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Abstract. Every crowd counting researcher has likely observed their model out-
put wrong positive predictions on image regions not containing any person. But
how often do these mistakes happen? Are our models negatively affected by this?
In this paper we analyze this problem in depth. In order to understand its magni-
tude, we present an extensive analysis on five of the most important crowd count-
ing datasets. We present this analysis in two parts. First, we quantify the number
of mistakes made by popular crowd counting approaches. Our results show that
(i) mistakes on background are substantial and they are responsible for 18-49%
of the total error, (ii) models do not generalize well to different kinds of back-
grounds and perform poorly on completely background images, and (iii) models
make many more mistakes than those captured by the standard Mean Absolute
Error (MAE) metric, as counting on background compensates considerably for
misses on foreground. And second, we quantify the performance change gained
by helping the model better deal with this problem. We enrich a typical crowd
counting network with a segmentation branch trained to suppress background
predictions. This simple addition (i) reduces background error by 10-83%, (ii)
reduces foreground error by up to 26% and (iii) improves overall crowd count-
ing performance up to 20%. When compared against the literature, this simple
technique achieves very competitive results on all datasets, on par with the state-
of-the-art, showing the importance of tackling the background problem.
Keywords: Crowd counting, error analysis, false positives on background.

1 Introduction

Crowd counting has attracted a lot of attention in the last few years, thanks to its ap-
plications in real-world use cases. Despite recent successes, it remains a difficult task,
as models need to work well across different scenarios, from dense crowds to sparse
scenes, and on any person, independently on what they are wearing or how they appear.
One of the most important challenges is the problem of scale, which causes people on
the far end of the image to appear much smaller compared to those closer to the camera.
Most recent works [2, 3, 9, 11, 13, 15, 18–20, 23–25, 30–32, 34, 35] tackle this problem
by proposing new models that attempt to achieve invariance to scale variations.

Instead, we investigate an orthogonal problem: errors crowd counting networks
make on image regions that contain no people (i.e., the background). While this prob-
lem is evident in the density predictions produced by state-of-the-art crowd counting
networks (fig. 1), it remains unexplored in the literature. Only three previous works [1,
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Fig. 1: Crowd counting networks output an important amount of wrong predictions on regions
not containing any person, especially when these resemble crowds (e.g., foliage, roudish objects,
stones, logos, etc.).

22,26], to the best of our knowledge, have suggested that crowd counting models should
be aided to attend to foreground regions only. Here we go a step further and perform an
extensive quantitative evaluation that addresses the following questions: “how much do
mistakes on background affect crowd counting performance?” In order to answer it, we
experiment with five of the most popular crowd counting datasets: Shanghai Tech (Part
A & B) [35], WorldExpo’10 [33], UCF-QNRF [8] and GCC [28]. Additionally, we also
experiment on ADE20k [36], a semantic segmentation dataset from which we remove
people and use as 100% background.

In the first part of this paper we focus on understanding how many mistakes are
actually made on background regions. As the concept of background is undefined for
crowd counting (i.e., each person is annotated solely with a 2D point), in this work we
define background as a function of a person’s head size, which we estimate automati-
cally similar to [25]. In detail, we first enlarge each head to twice its size and then set
all the pixels inside these areas as foreground and everything outside as background.
Despite these favorable conditions that relax the foreground considerably, our results
show that background mistakes are responsible for 18-49% of the total crowd counting
error (depending on the dataset), On the most challenging datasets (ShanghaiTechA and
UCF-QNRF), mistakes on background are almost as frequent as those on foreground
(roughly 1 for every 2). Moreover, our analysis also shows that models do not generalize
well to different kinds of background. For example, a model trained on ShanghaiTechB
that achieves a MAE of 5.0 on its background, achieves a much larger MAE of 18.5
on a dataset not containing any person instance (ADE20k). Finally, by experimenting
on background and foreground independently we show that the standard crowd count-
ing MAE computed on the full image hides a lot of mistakes, as wrong predictions
on the background are used to compensate for under-predictions on the foreground.
Importantly, this difference is substantial and we hope that our results will encourage
the community to report MAE on background and foreground independently (e.g., the
aforementioned ShanghaiTechB model that achieves a MAE of 9.1 on whole images,
achieves an MAE of 5.0 on the background and a MAE of 10.7 on the foreground:
5 + 10.7� 9.1).
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In the second part on this work, we investigate how crowd counting performance
changes when the network learns to tackle this problem. We propose to enhance a clas-
sic crowd counting network with a simple foreground segmentation branch used to
suppress background mistakes. In a thorough analysis we show that this addition brings
many benefits: (i) it reduces errors on background regions by 10-83% on all datasets;
(ii) it improves predictions on foreground by up to 26%, and (iii) it increases crowd
counting performance by up to 20%. Interestingly, these improvements enable such
a simple approach to achieve performance on par with the state-of-the-art methods,
which use much more complex architectures. This shows the importance of addressing
the background problem.

