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Abstract

We propose a semi-supervised learning approach for
video classification, VideoSSL, using convolutional neural
networks (CNN). Like other computer vision tasks, exist-
ing supervised video classification methods demand a large
amount of labeled data to attain good performance. How-
ever, annotation of a large dataset is expensive and time
consuming. To minimize the dependence on a large anno-
tated dataset, our proposed semi-supervised method trains
from a small number of labeled examples and exploits two
regulatory signals from unlabeled data. The first signal is
the pseudo-labels of unlabeled examples computed from the
confidences of the CNN being trained. The other is the nor-
malized probabilities, as predicted by an image classifier
CNN, that captures the information about appearances of
the interesting objects in the video. We show that, under the
supervision of these guiding signals from unlabeled exam-
ples, a video classification CNN can achieve impressive per-
formances utilizing a small fraction of annotated examples
on three publicly available datasets: UCF101, HMDB51
and Kinetics.

1. Introduction
Video understanding has been a topic of interest in com-

puter vision community for many years. Although video
understanding and analytics tasks such as action recogni-
tion have been pioneered by early classical vision studies
[27, 36], the more recent methods have gained much suc-
cess with CNNs [45, 46]. Among many CNN based algo-
rithms for video classification exploiting different type of
information extracted from the video (RGB values or op-
tical flow) and various network architectures (Two stream
[42], LSTM [4, 16, 34], 3D CNN [18]), the variants of 3D
CNNs utilizing the spatiotemporal features have produced
the state of the art results [45, 13, 38, 2, 46, 9].

Similar to other machine learning problems, a large an-
notated dataset is critical for training CNNs (comprising
millions of parameters) to achieve good performance for

∗The work was partially done at Comcast Applied AI Research, Wash-
ington, DC.

Figure 1: Video classification accuracy as a function of the frac-
tion of labeled videos. With a small percentage of labeled ex-
amples, the 3D CNN trained by our proposed semi-supervised
method significantly outperforms that trained in supervised set-
ting.

video classification. In spite of seemingly unlimited num-
ber of videos available on the internet, categorizing and
curating these videos to create a useful video dataset such
as [21, 10, 20] is still expensive and tedious [37]. The la-
bels associated with the videos from social media are often
noisy and need to be corrected manually. In addition, some
videos require trimming as the action or video event often
does not span through the video length [21].

In order to reduce the dependence on annotated datasets,
several studies have investigated pretraining features with
millions of web videos in a weakly supervised fashion
where the video labels are noisy [7, 8, 20]. After feature
learning, these methods finetune the overall network on the
target dataset in a fully supervised fashion. Others have em-
ployed self-supervision for video feature learning [12, 31].

However, both finetuning (after pertaining) and self-
supervised methods assume the existence of a high quality
labeled dataset which incurs the aforementioned costs. A
semi-supervised learning (SSL) method, on the other hand,
can reduce these costs by requiring fewer annotated training
examples from target dataset. Several methods for semi-
supervised learning in 2D image domain have reported very
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Figure 2: A single frame from some selected videos in Kinet-
ics dataset. For these categories, object appearance in one single
frame provides sufficient information to categorize them as play-
ing instrument or sport (top row) and eating (bottom row) [41, 17].

promising results [44, 32]. A recent survey by [37] com-
pares the performances of these methods as well as suggests
scenarios where SSL is a better choice than pretraining or
self-supervised methods. Nonetheless, to the best of our
knowledge, there has been no study that proposes an effec-
tive and robust semi-supervised algorithm for video classi-
fication with CNNs (see relevant works in Section 2).

In this paper, we propose a semi-supervised method,
VideoSSL, for video classification with spatiotemporal net-
works. Given a small fraction of the annotated training
samples, our proposed method leverages two supervisory
signals extracted from the unlabeled data to enhance clas-
sifier performance. As the first supervisory signal, we use
pseudo-labels [29] of the unlabeled data – a technique that
has been demonstrated to be highly effective on 2D images
– for semi-supervised learning of 3D video clips. We uti-
lize the appearance cues of objects of interest, distilled by
the prediction of a 2D image classifier CNN on a random
video frame, as the second regularizer for VideoSSL.

