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Abstract

The face reenactment is a popular facial animation
method where the person’s identity is taken from the source
image and the facial motion from the driving image. Recent
works have demonstrated high quality results by combin-
ing the facial landmark based motion representations with
the generative adversarial networks. These models per-
form best if the source and driving images depict the same
person or if the facial structures are otherwise very simi-
lar. However, if the identity differs, the driving facial struc-
tures leak to the output distorting the reenactment result.
We propose a novel Facial Attribute Controllable rEenact-
ment GAN (FACEGAN), which transfers the facial motion
from the driving face via the Action Unit (AU) represen-
tation. Unlike facial landmarks, the AUs are independent
of the facial structure preventing the identity leak. More-
over, AUs provide a human interpretable way to control the
reenactment. FACEGAN processes background and face re-
gions separately for optimized output quality. The extensive
quantitative and qualitative comparisons show a clear im-
provement over the state-of-the-art in a single source reen-
actment task. The results are best illustrated in the reen-
actment video provided in the supplementary material. The
source code will be made available upon publication of the
paper.

1. Introduction
Face-reenactment is a process of animating a source face

according to the motion (pose and expression) of a driving
face. In general, the process involves three major steps: 1)
creating a representation of the source face identity, 2) ex-
tracting and encoding the motion of the driving face, and 3)
combining the identity and motion representations to pro-
duce a modified source face. Each part has a significant
impact on the output quality.

Number of algorithms, including traditional 3D face
models [3, 4], data driven Neural-Networks [5, 6, 7, 1, 8,
9, 10, 11, 12], and their combinations [13] have been pre-
sented for creating photorealistic face animations. In 3D

SourceDriving Contemporary Models Proposed
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Figure 1. Examples of the face-reenactment results using the pro-
posed FACEGAN and recent baseline works FSGAN [1] and First-
Order-motion-Model (FOM) [2]. FACEGAN is able to preserve
the source identity faithfully while imposing the driving pose and
expression. The baselines suffer particularly in preserving the fa-
cial shape of the source.

face-model based approach [3] , the identity and motion
features are encoded with 3D model parameters. The reen-
acted face is then rendered using the identity parameters of
the source and motion parameters of the driving face. Al-
though this approach results in high quality outputs, they
require substantial efforts in obtaining the faithful 3D rep-
resentations of the faces. Therefore, such approaches are
often limited to a few source identities.

In recent years, the data driven deep neural networks
have gained popularity in generating and manipulating im-
ages. In particular, the models using adversarial loss func-
tions [14] have obtained highly realistic image synthesis re-
sults [15, 16]. Similar models are also applied for the face
reenactment as demonstrated in [5, 1, 12, 11, 6, 17, 10, 2,
18]. In most of these works, the first step is to represent the
source and driving faces with deep networks. These repre-
sentations can be either latent codes or human interpretable

ar
X

iv
:2

01
1.

04
43

9v
1 

 [
cs

.C
V

] 
 9

 N
ov

 2
02

0



Reenactment
NetworkLandmark

Extraction

Landmark-1

Landmark-2

Source	Image

Output	Image	1

Output	Image	2

Driving	Image-1

Driving	Image-2

Figure 2. An illustration of the facial structure leaking problem in
the landmark based reenactment approach. The facial structure of
the generated output clearly follows the shape of the driving face
instead of source face as intended.

representations like facial landmarks. Subsequently, the fa-
cial feature representations are combined by a generator
network to produce the final output. Although these models
generalise well to multiple identities, they have numerous
challenges discussed in the following.
Landmark based motion representation Most recent
works [5, 1] use facial landmark points as the representation
of the facial motion (pose and expression). Although land-
marks can provide strong supervision of the driving motion,
they also contain the overall structure of the driving face in
the form of facial contours. If the driving landmarks are
directly used to animate the source face, the difference be-
tween the facial contours may lead to dramatic distortions
in the output result. Therefore, the gap in the facial shapes
usually leads to either losing the source identity or low pho-
torealism. Figure 2 illustrates a practical example of such
distortions. For this reason, many works search for driving
and source pairs with highly similar face structures. How-
ever, this greatly limits the applicability of such methods.