We outline the paper as follow: in sec. 2 we summarize related works; in sec. 3
we present our first contribution: an in-depth analysis on the impact of errors on back-
ground regions in crowd counting; in sec. 4 we present our second contribution: an
analysis on how teaching a crowd counting model about the background changes its
performance; finally, in sec. 5 we present our conclusions.

2 Related work

Crowd counting. Approaches in the literature can be categorized into two high level
groups: counting-by-detection [12, 16, 27, 29] and counting-by-regression [1–6, 9–11,
13–15, 17–20, 22–25, 30–32, 34, 35]. The former group employs person/head detectors
to localize and count all the instances in an image, while the latter regresses a feature
representation of the image into a count number [4,5,17] or a density map [1–3,6,9–11,
13–15, 18, 19, 22–25, 30, 32, 34, 35]. Most of the recent approaches belong to the latter
group and focus on learning new and more accurate image representations.

Challenges in crowd counting. One of the most prominent challenges is the issue of
scale, which causes people on the far end of the image to appear smaller than those
closer to the camera. This problem originates from the perspective effect and most
of the recent works in the literature have addressed this with new multi-scale mod-
els [2, 3, 9, 11, 13, 15, 18–20, 23–25, 30–32, 34, 35]. Some works adopted multi-column
architectures [2, 9, 13, 15, 18, 19, 23, 35], where each column is dedicated to a specific
scale; others [3, 11, 24, 25, 30, 32, 34] proposed single-column architectures that learn
multi-scale features within the network itself (e.g., by combining feature maps from
different layers [24,25,32,34]); finally, [20,31] proposed perspective-aware networks.
On a different direction, [6, 10, 14] focused at improving spatial awareness in count-
ing. Differently from all these works, we explore yet another important problem: crowd
counting networks wrongly count on background regions not containing any person’s
instance. While this issue was briefly mentioned in [1,22], to the best of our knowledge,
we are the first to quantitatively evaluate the magnitude of this problem and present an
extensive analysis on how this affects crowd counting performance.

Reducing errors on background. Only three methods in the literature [1,22,26] have,
to a certain extent, tried to address this problem. Arteta et al. [1] adopted a multi-branch
architecture trained using numerous supervisions: (i) multiple point annotations from
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different annotators on each entity (penguin), (ii) uncertainty maps that capture the an-
notators agreement and (iii) depth density maps that capture the perspective change
and (iv) segmentation masks for the background. Shi et al. [22] also proposed a multi-
branch architecture, but combined different maps into their final prediction: segmen-
tation, global density and per-pixel density. Both these methods employ many cues in
their approach, as they focus on achieving the best possible counting performance. In-
stead, in this work we employ a segmentation branch as part of our analysis, where
we investigate how crowd counting performance changes as the model learns about the
background. Furthermore, Wan et al. [26] proposed to train a semantic prior network on
the ADA20k dataset and use that to re-weight the pixels with low semantic likelihood.
Differently from all these approaches that propose a new model for crowd counting, we
present an analysis on this important problem and highlight several novel discoveries.

3 Wrong predictions on background regions

In this section we present the first analysis on the problem of predicting counts on
regions not containing any person instance. We present an extensive analysis on five of
the most popular crowd counting datasets, on which we quantify the number of mistakes
popular crowd counting approaches make on these regions.