Many, if not all, actions can be decomposed as one or
more objects (noun) performing an activity (verb) [7]. Con-
sequently, a hint about the object (noun) appearance can of-
fer a very strong indication of the actions being performed
in the video clip [17, 41]; we illustrate this insight with ex-
amples of actions in Figure 2. Girdhar et al. [8] harnessed
the appearance information in the form of the output prob-
abilities of a 2D image classifier for pretraining the spa-
tiotemporal feature representation. Our algorithm proposes
to use the predictions of 2D image classifiers as regulatory
information for semi-supervised training of 3D CNNs or
their variants. In addition, we show that the capability of
the video classifier can be further magnified by the incorpo-
ration of a semi-supervised technique.

We have tested our method on three most widely used
datasets UCF101 [43], HMDB51 [25] and Kinetics [21].
On all the datasets, our proposed algorithm consistently
trained 3D CNNs superior to those trained by the supervised
algorithm from a small fraction of annotated examples. The

video classifiers learned by the proposed method can at-
tain up to 20% higher accuracy than those of the classifiers
trained by a fully supervised approach from limited data.
Figure 1 depicts a sample comparison between the perfor-
mances of two networks trained by the proposed and super-
vised strategies. More interestingly, our proposed needed
only 10 ∼ 20% of the labeled data to produce a 3D CNN
to match or supersede the accuracy of another network with
the same architecture but trained from the whole dataset in
a previous study [13]. Our proposed technique can be gen-
erally applied to learn any 3D CNN variants for video clas-
sification.

This work contributes to the overall effort of video event
recognition in multiple directions. We propose an accu-
rate and robust semi-supervised training algorithm for 3D
CNNs (or its variants) for video classification. We exper-
imentally demonstrate that a straightforward execution of
semi-supervised method does not yield a 3D video clas-
sifier with satisfactory performance. On the other hand,
a calibrated utilization of the object appearance cues for
semi-supervised learning profoundly improves the accuracy
of the resulting model. We validate the utility and consis-
tency of our technique by reporting improved performances
on different public datasets through rigorous testing under
many different configurations.

2. Related Work
Video Classification: Early studies on action recognition
relied on hand designed features and models [36, 35, 27,
28, 30, 48]. Recently various networks have been proposed
to capture both the spatial and temporal information for
video classification tasks including: 2D CNN-based meth-
ods [20, 42, 49], RNN-based methods [4], and 3D CNN-
based methods [45, 38, 2, 46, 47, 9]. In 2D CNN-based
methods, high-level information are usually captured by a
2D CNN for each frame, and various fusion techniques in-
cluding early and late fusion are applied to obtain the fi-
nal prediction for each video [20, 42, 49]. Some interest-
ing analytical studies have recently investigated which cat-
egories of videos require temporal information for recogni-
tion [41, 17].

The 3D CNNs and their variants have made significant
progress in video classification by simultaneously capturing
spatial and temporal information [2, 45, 38, 46, 9, 5]. How-
ever, due to the extra temporal dimension, the 3D CNNs
usually have millions of parameters which may leads over-
fitting when trained on small datasets. For that, in addi-
tion to learning from larger datasets like Kinetics [21], there
have been multiple efforts to pretrain the feature represen-
tations from millions of weakly annotated videos [8, 7].
Semi-Supervised Learning: Semi-supervised learning is a
technique to train the network both with labeled and unla-
beled data [26, 40, 32, 44, 29, 37]. Recently, several semi-



supervised learning methods have been proposed for im-
age classification. Considering the different random data
augmentations to input data and CNN configurations under
dropout selection as noise to the learning process, [26, 40]
introduced a consistency loss between the network out-
puts from the same input sample at different training iter-
ations, or their moving averages, as a regularization term
for semi-supervised learning. In addition, Tarvainen and
Valpola [44] proposed to utilize a teacher model obtained
from moving averages of past network weights to calculate
a more ‘stable’ prediction. VAT is proposed by Miyato et
al. to model the perturbations that added to the data which
most significantly affect the output of the prediction func-
tion [32]. Grandvalet and Bengio suggests minimizing en-
tropy of the model predictions to generate more confident
predictions [11] whereas pseudo-label proposed to use the
label predicted with highest confidence as the true label of
the example for training [29]. Most of these methods have
been tested on small dataset including CIFAR10 [24] and
SVHN [33], but their ability to adapt to large dataset has
not been investigated yet.