Learning based representation Instead of landmarks,
some works [11, 5, 18] use unsupervisedly learned latent
features to represent the facial identity and motion. These
representations are often not disentangled with respect to
identity, structure and motion. Hence, the driving mo-
tion features may contain the driving identity information,
which ends up to the final reenacted output. This identity
leakage problem is illustrated in figures 5,1 in the case of
X2face [11] and FOM [2].
Generalization and inference time training In some
works, the entire reenactment model is trained for a par-
ticular source identity [12] or the model is fine tuned using
a few shot approach at the inference time [5]. Although
such a strategy may improve the output quality, it requires
resources and time to adapt to a new identity.
Selective editing It is often desirable to selectively edit
the reenactment result, for example, add an extra smile or
open the eyes. This type of editing would be easier by
directly manipulating the motion representation instead of

searching or producing an alternative driving image. To this
end, the representation of the driving motion should be in-
terpretable for the human editor. Although landmark points
can be easily moved for editing, one needs sophisticated
tools to preserve the structure of the source face while ad-
justing the landmarks. An alternative approach based on
Action Units (AUs) is presented in [10], which allows edit-
ing without distorting the identity. However, the model was
not able to produce high fidelity reenactment results.

In this paper, we propose a Facial Attribute Control-
lable rEenactment GAN (FACEGAN), which produces high
quality source reenactment from various driving pairs even
with significant facial structure differences between them.
Our model manipulates the source face-landmarks with
driving facial attributes to generate a new set of landmarks
representing the desired motion with the source identity
and structure. This mitigates the identity leakage problem
present in many recent works. Furthermore, by representing
the motion cues using the action units, we provide a selec-
tive editing interface to the reenactment process. The pro-
posed method combines the benefits of the action units (sub-
ject agnostic and interpretable) and facial landmarks (strong
supervision for image generation) into a single reenactment
system. To the best of our knowledge, this is the first work
that proposes such a combination for the face reenactment.
In addition, FACEGAN decouples and handles facial region
and background in two separate branches that help in gener-
ating the source background realistically in the final output
unlike other models in the literature. Finally, we provide a
detailed comparison of our method against the recent state-
of-the-art works in a single source image reenactment. The
proposed FACEGAN model results in superior performance
both in quantitative and qualitative measures.

2. Related work
Face-reenactment has been actively studied over the

years, and several different approaches have been presented.
The proposed methods can be roughly grouped into the fol-
lowing three categories.
Morphable 3-D face models Parametric 3D face mod-
els are popular tools for face animation and several works
[3, 19] have adopted them to face reenactment. These meth-
ods start by fitting a 3D morphable face model to source and
driving faces. Afterward, the motion and pose parameters
of the driving model are transferred to the source model,
and the output face with the source identity and the driving
motion is rendered. The motion parameters can also be con-
trolled using other modalities such as audio [20]. Although
these methods can provide high output quality, they are not
easily scaled to a large number of identities.
Deep generative models Variational Auto Encoder
(VAE) [21] is a popular model for image generation and
manipulation. VAE encodes the input image into a latent



representation vector that is subsequently decoded back to
the original input image. The VAE models can be utilised
for face animation, by manipulating the latent representa-
tion of the source face according to the representation of the
driving face [22]. If the latent representation is disentangled
with respect to the identity and motion, the facial move-
ments can be controlled by manipulating the corresponding
vector elements of the encoded source face [23]. However,
the disentangled representation is very difficult to obtain,
which often leads to compromises in the output quality.

An alternative encoder-decoder based approach was pre-
sented in [11]. In this work, an encoder-decoder model is
applied to warp the input face into an embedding image.
Another encoder-decoder network converts the driving im-
age into a warping field that maps the embedding image to
the output face. This approach provides better quality com-
pared to the VAE based models, but the driving identity can
still easily leak to the reenacted output. This phenomenon
is further emphasized if the source and driving faces have
large structural or pose differences.

Recently, another warping based reenactment approach
was proposed in [2]. The method learns a warping field us-
ing a set of keypoints from the source and driving images.
This approach obtains higher output quality compared to
[11], but it suffers from similar identity leakage problems.
To this end, the authors of [2] proposed an alternative setup
where the method is provided by an additional driving im-
age with similar pose and expression as the source. This ad-
ditional driving image was utilised to obtain better approx-
imation of the identity independent motion of the driving
face. Unfortunately, such a driving image would be chal-
lenging to obtain.