3.1 Our baseline: CSRNet+

In our analysis we experiment with the popular CSRNet architecture [11]. However, in
our re-implementation of this network we made few small changes to better fit it to the
task of crowd counting. More specifically, we remove the pool3 layers of VGG16 and
set the dilation rates of convolution layers in the 4th and 5th block to be 2 and 4 respec-
tively. This leads to higher-resolution features maps that are key to predicting very small
people covering just a few pixels. Moreover, we also adopt a sub-pixel convolutional
layer [21] for upsampling the predicted density map to the original input image size.
From our experiments, these small changes slightly, but consistently, improve crowd
counting performance over the settings of the original CSRNet (table 1). Finally, we
follow the implementation details of [11] and we use the classic method proposed by
Zhang et al. [35] to generate ground truth density maps: we convolve each head ground
truth point annotation with a fixed Gaussian kernel of σ = 15 pixels.

3.2 Datasets

We experiment with five of the largest and most popular crowd counting datasets: UCF-
QNRF [8], Shanghai Tech (Part A & B) [35], WorldExpo’10 [33] and GCC [28]. As
these datasets capture quite different scenarios, they provide the best mix of background
for this analysis. Finally, in order to understand how crowd counting models perform
on general background images, we also test on a large-scale semantic segmentation
dataset: ADE20K [36].
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– UCF-QNRF [8] is one the newest crowd counting dataset and it contains large
diversity both in scenes, as well as in background types. It consists of 1535 images
high-resolution images from Flickr, Web Search and Hajj footage. The number of
people (i.e., the count) varies from 50 to 12,000 across images. In order to fit images
as large as 6000 × 9000 pixels in memory, at inference we downsample these to a
maximum side of 1920 pixels.

– ShanghaiTech [35] consists of two parts: A and B. Part A contains 482 images of
mostly crowded scenes from stadiums parades and its count averages >500 people
per image. Part B consists of 716 images of less-crowded street scenes taken from
fixed cameras and counts varying from 2 to 578.

– WorldExpo’10 [33] contains 3980 frames from 1132 video sequences. These are
split into 5 scenes and we report their average performance. The dataset is com-
monly evaluated by masking out images with some regions of interest (ROIs) pro-
vided by the creators, which are meant to suppress both (some) background and
small non-annotated people in the far end of the image. We follow this standard
procedure.

– GCC [28] is the newest dataset and it consists of 15212 synthetic images with more
than 7.5 million people. The dataset contains a large variety of computer generated
scenes, from very dense to very sparse. It contains three slips: Random, Camera
and Location. We limit our analysis to the last set (as it is the most challenging
one), but we compare against the literature on all three.

– ADE20k [36] is a semantic segmentation dataset containing images picturing more
diverse and challenging scenes compared to those for crowd counting. For example,
these scenes range from natural to man-made and from outdoor to indoor, and they
provide an excellent test use case. We evaluate on the 1468 background validation
images (i.e., those that do not contain any person).

3.3 Metrics

We report our results using the standard crowd counting metrics: Mean Absolute Error
(MAE) and Root Mean Squared Error (MSE). In details, given the predicted count Cp

and ground truth count Cgt:

MAE =
1

N

N∑
i=1

|Cp
i −Cgt

i |, MSE =

√√√√ 1

N

N∑
i=1

(Cp
i −Cgt

i )2 (1)

where N refers to the number of test images.
In order to better analyze the behavior of crowd counting models and how they

deal with background regions, we report our results on three MAE/MSE adaptations,
each one evaluating the error on a particular region of the image. More specifically, we
evaluate on background only, foreground only and full images. We compute these as in
eq. 1, but only count on specific regions:

Cp
i =

H∑
j

W∑
k

Dp
i (j, k) ·M

gt
i (2)
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Fig. 2: Three images and three foreground masks Mgt obtained by dilating the head size di with
α (sec. 3.4).

where H,W indicate the spatial resolution of the image, Dp
i is the predicted density

map and Mgt
i corresponds to a ground truth mask that specifies what region to evaluate

on. The computation of Cgt
i is analogous. For Full Image, we set every element in Mgt

i

to 1, meaning that every pixel in the image is considered in the error estimation. Note
how this is the standard case used in the crowd counting literature. For Foreground,
instead, we only set the foreground elements in Mgt

i to 1, and the rest 0. This estimates
count error on foreground regions only and it does not penalize for false positive predic-
tions on background. Finally, Background has a mask complementary to Foreground
(i.e., ones and zeros swapped). In the next section we explain how to estimate Mgt

i .