Semi-supervised learning of CNNs for 3D tasks has not
yet received considerable interest in the community. A pre-
liminary study by Zeng et al. [50] employed an encode-
decoder framework for action recognition but tested only
on toy datasets containing few tens of images. The work
of [1] pretrains the feature representation through adver-
sarial training and fine-tunes the discriminator on the tar-
get dataset; it does not learn the CNN in a semi-supervised
manner. To the best of our knowledge, there are no works
on semi-supervised learning of accurate CNNs for video
classification in computer vision literature before us. In
our work, we experimentally demonstrate that the 2D semi-
supervised learning techniques do not yield a satisfactory
performance when directly extended to 3D network and
therefore not useful.
Self-Supervised Learning: Self-supervised learning is an-
other trend of approach to learn visual features from unla-
beled data [23, 19, 31, 22]. For learning video features from
unlabeled videos, a network is trained to solve a pretext task
and the label for pretext tasks are generated based on the at-
tribute of the data. Various pretext tasks have been proposed
to learn visual features from videos. Misra et al. [31] pro-
posed to train network to verify whether the input frame se-
quence is in correct temporal order or not. Korbar et al. [23]
proposed to train network by verifying whether the input
video segment and audio segment are temporally correspon-
dent or not. A recent study by Zhai et al., combines the self-
supervision with semi-supervised learning [51]. However,
this method was designed for and tested on 2D images only.
Knowledge Distillation: Hinton et al. [15] originally pro-
posed to transfer the knowledge from several deep networks
to one smaller network by optimizing the KL divergence of

the distributions of the networks. Radosavovic et al. [39]
proposed to distill knowledge from unlabeled data by using
the prediction of a network whereas Garcia et al. [6] pro-
pose to jointly transfer knowledge of different modalities to
one modality.

The work of [8] suggested distilling the appearance in-
formation of the objects of interest in the video through the
output of a 2D image classification network for pretraining
the 3D features of a video classifier. The 3D classifier is
then finetuned on the target dataset using all its annotation.
The proposed algorithm, on the other hand, uses the appear-
ance information for semi-supervised training with a small
fraction annotated samples from a dataset – it does not re-
quire the target dataset to be exhaustively annotated. Such
an approach could be beneficial for scenarios where collect-
ing and annotating data is difficult and costly [37].

3. VideoSSL Training
Our proposed algorithm VideoSSL trains a 3D CNN

for video classification in a semi-supervised fashion. Mo-
tivated by the impressive performance of spatiotemporal
3D CNNs and their variants [46, 38, 2, 13, 9], we used
a 3D ResNet [13] that computes the (softmax) probabili-
ties of different video classes. It is worth pointing out that
VideoSSL method can be used to learn any 3D CNN and its
variants. In our semi-supervised setting, the softmax prob-
abilities from a 2D image classifier are utilized as a super-
visory or teaching signal to the training of 3D CNN. In the
learning phase, the 3D CNN is designed to produce another
output, which we also referred to as an embedding, with the
same dimensionality as the 2D network output.

The 3D CNN is trained by jointly minimizing three loss
functions. The cross-entropy loss with respect to the labels
of a small percentage of data points is backpropagated to
update the weights of the 3D CNN. In addition, we also
backpropagate the loss against the the pseudo-labels [29]
computed by the 3D CNN on unlabeled examples. The third
loss, which facilitates the knowledge distillation, is com-
puted between the 2D image network prediction and the em-
bedding from the 3D CNN computed for both labeled and
unlabeled data. A schematic diagram of the whole training
process is presented in Figure 3 and we describe the losses
used in VideoSSL in the following sections.