Deep Generative Adversarial Networks The Genera-
tive Adversarial Networks (GANs) are popular models for
high quality image generation [15, 16] and manipulation
[24, 25]. In [5, 1], a progressively growing GAN archi-
tecture was trained to animate a source face based on the
landmarks of the driving face. As landmarks preserve the
facial structure and, up to some extent, the identity, these
models suffer from quality degradation if the driving and
source faces are not similar. However, this approach is well
suited for applications like telepresence where the driving
and source identities are the same.

Landmark transfer models were proposed in [12] and
[6] to remove the identity features from the driving land-
marks. In [12], the landmark transformer was trained sepa-
rately for each identity pair, which limited the scalability of
the method. A principal component analysis (PCA) based
model was used in [6] to separate expression and shape
parameters from the landmarks. They utilised shape pa-
rameters from the source and expression parameters from
the driving face to reconstruct the transferred landmarks.
Although the method generalizes better compared to [12],

the proposed linear models are not sufficient to differentiate
complex expressions from the shape information.

An action units (AUs) based face representation is used
in [7] to manipulate facial expressions (not pose). More
recently, in [10], the authors proposed a model that used
AUs for the full face reenactment (expression and pose).
The AUs represent complex facial expressions by modeling
the specific muscle activities [26]. These activations are in-
dependent of the facial structure, which makes the action
units a potential representation to disentangle driving mo-
tion from the identity. Unfortunately, the model presented
in [10] was not able to produce similar output quality as the
facial landmark based alternatives.

In this paper, we combine the disentanglement proper-
ties of the action units with strong supervision from the fa-
cial landmarks to produce a high quality reenactment results
without significant identity leakage problems.

3. Method
Given an image, Id with a driving face Fd and an im-

age Is with a source face Fs, the FACEGAN model aims
to transfer the motion (pose and expression) from Fd to Fs

while maintaining the identity of Fs. To do so, the model
takes the landmarks of Fs and manipulates them to include
the motion of Fd. The motion information is extracted from
Fd in terms of action units (AUs), which correspond to var-
ious face muscle activations [27] and head pose angles. The
overall shape features of the source landmarks are not al-
tered during the transformation, which helps to preserve the
source identity. The transformed landmarks are passed to
reenactment and background mapper modules, which to-
gether generate a face image depicting the source identity
and background, but with driving facial motion.

The overall architecture of FACEGAN contains three
main components, which are illustrated in figure 3. The
first component, called landmark-transformer, consisting of
a fully connected network LT . It takes the landmarks ls
from Fs and the action units AUd of Fd as inputs and gen-
erates the transformed landmarks Lt as an output. Lt has
pose and expression from Fd, whereas the facial structure
from Fs (as the input landmarks are from Fs).

The transformed landmarks Lt are converted to a gray
scale image Ht, as shown in Figure 3, and provided to
the next component called as face-reenactor. The face-
reenactor takes Is and Ht as inputs for the generator Gr

and produces the reenacted face Ifr as an output. Gr con-
tains also a segmentation unit Grs, which provides a face,
hair and background segmentation maps of Ifr.

By removing the background from Ifr and the face from
Is, we obtain two images called If and Ib. These images
are provided to the third module called background mixer.
If contains the reenacted face information whereas Ib con-
tains the source background. Unlike other contemporary
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Figure 3. The overall architecture of the proposed FACEGAN contains three major blocks, namely 1. Landmark transformer, 2. Face
reenactor, and 3. Background Mixer. The Landmark transformer modifies the source landmarks to include the driving face’s expression
and pose, which are represented in terms of action units (AUs). The modified landmarks and the source image are provided to the Face
reenactor module for producing the reenacted face. Finally, the reenacted face and the source background are combined into the output by
the Background mixer module. In the training phase, we use the source and driving images from the same face track, which allows us to
use the driving image as a pixel-wise ground truth of the output. However, during the inference, the source and driving may have different
identities.

approaches, our model processes the background separately
from the face area. In this way, different components will
specialize to face reenactment and background manipula-
tion, leading to improved output quality. The background
mixer contains a generator Gb producing Ir, which has fa-
cial identity and background from Is but facial pose and
expression from Id.

The training process of our model requires image frames
extracted from talking head videos. In the following, we as-
sume that the facial landmarks of the source faces, and the
head poses and the action units (AUs) of the driving faces,
are already extracted and stored. This can be achieved us-
ing publicly available landmark [28] and Pose-AU detectors
[29, 30]. For simplicity, we denote the AU and pose combi-
nation as AUs throughout the text unless mentioned other-
wise. In each step of the training procedure, we extract two
frames Is and Id from the same video track as described in
[11, 10, 5]. In this way, the exact ground truth of our reen-
acted source is available in terms of Id. The detailed training
steps and loss functions are discussed in the following sec-
tions.

