that utilizing the multi-view informa-
tion from the MHP dataset itself boosts the testing perfor-
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Figure 8. Ablation studies and comparison of the state-of-the-art methods for single-view pose estimation. (a) PCK results of different
settings on the STB dataset. (b) Comparison results in PCK for the state-of-the-art methods on the STB dataset. (c) PCK results under
different settings on the MHP dataset. (d) Comparison results in PCK for the state-of-the-art methods on the MHP dataset.

mance in AUCy.59, AUCy.50, and EPE,,, by large margins,
i.e., 0.218, 0.183, and 13.80mm respectively. When addi-
tional data from the MVHM dataset are used, substantial
performance gains are achieved, which reveals the effec-
tiveness of using the collected MVHM dataset for training.

Three current state-of-the-art methods are chosen for
comparing with our method on the MHP dataset, includ-
ing Zimmermann et al. [50] (0.717 in AUC,.50 ), Cai et
al. [5] (0.928 in AUC20_50f], and Chen et al. 8] (0.939 in
AUCy0.50). Zimmermann et al. [S0] just report the numer-
ical result so we include their result in Table 3] and does
not show it in Figure[8(b). Our multi-view method achieves
the performance of 0.990 in AUC5.s59, outperforming these
competing methods by a large margin. This experiment
shows that both the proposed multi-view method and the
established MVHM dataset are beneficial and can work to-
gether to get the new state-of-the-art performance on the
MHP dataset.

6.2. Single-view task

To further validate the effectiveness of the generated
mesh dataset MVHM in addition to multi-view methods, we
also conduct the following experiments for comparison on
single-view methods. We compare the results when models
are trained solely on the MHP/STB datasets and trained on
the MHP/STB datasets together with the MVHM dataset.
Table 2| Figure [§[a) and Figure [§c) show, on both MHP
and STB datasets, adding the mesh data greatly enhances
the performance by granting a model the ability to capture
the mesh-level features, therefore leading to better results.

We select seven powerful and recently published meth-

3Cai et al. [5]] do not report the results in their paper. Here we report
the re-implementaition results by Chen et al. [8].

ods for comparison with the proposed method, including
PSO [3], ICPPSO [10], CHPR [44], Igbal et al. [19], Cai et
al. [5], Zimmermann and Brox [49], and Ge et al. [16]. The
AUC curves are plotted in Figure §[d). Ge et al. [16] also
utilize an additional dataset to train their model and got the
STOA result, which demonstrates the effectiveness of their
mesh dataset. Besides, they introduce more complicated
mesh metrics like the surface norm loss. Igbal et al. [19]
and Cai et al. [3] leverage additional depth-map informa-
tion to derive their models, and achieve good results. As
a multi-view approach without complicated components,
our method is on par with methods by Ge et al. [16] and
Igbal et al. [19] while outperforms most of them on single-
view tasks.

7. Conclusions

Estimating 3D hand poses from monocular images is an
ill-posed problem due to its depth ambiguity. Nevertheless,
multi-view images could make up the deficiency. To this
end, we build a multi-view mesh hand dataset, MVHM,
to enable training 3D pose estimators with mesh supervi-
sion. We present a multi-view method that effectively fuses
single-view predictions. When testing on the real-world
multi-view dataset MHP, our multi-view method with the
aid of the MVHM dataset achieves the state-of-the-art per-
formance.
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