3.1. Learning from Labeled Data

Let X = {x1, . . . , xK} denote the annotated video clips
with corresponding category indicators {y1, . . . , yK} and
Z = {z1, . . . , zU} be the unlabeled data in a batch of
training examples. If there are C video categories, i.e.,
yi ∈ {0, 1}C , for any input video clip xi, the 3D network
produces a softmax probability p(xi) ∈ RC for xi to be-
long to any of the C classes. Given the small set of exam-
ples X , the first loss 3D ResNet training minimizes is the
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Figure 3: The framework of the proposed video semi-supervised learning approach. The 3D network is optimized with three loss functions:
1) CE Loss: the video cross-entropy (CE) loss on the labeled data which paired with human-annotated labels, 2) Pseudo CE Loss: the
pseudo cross-entropy loss on the pseudo-labels of unlabeled data, and 3) Soft CE Loss: the soft cross-entropy loss on both unlabeled and
labeled data to teach the video classification network to capture the appearance information.

cross-entropy loss.

Ls = −
∑
xi∈X

∑
c

yci log pc(xi) (1)

Here we omit the weight/parameter variables from the loss
functions for better readability.

3.2. Learning with Pseudo-Labels of Unlabeled
Data

Given a set of unlabeled examples Z, the method of
pseudo-label computes an estimate of their true labels from
the prediction of a classifier and use it to train the classifier
itself [29]. In our proposed training, the label estimate ŷci
of zi for class c is assigned to a pre-defined value T if the
prediction confidence pc(zi) from 3D CNN on unlabeled
sample zi exceeds δ. A large δ enforces the algorithm to
select highly confident samples; for such samples, predic-
tions for less confidence classes become extremely small.
As explained later (Section 3.4), we learn the network for a
sufficient number of iterations before using its predictions
for the pseudo-label approach. The resulting cross-entropy
loss against the pseudo-labels can be formulated as follows.

ŷci =

{
T, if pc(zi) ≥ δ
pc(zi), otherwise

(2)

Lu = −
∑
zi∈Z

∑
c

ŷci log pc(zi). (3)

We randomly select half of the examples in a batch from an-
notated examples and remaining half from examples with-
out annotation.

3.3. Knowledge Distillation for All Data

As several studies have already reported, appearance in-
formation can provide a strong cue for video/action recogni-
tion [17, 41, 8]. Our method seeks to distill the information
about the appearances of the objects of interest in the video
by exploiting the softmax predictions of a 2D ResNet [14]
image classifier. The 2D ResNet we apply has already been
trained on the ImageNet dataset [3] and its weights stay
fixed throughout training and testing. For our VideoSSL
approach, we distill the appearance information from both
labeled and unlabeled video clips.

Given an image (or frame) a from any video, Let us de-
note the output of the 2D ResNet as h(a) ∈ RM , where
M = 1000 for networks trained on ImageNet. In our ex-
periments, we have randomly selected the frame a from a
video clip, both for training and testing.

For each video v ∈ {X ∪ Z}, the 3D ResNet also pro-
duces another embedding q(v) ∈ RM whose dimensional-
ity matches that of the output of h(a). During training we
enforce the embedding from video classifier q(v) to match
the output of image classifier h(a) when a is a frame se-
lected from v. The distillation loss utilized for this purpose
is a soft cross-entropy loss that treats the 2D ResNet predic-
tions as soft labels.

Ld = −
∑

v∈{X∪Z}
a∈v

M∑
l=1

hl(a) log ql(v) (4)

We are using a knowledge distillation formula similar to
that employed in [8]. However, as we explain in Section 3.4,
our proposed VideoSSL method learns the overall 3D CNN



(not just the features) by minimizing the distillation loss
in conjunction with the supervised and pseudo-label losses
in a semi-supervised fashion. This approach is fundamen-
tally different from the feature learning of [8] for pretraining
video classifiers.