3.1. Landmark Transformer

The landmark transformer LT modifies the source land-
marks according to the driving motion, while maintaining
the facial shape and identity of the source face. First, 2D

facial landmarks are extracted from the source image Is
∈ R3×H×W and these are subsequently reshaped to ls ∈
R136×1. The facial motion of Id ∈ R3×H×W is extracted
in terms of the action units (∈R17×1) and the head pose an-
gles (∈ R3×1). These two parameters are concatenated in
to a single vectorAUd ∈R20×1 that describes the complete
motion of Fd. The landmark transformer LT takes the con-
catenated ls and AUd as an input and predicts the landmark
movements δls. Finally, the transformed source landmarks
are obtained as lt = ls + δls.

The landmark transformer is trained using various loss
functions. The most straightforward loss is calculated be-
tween lt and the landmarks of Id denoted as ld. Since during
training, Is and Id are from the same video track, the land-
marks ld form the ground truth for lt. To smooth the pre-
dictions δls a l2-weighted penalty regularization is added
along with the reconstruction loss. The objective function
can be written as,

Llr = ||lt − ld||1 + λlr||δs||2. (1)

Although Llr encourage the proper pose variations in lt,
they fail to capture the subtle movements due to the expres-
sion variations. In order to focus on expression, another
fully connected network La is introduced to regress the AU
parameters from the landmarks. La is trained simultane-



ously with lt using the following loss function

Llau = ||La(lt)−AUd||1 + ||La(ld)−AUd||1. (2)

In order to preserve the facial shape in landmark domain,
we include a connectivity loss. The loss preserves the dis-
tances between the neighbouring landmark points in ls and
lt. The loss function is mathematically expressed as,

Llc = ||Dt −Dd||1, (3)

where Dt ∈ Rd×1 and Dd ∈ Rd×1 are vectors containing
the differences between the connected landmark positions
of lt and ld. Here d is the number of connected landmarks
included in the loss function calculation. Finally, the full
loss function for the landmark transformer is formed by a
linear combination of equations (1), (2), and (3) as

Ll = λl1Llr + λl2Llau + λl3Llc, (4)

where λl1, λl2, and λl3 are weighting constants.

3.2. Face Reenactor

The transformed landmarks lt are mapped to single chan-
nel image Ht ∈ R1×H×W by placing a 2D Gaussian func-
tion at each keypoint location as shown in figure 3. Ht is
channel-wise concatenated with the source image Is to form
the input for the face reenactor network Gr. Gr produces
a reenacted RGB image Ifr ∈ R3×H×W and a segmen-
tation map Sfr R3×H×W with face, hair and background
classes. The segmentation maps are obtained using a CNN
head added to the second last layer of the Gr. For train-
ing, the pixel wise reconstruction loss, VGG perceptual loss
[25], and adversarial loss are applied as given in equations
(5), (6), and (7). The segmentation branch is trained with
standard cross entropy loss. The full loss function for Gr is
provided in Equation (8).

Lrr = ||I
′

fr − Fd||1 (5)

Lrp =
∑
i

1

CiHiWi
||Vi(I

′

fr)− Vi(Fd)||1 (6)

Lradv = min
Gr

max
Dr1,Dr2,Dr3

3∑
r=1

EFd
[logDr(Fd)]

+ ELS

[
log(1−Dr(I

′

fr))
] (7)

Lr = λr1Lrr + λr2Lrp + λr3Lradv + λr4Lce. (8)

I
′

fr and Fd are Ifr and Id with background removed.
Each Dr in equation (7) stands for discriminator, used for
multiple resolution of images as described in [25]. Lce is a
standard cross entropy loss for Sfr. In order to obtain the
ground truth for Lce, a pretrained face-segmentation net-
work Gs is utilized as explained in [8].