3.4 Background analysis

In this section we present a series of experiments that investigate if and by much crowd
counting models wrongly predict people on background regions.

What is background in crowd counting? In crowd counting datasets, each person
is annotated only with its head point (xi, yi), which is not sufficient to estimate good
boundaries between foreground and background and to generate accurate foreground
masks for evaluation. We overcome this limitation by augmenting each point annotation
with a value di, corresponding to the diameter of the head. We estimate this similarly
to the bounding-box technique of Rama Varior et al. [25]: first, we run a head detector,
then we associate its detections (of size si) to the annotated head points, and finally we
set the size of the remaining heads (the tiny ones that the detector failed to localize)
to 15 pixels, which is the common size estimate used in crowd counting. This can be
summarized as di = max(si, 15).

Next, we obtain the foreground mask Mi by setting all the pixels inside each head
blob centered at (xi, yi) to 1. In order to understand how the performance changes with
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Fig. 3: Errors on background and foreground regions as a function of α, which is used to dilate
each head di and define different background/foreground boundaries (i.e., the larger α is, the less
the amount of background in an image, fig. 2 for examples).

respect to the definition of foreground, we experiment with different head blob sizes by
dilating the estimated head size by a factor α = [1, . . . , 6]: d′i,j = di · αj (fig. 2 and
fig. 3).

Among these, α = 1 is the stricter definition, as each head corresponds to fore-
ground and any non-head region is mapped to background. Under this setting, all mod-
els surprisingly achieve a very large MAE on both background and foreground. We
attribute this phenomena to three factors: (i) there is uncertainty in our estimation of si,
(ii) there is inconsistency in the exact location of the annotated point (i.e., sometimes
the point lies on the chin of a person, other times on the forehead, etc.) and, more impor-
tantly, (iii) crowd counting models are good at counting, but less accurate at localizing
each individual person: they tend to output density predictions that are less peaky than
the Gaussian kernels used to convolve each point during training, resulting sometimes
in predictions just outside a head region.

For all the other values of α, the performance is much more consistent: while fore-
ground MAE increases slowly, background MAE continues to decrease as the back-
ground shrinks. From these results we can see that α = 2 (fig. 2 mid) is a good choice
to define the foreground/background boundary, as it provides a good trade-off between
a too strict foreground (causing the issues mentioned above) and a too relax foreground
(causing important background regions to be considered as foreground). In the remain-
ing of the paper we present experiments using this definition.

Is background a problem for crowd counting? Now that we have defined what fore-
ground and background mean in crowd counting, we investigate how many mistakes are
made in these regions with respect to the full image. We present our results in table 1,
along with the percentage of background and foreground for each dataset. While not as
frequent as the mistakes on foreground, the errors of CSRNet+ on background regions
are still substantial: on all datasets Background MAE is responsible for around 18-49%
of the total error. This is especially problematic on very crowded datasets, where the
areas belonging to background and foreground are very similar (ShanghaiTechA and
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Model
Train & Test Background Foreground Full Image

dataset % Surface MAE % Surface MAE MAE

CSRNet+ ShanghaiTechA 39% 18.4 61% 60.0 64.9
CSRNet+ ShanghaiTechB 76% 5.0 24% 10.7 9.1
CSRNet+ UCF-QNRF 51% 42.0 49% 94.1 95.1
CSRNet+ WorldExpo 89% 10.2 11% 11.2 8.7
CSRNet+ GCC 88% 17.7 12% 79.9 81.2

MCNN [35] ShanghaiTechA 39% 56.9 61% 96.1 110
MCNN [35] ShanghaiTechB 76% 18.3 24% 31.5 26.4

CSRNet [11] ShanghaiTechA 39% 37.1 61% 68.4 66.5
CSRNet [11] ShanghaiTechB 76% 24.2 24% 24.9 9.6

SFCN [28] UCF-QNRF 51% 41.6 49% 114 102

Table 1: MAE results of different models on five crowd counting datasets, split into background,
foreground and aggregated over the full image. While the community has mostly focused on reduc-
ing Foreground error, the unexplored Background error is also important and worth addressing
in the future.