3.4. Combined Loss Function

The overall training process trains the 3D network with
a combined loss.

L = Ls + λuLu + λdLd. (5)
The balancing weight for the pseudo-labels uses warm-up
so that λu = 1 after a certain number of training iterations
τ . With a sufficiently large τ , we can train the 3D CNN
long enough to produce some meaningful predictions for
pseudo-labels. The λd = 1 for all our experiments.

4. Experimental Results
In this section, we conduct extensive experiments to

evaluate the proposed approach and compare with other
semi-supervised learning methods from 2D image domain
applied to video data. Our semi-supervised learning frame-
work is trained and tested on several widely used datasets
for video classification including: UCF101 [43], HMDB51
[25], Kinetics [21]. In the following, we first describe our
experimental setting and network architecture & training
before reporting performances on these 3 datasets.

4.1. Implementation Details

We have used 3D ResNet-18 [13] as a video classifier
in all our experiments. This 3D ResNet architecture is
very similar to the 2D ResNet [14], except all the convo-
lutions are performed in 3D. That is, it has 4 convolutional
blocks with different numbers of 3D convolutions (within
the block) based on the ResNet size followed by an initial
convolution and pooling. We have primarily experimented
to 3D ResNet-18 (each block with two 3D convolutions)
with 64, 128, 256, 512 feature maps. The 3D ResNet-18
has a C class output for video categories. During train-
ing, it also produces a M = 1000 length embedding for
each video. The 2D ResNet-50 image classifier is collected
from the pytorch repository. Our implementation was built
around the code released by [13].

The videos from all the datasets are resized to a spatial
resolution at 136 × 136. During training, 16 consecutive
frames are randomly selected from each video as a training
clip and a 112 × 112 patch is randomly cropped from each
frame to form an input clip. The size of the input becomes
3 channels × 16 frames × 112 × 112 pixels. The input
to the 3D ResNet-18 was also normalized by the mean and
variance of the sport-1M dataset. We used random crop and
temporal jittering for data augmentation in all our experi-
ments. The input size and data preprocessing strategies are
very similar to existing studies [46, 8, 7].

All the models are trained on different percentage of la-
beled data. We have randomly selected different percent-
ages P of labeled examples from each of the datasets, e.g.,
P ∈ {5, 10, 20, 50}. In our VideoSSL training, we used P
percentage of labeled data to compute the supervised loss in
Equation 1. Annotations for all remaining examples were
ignored in the semi-supervised setting and treated as unla-
beled examples. Given the split of annotated and unanno-
tated examples, our VideoSSL learning minimizes the joint
loss in Equation 5 to learn a 3D CNN from scratch. For all
the experiments on the same dataset, the same testing splits
are used for fair comparison.

We have used the Stochastic Gradient Descent (SGD)
with momentum 0.9 and weight decay 0.001 as a minimizer
for the joint loss. The initial learning rate during learning
was set to 0.01 and was decreased by a factor of 10 every
40000 iterations. The batch size for every optimization step
was 128 distributed among multiple GPUs. For pseudo-
label technique, T and τ were set to 10 and 2

3 of the total
iterations respectively.

For all the experiments below, we report the Top-1 clip
and video accuracy values on the validation or test datasets.
After training, the prediction of the 3D ResNet on the center
video clip (both spatial and temporal) is reported as the clip
Top-1 accuracy. The video accuracy is the average of the
classifier confidences on all consecutive non-overlapping
clips within the video.

4.2. Baseline Methods

In all our experiments on different datasets, we have
compared the performance of the CNN trained by the pro-
posed algorithm to those trained by different methods as
well as their combinations listed below. Unless otherwise
mentioned, the same experimental setup was maintained for
all the experiments.

1. Supervised baseline (Supervised) learns the 3D
Resnet18 [13] from only the labeled examples.

2. MeanTeacher (MT) applies the method of [44] on
video data.

3. PseudoLabel (PL) applies the technique of [29] on
video data.

4. Supervised with Distillation (SD) uses the knowledge
distillation loss, as described in Section 3.3, along with
the supervised loss for the training.