3.3. Background Mixer

The input to the background mixer network Gb is a
channel-wise concatenation of I

′

fr and Ib, where Ib is Is
with face and hair removed. Gb generates an RGB image
Ic and a single channel mask M ∈ RHXW . Finally, the
reenacted output image Ir is obtained using Ic, Ib, and M
as

Ir =M ∗ Ic + (1−M) ∗ Ib. (9)

In this way, Gb is encouraged to focus on producing the
compatible background while directly copying as much in-
formation form Ib as possible. Gb is trained using pixel
loss and adversarial loss on Ir, and an additional regular-
ization for M . The regularization is obtained by imposing
a l2 weight penalty, smoothing the mixing process in equa-
tion 10, and applying a total variation regularization. The
full loss on M can be written as,

Lbm = λb1

H,W∑
x,y

[(Mx+1,y −Mx,y)2 + (Mx,y+1 −Mx,y)2]

+ λb2||M ||2
(10)

Finally, the complete loss function for the background
transformer with the regularization parameters can be writ-
ten as,

Lb = Lbm + λb3Lbp + λb4Lbadv + λb5Lbr, (11)

where Lbp,Lbr are perceptual loss and reconstruction loss
between Ir and Id, respectively. Lbadv is the adversarial
loss of the Equation (7) for the discriminator Db and Gb.

4. Training Details
We train FACEGAN using a dataset created from IJB-C

videos [31]. Most of these videos contain celebrities talk-
ing in an unconstrained setup. The faces are first detected
using a landmark detector and then tracked using a centroid
tracker over the video frames. Around the centroids, a fixed
image crop is used to extract the faces in a way that the mid-
dle position between the eyes will always be in a fixed po-
sition. Small faces are rejected based on landmarks height
and width. In total 400k good quality face images are ob-
tained. In addition, we used 400 videos from the Foren-
sic++ dataset [32] to evaluate the performance of our sys-
tem. Forensic++ was pre-processed in same way as IJB-C,
resulting in total 200k face images.

The networks Gr and Gb have U-Net like structures and
are trained progressively as given in [25]. We first trained
the networks to generate images of resolution 128×128 and
then increased to the final resolution of 256×256. The land-
mark transformer LT is a fully connected network predict-
ing landmark locations in normalized coordinates. These



can be converted to a single channel image of any resolu-
tion. All networks are trained separately for a few epochs
and then together in and end-to-end manner. For LT and for
other generator networks, the learning rate is kept at 0.0002
whereas the batch-size is 32 for the former and 1 for the
latter.

5. Experiments
We assess the proposed approach in a series of experi-

ments and compare the results against the recent state-of-
the-art works [11, 1, 2, 10] in quantitative and qualitative
terms. We start by evaluating our landmark transformer in
isolation and then continue with the full face reenactment
comparisons. All experiments are performed using the 200k
face images obtained from the FaceForensic++ dataset [32]
as described in Section 4. We also note that none of the
tested models, including ours, are trained with FaceForen-
sic++, which emphasizes the generalization properties of
the models. In all cases, we use one source image per iden-
tity and the final output resolution is 256× 256.

We compare our approach with four recent works,
namely X2face [11], FSGAN [1], First-Order-motion-
Model(FOM) [2] and ICface [10]. These state-of-the-art
models are representatives from a broader set of reenact-
ment frameworks. For instance, FSGAN and ICface [10]
utilise similar ideas of interpretable facial attributes like
landmarks and AUs in reenactment. In contrast, X2face
[11] and First-order-motion-model [2] represent works that
learn motion and identity representation in an unsupervised
(or self-supervised) setups. By comparing FACEGAN with
these representatives from both categories, we obtain better
understanding of the drawback in the existing works and the
contributions of FACEGAN. We used the original source
codes for all comparison methods. We did not consider
the few-shot learning models [5] and [6] since they require
inference time training and the corresponding implementa-
tions are not available.

5.1. Landmark Transformer

In order to evaluate the importance of the land-
mark transformer (LT ) in our model, we performed self-
reenactment and cross-reenactment with and without LT .
The self-reenactment refers to a case where the source and
driving images are from the same identity whereas in cross-
reenactment these identities are different. In the former
case, we take the source and driving images from the same
face track, which allows us to use the driving image as a
pixel-wise ground truth of the reenacted output. Here we
evaluate the result using a pixel-wise with Mean Square eu-
clidean Loss (MSE). In the cross-reenactment case, we do
not have access to the ground truth image and cannot use
the MSE loss. Instead, inspired by [6, 5, 33], we calculate
the following three measures

Figure 4. Qualitative comparison of FACEGAN outputs with and
without the landmark transformer. The facial shape and identity
are clearly distorted if the landmark transformer is not applied.