UCF-QNRF), meaning that the errors on background are almost as frequent as those on
foreground (i.e., 1:2 and 1:2.4 when normalized by the surface area). On the much less
dense datasets, results are less severe, but this is the case because ShanghaiTechB and
GCC contain similar backgrounds in their train and test sets, and WorldExpo uses ROIs
to suppress difficult regions (sec. 3.2).

In table 1 we also report the results we obtained by running the code and mod-
els (available online) of some popular crowd counting approaches1. Their results show
similar behavior of those of our CSRNet+ baseline. Interestingly, CSRNet achieves a
substantially higher MAE on foreground and background compared to CSRNet+, even
though their full image MAEs are very similar. Upon investigatation we noticed that
CSRNet is not particularly good at localizing people and it tends to output less peaky
density maps (due to its lower resolution feature maps).

Observation about MAE for crowd counting. Finally, we want to highlight how MAE
computed on full images is not equal to the sum of the MAEs computed over back-
ground and foreground (e.g., in first row of table 1, 64.9 6= 60.0 + 18.4). This is
surprising, considering that the union of these two mutually-exclusive pixel sets are
equivalent to that of the full image. This behavior is due to the fact that MAE computed
on full images uses wrong predictions on background regions to compensate for missed
predictions on foreground areas. This is an important concern, especially considering
the large discrepancies reported in table 1. Going forward, we hope that these results
will encourage the community to report more accurate estimates than MAE computed
on the whole image, like MAE split into background and foreground, or GAME [7].

1 Note: the CSRNet models the authors released online achieve slightly better performance com-
pared to the results they report in their paper.
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H
HHHHTrain

Test Shanghai Shanghai UCF World
GCC ADE20k

Tech A Tech B QNRF Expo

ShanghaiTechA 18.4 7.7 57.3 6.7 143.2 27.6
ShanghaiTechB 21.3 5.0 62.1 9.0 19.9 18.5
UCF-QNRF 20.5 8.8 42.0 19.1 38.6 8.4
WorldExpo 98.8 13.5 118.1 11.2 73.6 45.1
GCC 24.9 7.9 45.2 5.9 17.7 3.2

Table 2: Background MAE for CSRNet+ across datasets.

Do models generalize to different backgrounds? Here we investigate how models
trained on a specific dataset generalize to different kinds of background (i.e., to other
datasets). Results are presented in table 2. The best performing model (i.e., lowest back-
ground MAE) on each dataset is, except for WorldExpo, the model trained on that same
dataset. This is a domain gap problem and it is substantial; for example, a very good
model trained on ShanghaiTechB makes 50% more mistakes than one trained on UCF-
QNRF on the background of UCF-QNRF (62.1 vs 42.0). This problem is even more
evident in the results on the ADE20k dataset, which does not contain any person: the
best model trained on real data (UCF-QNRF) outputs an average count of 8.4 per im-
age, while the worse (WorldExpo) more than 45. These are equivalent to 12,000 and
66,000 people predicted in a dataset not containing any person. This poor generaliza-
tion to different backgrounds is an important limitation towards applying crowd count-
ing techniques to real world use cases.

Finally, the results suggest that the model trained on synthetic data (GCC) is, on
average, the best performing model on background. However, upon investigation we
observed that this model undercounts significantly on any real image, leading to good
background MAE, but terrible foreground MAE. For example, it achieves and MAE of
235 on ShanghaiTeachA, of 25 on ShanghaiTechB, of 274 on UCF-QNRF and of 46 on
WorldExpo, which are significantly higher then the results presented in table 1 (MAE
60, 10.7 94.1 and 11.2, respectively). These results are a bit discouraging, as they show
that significant work is needed before we can use synthetic data for crowd counting.