5. The self-supervised and semi-supervised learning
method (S4L) of [51] extended to video data. We
adopt the S4L-rotate strategy originally proposed for
2D images for 3D videos. In particular, we minimize
the cross-entropy loss on labels and rotations of the
annotated and unlabeled videos respectively in our ex-
periments.

For supervised learning, we used only the labeled exam-
ples, as given by the percentage P , to train the CNN from



Table 1: The performance comparison on UCF-101 dataset. All values reported are Top-1 accuracy values. The proposed method
consistently generates the most accurate CNNs.

%Label Supervised[13] PL[29] MT[44] SD MT+SD S4L [51] Ours
clip video clip video clip video clip video clip video clip video clip video

5 15.1 16.9 17.2 17.6 15.3 17.5 29.3 31.2 28.4 30.3 21.0 22.7 30.9 32.4
10 21.6 24.0 23.5 24.7 24.0 25.6 38.6 40.7 37.5 40.5 27.1 29.1 40.2 42.0
20 30.0 32.2 33.9 37.0 33.4 36.3 42.1 45.4 41.7 45.5 34.7 37.7 46.2 48.7
50 35.1 38.3 43.9 47.5 42.5 45.8 49.8 53.9 49.2 53.0 44.9 47.9 51.5 54.3

Table 2: The performance comparison on Kinetics-100 dataset. The proposed method consistently improves both the clip and video Top-1
classification accuracy and outperforms all other methods.

%Label Supervised[13] PL[29] MT[44] SD MT+SD S4L [51] Ours
clip video clip video clip video clip video clip video clip video clip video

5 23.6 27.2 24.8 27.8 23.8 27.8 40.2 45.2 40.8 46.6 29.6 33.0 43.1 47.6
10 31.2 36.3 34.6 38.9 31.5 36.4 44.7 49.8 43.9 49.4 37.5 43.3 48.4 52.6
20 40.7 46.8 41.8 48.0 40.8 47.1 49.8 55.6 50.0 55.3 44.7 51.1 51.3 57.7
50 49.6 55.5 51.2 59.0 51.2 59.3 57.3 63.8 57.6 63.9 49.1 54.6 58.2 65.0

scratch.

4.2.1 Results on UCF101 Dataset

Dataset: UCF101 is a widely used dataset for human action
recognition [43]. It consists of 13, 320 videos belong to 101
action classes and contains approximately 130 videos for
each class. Although relatively small in size, it is a balanced
dataset and each class has around 100 videos for training.
Videos have the spatial resolution of 240 pixels and 25 FPS
frame rate. There are three training/testing splits available
for this dataset, and the split 1 is used for all the experiments
in our paper.
Performance Comparison: Table 1 shows the clip and
video Top-1 accuracy of our proposed method and the base-
lines for video classification with 3D ResNet-18. As shown
in the table, our proposed strategy amplifies the video Top-
1 accuracy of the 3D ResNet-18 by more than 16% with
{5%, 10%, 20%, 50%} annotated samples. Across all per-
centages of labeled data, our algorithm produces the most
accurate classifier among all other techniques.

These experiments also suggest that the straightforward
application of the existing semi-supervised methods PL [29]
and MT [44] to 3D video classifier is not beneficial. It is
interesting to observe that the accuracy of MT is similar
or worse than PL, which contrasts the findings of [37] al-
beit for 2D images. However, as [51] points out, such an
outcome has been observed in practice before. The adapta-
tion of knowledge distillation [8] is instrumental in achiev-
ing good performances for semi-supervised learning from a
limited percentage of data. The combination of the semi-
supervised PL technique to knowledge distillation further
improves the accuracy of the resulting 3D CNN by con-
tributing additional information to the training process.

Perhaps the most compelling outcome of our experi-

ments is, with only 10% of annotated data the proposed
method can achieve the same video Top-1 accuracy of the
3D ResNet-18 trained from scratch in a fully supervised
manner in [13]. With 50% labeled examples the proposed
approach produces a 12% more accurate CNN.