1. Cosine Similarity between IMage embeddings
(CSIM): uses a pre-trained face recognition network [34]
to obtain embeddings from the source and driving images.
Higher score indicates that the source identity is better pre-
served in the reenactment process. 2. Pose Cosine Similar-
ity between IMage (PSIM): is calculated between the head
pose angles, estimated using Openface [29], of the driving
and the reenacted faces. PSIM measures the ability of the
model to retain the driving head poses in the final output. 3.
Expression difference (ED): is the Euclidean distance be-
tween the action units, calculated with Openface [29], of
driving and reenacted images. It measures the ability of the
model to retain the driving expressions in the final image.

The results of the landmark transformer experiments are
presented in Table 1. In the self-reenactment case, the best
performance is obtained without using the landmark trans-
former. The result is expected, since in the self-reenactment
setup, the driving landmarks represent the optimal output of
the landmark transformer. Nevertheless, the MSE score is
only slightly lower if the landmark transformer is applied,
which indicates that the expression and pose are faithfully
transferred from the driving face.

In the cross-reenactment case, we observe a significant
difference in the CSIM score while the PSIM and ED scores
are similar. High CSIM score indicates that the source
identity is well preserved in the reenactment output. The
large difference in terms of CSIM shows that the landmark
transformer clearly improves the reenactment quality and
reduces the identity leakage problem. The PSIM and ED
scores measure pose and expression similarity between the
output and the driving face. These measures do not depend
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Figure 5. Qualitative comparison of FACEGAN and four recent baseline methods: FSGAN [1], First-Order-motion-Model(FOM) [2],
ICface [10], and X2face [11]. FACEGAN is clearly able to retain the source face shape and identity better compared to the baselines.
Moreover, the driving motion is faithfully reproduced.

Self-
Reenactment

Cross-
Reenactment

Model MSE↓ CSIM↑PSIM↑ED↓
FACEGAN w LT 0.018 0.747 0.811 0.012
FACEGAN w/oLT 0.015 0.623 0.885 0.014

Table 1. Quantitative evaluation of the impact of the Landmark
transformer(LT ). High CSIM and PSIM scores indicate the ability
to preserve the source identity and driving head pose, respectively.
Low ED score reflects the ability to reproduce the driving expres-
sion. The MSE score measures the pixel-wise differences in the
self-reenactment case.
on the face identity and the driving landmarks directly pro-
vide strong supervision in these terms. However, the land-
mark transformer results in similar or better scores also ac-
cording to these measures, which indicates that the pose and
expression are faithfully transferred despite substantial im-
provement in preserving the source identity. Figure 4 shows
a few examples of the cross-reenactment results for FACE-
GAN with and without the landmark transformer. These
illustrate in particular how the face structure is preserved
better by using the landmark transformer.

5.2. Qualitative Reenactment Results

In this section, we assess the reenactment performance of
the proposed model in qualitative terms and compare it with
X2face [11], FSGAN [1], First-Order-motion-Model(FOM)
[2] and ICface [10]. The results for versatile driving-source
pairs are illustrated in figures 5 and 1. The source iden-
tity is well preserved in the FACEGAN results, and there is

considerably less visible structure leakage compared to the
baseline methods. The difference is particularly due to the
landmark transformer, which helps to preserve the shape of
the source face.

In addition, most models like X2Face [11], FSGAN [1],
and ICFace [10] operate only on a tight crop around the
face area. Such approach completely ignores the untrivial
integration of face, background, and other body parts such
as hair. These limitations greatly hamper the practical us-
ability of the methods. In contrast, FACEGAN has a ded-
icated background mixer model that generates the context
for the reenacted face by hallucinating high quality back-
ground pixels along with the ears and the upper body parts
as shown in figures 4 and 6 (Note that the background is
cropped out from FACEGAN results in figures 5 and 1 to
facilitate comparison). The background mixer enables the
reenactment network to focus on the face and hair regions
improving the reenactment quality of these parts. In con-
clusion, our model produces sharper and better reenactment
results from a single source and driving images of different
identity in comparison to the state-of-the-art models.