Conclusions. Crowd counting models occasionally make mistakes on background re-
gions and every researcher on this topic is likely aware of this behavior. However, this
problem appears to be much more severe that what people may have anticipated: our
analysis quantitatively showed that crowd counting models produce an important num-
ber of wrong predictions on background regions, which flactuates from 18 to 49%,
depending on the dataset. Moreover, our analysis also showed why these mistakes have
not been clearly captured before: the MAE metric computed on the full image hides
these mistakes behind underpredictions on foreground regions, fooling us in believing
that crowd counting models perform better than they actually do. Finally, our analy-
sis also showed that crowd counting datasets do not contain enough diversity in terms
of background, which lead to poor generalization when evaluated on pure background
images. Given all these discoveries, we believe that wrongly predicting people on back-
ground regions is an important issue in crowd counting and we hope that these results
will inspire more works to solve this problem.
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New branch to suppress background

Classic Crowd counting: Encoder + Regressor 

512x
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Fig. 4: In the top row we show a classic crowd counting methods that consists of a feature en-
coder and a count regression module. In our approach we enrich this design with a segmentation
branch that is used to suppress predictions on background regions.

4 Teaching the network about background

In this section we present the second part of our analysis, where we investigate how
crowd counting performance changes when a network learns to suppress wrong counts
on background regions. Towards this, we propose a simple change to the typical crowd
counting network that aims at reducing background mistakes from the final density map,
leading to cleaner outputs and more accurate counting. We propose to enrich the final
regression block that maps the backbone’s features to a density map for crowd counting,
with a new head that is trained specifically to suppresses predictions on background
regions (fig. 4). We model this head as a shallow foreground/background segmentation
branch that has low impact in terms of computational cost with respect to the overall
model. This segmentation head outputs a mask that is used to modulate the density
map outputted by the regression head. This mechanism has two benefits: while the
segmentation head reliably suppresses background predictions, the regression head can
now better specialize on foreground patterns and improve its counting accuracy (due to
being trained on gradients from foreground pixels only, eq. 5).

Note that the idea of using a segmentation branch to attend to foreground regions
was first introduced by Arteta et al. [1] to count penguins and very recently also used
by Shi et al. [22] to count people. However, in both these works this was just a small
component of a more complex design, as their goal was to achieve the best counting
performance. Instead, we aim at understanding the impact of suppressing background
mistakes on the final output and we are purposely making our model as simple and as
specialized to this problem as possible. Moreover, differently from [1, 22], our work
proposes a minimal change into how crowd counting models are trained and it can be
easily added to most of the crowd counting approaches that focus at improving the
backbone encoder. In the next paragraphs we explain how to train this simple approach.

Loss functions. Given a training image of size (W , H), we train the segmentation head
with a pixel-wise binary cross entropy loss between the sigmoided predicted mask Mp

and its corresponding ground truth Mgt:
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Lbce =
1

HW

H∑
i

W∑
j

−Mgt
i,j · log(M

p
i,j)− (1−Mgt

i,j) · log(1−Mp
i,j) (3)

Moreover, following the literatures [2, 3, 9, 11, 13, 15, 18–20, 23–25, 30–32, 34, 35],
we train our regression head with a pixel-wise `2 distance loss between the predicted
density map Dp and its corresponding ground truth map Dgt:

L`2 =

H∑
i

W∑
j

√
(Dp

i,j −Dgt
i,j)

2 (4)

where the predicted density map Dp is obtained by modulating the intermediate den-
sity map Dint with the predicted foreground mask Mp as follows: Dp = Dint �Mp,
in which � represents the Hadamard operation. Importantly, note how the regression
module only aggregates counting contribution for foreground regions, as the segmenta-
tion head takes the responsibility for recognizing background regions. In an end-to-end
fashion (fig. 4), we train our model (including the backbone) with the following dual
task loss:

L = L`2(D
p,Dgt) + λLbce(M

p,Mgt) (5)

where λ regulates the importance of the segmentation loss. From these losses one can
see how separating foreground and background predictions (to regressor and segmenter,
respectively) not only helps reducing mistakes on background, but it also helps the re-
gressor becoming more accurate, as it is now entirely dedicated on counting on fore-
ground regions only.