4.2.2 Results on Kinetics Dataset

Dataset: Kinetics is a large-scale dataset for video under-
standing tasks [21]. The Kinetics-400 version, provides
306, 245 10-second videos belong to 400 action classes.
Since many videos are not available on the YouTube any
more, we were able to download 226, 127 and 18, 613
videos for training and validation respectively. This dataset
is significantly larger than other popular video datasets and
has been increasingly popular in the action recognition
community [7, 13, 8, 5].

However, the distribution of videos across different cat-
egories is not balanced in Kinetics-400. Some classes in
this dataset contain over 900 videos whereas more than
80 classes contain less than 300 videos. In order to cre-
ate a more homogeneous distribution, we have picked 100
classes with an at least 700 training videos in each category.
This subset of Kinetics dataset is referred to as Kinetics-100
in this paper.
Performance Comparison: As shown in Table. 2, our
method consistently improve the accuracy of the 3D ResNet
over that trained by the supervised method by a significant
amount. The improvement over the supervised method re-
duces from roughly 20% to 10% in video Top-1 accuracy
when the labeled data increases from 5% to 50%. It is
expected that the difference in accuracy between semi and
fully supervised methods will decrease with the increase of
labeled data. The results suggest that the off the shelf ap-
plication of the existing semi-supervised methods (PL and



Table 3: The performance comparison on HMDB51 dataset. All values reported are Top-1 accuracy values.

%Label Supervised[13] PL[29] MT[44] SD MT+SD S4L [51] Ours
clip video clip video clip video clip video clip video clip video clip video

40 17.1 18.0 26.3 27.3 26.4 27.2 31.6 32.6 32.1 32.3 28.8 29.8 32.6 32.7
50 29.1 30.7 30.9 32.4 29.2 30.4 34.1 35.1 30.8 33.6 28.9 31.0 34.9 36.2
60 30.0 31.2 31.4 33.5 31.1 32.2 35.4 36.3 34.5 35.7 32.5 35.6 35.7 37.0

Figure 4: Progression of clip and video Top-1 accuracy of
3DCNN trained by the proposed algorithm on the unlabeled train-
ing samples (solid lines) and test split (dashed lines) of UCF101
dataset with training iterations.

MT) offer little benefit to video classification of Kinetics
dataset as well.

The proposed method can achieve a higher video Top-1
accuracy of the 3D ResNet-18 trained by fully supervised
training in [13] with only 20% of annotated data in the Ki-
netics dataset. Although we are using a quarter of the total
classes evaluated in [13], this result on a more realistic Ki-
netics dataset sheds light on the strength of the proposed
technique for semi-supervised video classification.
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Figure 5: Per-class accuracy improvements on UCF101 dataset
between the network trained by the baseline supervised and our
proposed method. The y-axis plots the improvements gained for
classes shown on x-axis. For 90% of the classes the proposed
algorithm can boost the performance of the learned model.

4.2.3 Results on HMDB51 Dataset

Dataset: HMDB51 is another widely used dataset for hu-
man action recognition [25]. It consists of 6, 770 videos
belong to 51 action classes and each class has roughly 70
videos for training. There are three splits available for this
dataset and we used split 1 for all our experiments. In spite
of the smaller size compared to UCF101 and Kinetics, the
performances of the existing techniques have been lower
than those on the other two datasets [13, 15, 45]. This im-
plies a higher complexity to deal with HMDB51 with re-
spect to the other datasets.
Performance Comparison: Due to the relatively small
size of HMDB51 dataset, the performances of our pro-
posed method compared against the baseline methods on
{40%, 50%, 60%} annotated examples instead.

Table 3 compares the performances of the proposed algo-
rithm and the baseline methods. The findings from this ex-
periment conform almost exactly to those from the UCF101
and Kinetics – our VideoSSL trained 3D CNNs from differ-
ent percentages of annotations that are consistently superior
to those trained by the supervised, exiting semi-supervised
and also the self semi-supervised techniques. Likewise, our
approach produced a 3D ResNet-18 more accurate than that
trained by [13] with only 50% of annotations.