5.3. Quantitative Reenactment Results

In this section, we compare the FACEGAN results with
the baseline models in quantitative terms. We use similar
self and cross-reenactment setups as in Section 5.1 and re-
port the results using MSE, CSIM, PSIM and ED scores
in Table 2. In the self-reenactment case, all methods ex-



cept ICFace obtain similar MSE scores. Comparison to IC-
Face demonstrates the benefits of using the facial landmark
representation instead of pure action units. In the cross-
reenactment setup, FACEGAN obtains the highest perfor-
mance in terms of the CSIM score with a clear margin.
This result further illustrates the ability of FACEGAN to
preserve the source identity faithfully. In terms of PSIM,
the direct landmark based FSGAN model results in the best
pose retention capability. However, FACEGAN and FOM
are not far behind the FSGAN. ICFace has the lowest PSIM
score, which further illustrates the difficulty of producing
faithful pose using purely action unit based supervision. In
terms of ED metrics, FACEGAN obtains the best results,
followed by ICFace.

While the CSIM score reflects the overall ability to pre-
serve the identity, it may be inadequate to reflect small scale
structural differences. The difficulty, however, would be
to obtain a sufficient ground truth for measuring such de-
tails. For this purpose, we propose a new measure called
landmark similarity score (LSIM). To calculate the mea-
sure, we first randomly choose two source images from a
single identity. Then we search the test database for a driv-
ing image with different identity but as similar action units
as possible to the second source image. Finally, we use the
motion information (AUs, landmarks, warping parameters)
from the discovered driving image to reenact the face in the
first source image. The output is compared with the sec-
ond source image that acts as a pseudo ground truth for the
output. To accommodate for a small differences, we calcu-
late LSIM as a mean square error between the correspond-
ing landmark locations instead of pixel level MSE. If the
reenactment process preserves the facial shape and motions
accurately then it should result in low LSIM score. Table
2 contains the obtained results. The proposed FACEGAN
model achieves clearly the highest performance among the
compared approaches.

Self-
Reenactment

Cross-
Reenactment

Model MSE↓ CSIM↑PSIM↑ED↓ LSIM↓
X2Face [11] 0.018 0.564 0.659 0.025 0.040
FSGAN [1] 0.016 0.631 0.887 0.016 0.035
ICFace [10] 0.106 0.655 0.699 0.013 0.039
FOM [2] 0.012 0.676 0.825 0.015 0.035
FACEGAN 0.018 0.747 0.811 0.012 0.021

Table 2. Quantitative comparison of our model with the state-of-
the-arts works. High CSIM scores indicate better ability to pre-
serve the source identity, while low LSIM signifies better land-
mark shape retention ability. The PSIM and ED measure the head
pose and expression reproduction, respectively. FACEGAN ob-
tains clearly the best CSIM and LSIM scores, while obtaining sim-
ilar PSIM and ED scores. This indicates that our method is capable
of preserving the source identity while faithfully reproducing the
driving motion.

AU2 AU4 AU12 AU25 AU45 P0 P1 P2

Background ManipulationSource Manipulated

Figure 6. Demonstration of the selective editing capabilities of
FACEGAN. The first three rows images are generated by increas-
ing the source AUs directly from minimum to maximum value.
The last column illustrate the capability of combining the reen-
acted face with a non-source background (zoom in to observe the
quality better).

5.4. Controllable face reenactment

FACEGAN utilises 20 human interpretable action units
(AUs) to represent the pose and expression of the desired
output face. The AUs can be obtained from a driving face,
but this is not the only option. For instance, one can take the
AUs from the source face, manipulate them, and feed them
as driving information to the model. In this way, one can
selectively edit the source image by, for example, changing
the pose or adding an extra smile. Figure 6 contains a few
examples of such selective editing procudure.

Moreover, the background mixer can combine face and
background from two different sources. This results in a
mixed reenactment result, where the face identity is from
one source and the background from another. Figure 6 il-
lustrates a few examples of this kind of edits. Such feature
would be very useful for relocating the source person into a
desired environment. The proposed selective editing prop-
erties provide complete freedom and control to generate the
desired reenactment video.

6. Conclusion

We proposed a facial animator called FACEGAN that is
capable of performing high quality reenactment from a sin-
gle source image. Unlike many previous works, our model
does not pose any restriction on the compatibility of the
source and driving pairs. The model combines the best
properties of the action unit and facial landmark motion rep-
resentations for reducing the identity leakage problem and
to optimise the reenactment quality. Furthermore, FACE-
GAN handles the face and the background separately which
improves the output quality and gives additional control of
choosing the desired background. We have compared our
method with the state-of-the-art approaches and obtained
superior results both quantitatively and qualitatively.
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