4.3. Analysis of Training

The success of a semi-supervised method relies heav-
ily on how well it learns to classify the unlabeled samples
during the training process. In Figure 4, we plot the ac-
curacy progression of the CNN under training on the unla-
beled training data as well as the test data data at different
training iterations. This experiment was performed on 10%
labeled examples of UCF101 dataset. The plot clearly illus-
trates how the performance of the CNN was improved by
the proposed method over the training process on both clip
and video classifications.

To investigate the comparative strength of the proposed
method over the supervised training across different cat-
egories, we compute the per-class relative improvement
of achieved by our strategy. Figure 5 plots the category-
wise increase the classification accuracy (clip Top-1) of the
network trained by our method compared to that trained
by the supervised approach with 10% labels of UCF101.
As seen on the plot, the performance of the 3D ResNet
learned by our method improved for 90% of the cate-



Figure 6: Qualitative comparison of our algorithm with baseline methods, top row: Kinetics100, bottom row: UCF101. Each image is a
frame from a video that was correctly classified by the 3D CNN learned by the proposed method from 10% examples. Sup, SD, and ours
refer to the predictions of the supervised [13], SD and proposed method respectively. The detections from supervised CNN appear to be
arbitrary compared to the video category whereas those from SD seem to capture and exploit the scene charateristics.

gories. Example classes such as Boxing Speed Bag (+48.6),
Playing Tabla (+48.4), Fencing (+47.1), Sumo Wrestling
(44.1), Rafting(+42.3), Bench Press (+39.6), Playing Violin
(+39.3), Drumming (+35.5), Band Marching (+34.9), Bik-
ing (+34.2) imply the appearance information of the objects
of interest in the video played a major role in this improve-
ment.

There are categories in both the UCF101 and Kinet-
ics100 datasets where the proposed VideoSSL trained better
classifiers (with 10% labels) than the SD method that par-
tially utilizes the object appearance cues. Figure 6 shows
some representative frames from these classes from both
these datasets. As can be expected, the misclassification
of the supervised method [13] appears to be rather arbitrary
with respect to the actual categories. SD, on the other hand,
classifies these video into (wrong) categories with very sim-
ilar scene characteristics. Examples of SD misclassification
predict throwing frisbee for passing football or jetskiing
for canoeing. The proposed technique utilized additional
knowledge supplied by the pseudo-label method to resolve
the confusion and achieve a superior performance on these
categories.

In Figure 7, we plot the number of videos that receive
a high confidence score (blue) and how many of those are
correctly classified by the CNN being trained. It shows that
more than 90% of the videos receiving confident predictions
(pc(z) > 0.95) are correctly classified by CNNs trained by
our approach with different fractions of annotations. This
observation reaffirms our claim of the capability and robust-
ness of our algorithm and suggests potential use of the re-
sulting classifier for frameworks to expand datasets through
active learning.
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Figure 7: Number of unlabeled videos in the training set correctly
classified by our training strategy. Blue: unlabeled videos receiv-
ing a prediction with high confidence pc(z) > 0.95 for some c;
Red: out of the videos with high confidence, how many were clas-
sified correctly.

5. Conclusion

This study conducts the first comparative study and pro-
poses a new algorithm for semi-supervised learning of video
classifier. We show in this work that a straightforward ap-
plication of the existing semi-supervised methods (that are
originally developed for 2D images) cannot achieve satis-
factory performance for 3D video classification. The pro-
posed method exploits the appearance information of the
object of interest in video to produce highly accurate 3D
classifiers given limited annotated examples. From only
20 ∼ 50% annotated samples, the proposed approach can
learn CNNs that can potentially outperform those trained
in a fully supervised manner. We have tested the accu-
racy and robustness of our algorithm on three most widely
used datasets with different percentages of training labels
and compared against the several baseline combinations.
We hope that our proposed learning strategy will be use-
ful for reducing the costs for creating a training dataset for
video understanding and will instigate more efforts on semi-



supervised video training.
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