Implementation details. We use the backbone (CSRNet+) introduced in sec. 3.1 and
3 additional fully convolutional layers for the segmentation head (an exact copy of
the 3 fully convolutional layers used for regression). Moreover, we generate Mgt as
explained in sec. 3.4, with α = 1.

4.1 Validation of our approach

In this section, we experiment with this simple approach and evaluate its impact on the
task of crowd counting, especially on background regions. We compare the CSRNet+
baseline model presented in sec. 3.1 with the same CSRNet+, but enhanced with a seg-
mentation branch. For simplicity, in the remaining of the paper we will refer to our
approach as CSRNet+ w/BS (background suppression). First, we compare against the
CSRNet+ results presented in table 1 and investigate if this new branch can improve its
performance. These are presented in table 3.

Background mistakes decrease (Background MAE). Results validate our hypothesis that
the segmentation branch can help reduce mistakes on background and show that our
approach can consistently reduce these errors by an important 10-40% on all datasets,
over the baseline. Importantly, this improvement generalizes better to other background
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Train & Test
Model

Background Foreground Full Image
dataset MAE MAE MAE

ShanghaiTechA
CSRNet+ 18.4 ↓↓19%

60.0 ↓1.6%
64.9 ↓3.5%

CSRNet+ w/BS 14.9 58.9 62.6

ShanghaiTechB
CSRNet+ 5.0 ↓↓36%

10.7 ↓↓26%
9.1 ↓↓20.1%

CSRNet+ w/BS 3.2 7.9 7.2

UCF-QNRF
CSRNet+ 42.0 ↓↓24%

94.1 ↓9.1%
95.1 ↓9.2%

CSRNet+ w/BS 31.9 85.5 86.3

WorldExpo
CSRNet+ 11.2 ↓10%

10.2 ↓7%
8.7 ↓6.9%

CSRNet+ w/BS 10.1 9.5 8.1

GCC
CSRNet+ 17.7 ↓↓43%

79.9 ↓↓17.3%
81.2 ↓↓19.2%

CSRNet+ w/BS 10.1 66.1 65.6

Table 3: We compare CSRNet+ w/o and w/ our background suppression branch (BS) on five
crowd counting datasets. Adding the background suppression branch brings many benefits: (i)
errors on background reduce considerably, (ii) errors on foreground also reduce, though less and
(iii) the final performance is always better.

PPPPPPPModel
Train Shanghai Shanghai UCF- World

GCC
TechA TechB QNRF Expo

CSRNet+ 27.6 ↓↓29%
18.5 ↓↓83%

8.4 ↓↓38%
45.1 ↓↓20%

3.2 ↓↓75%
CSRNet+ w/BS 19.7 3.1 5.2 36.0 0.8

Table 4: We compare CSRNet+ w/o and w/ our background suppression branch (BS) on the pure
background dataset ADE20k. Errors on background reduces substantially.

types, like those in background dataset ADE20k (table 4), where MAE always de-
creases, from 30% to more than 80%.

Foreground errors decrease (Foreground MAE). In sec. 4, we argued that adding the
segmentation mask and using it to modulate the final output can, in theory, help the
regressor better specialize on foreground (as it is lifted of the responsibility of the back-
ground) and produce more accurate predictions. Results validate this and show that in
practice MAE on foreground regions always reduces, sometimes marginally (+1.6% on
Shanghai Tech A), but other times substantially (+26% on Shanghai Tech B).

Overall performance improves (Full Image MAE). Finally, results also show that im-
proving both background and foreground MAEs leads to a consistent improvement in
the overall image performance, up to 20% better.

4.2 Sensitivity analysis of hyper-parameters

In this section, we evaluate some of our choices for the paraneters if CSRNet+ w/BS.
We experiment on the UCF-QNRF dataset only, as it is the largest and most diverse
crowd counting dataset and it is a good benchmark for this study.

Lambda λ. We investigate how sensitive our model is to different values of λ in eq. 5,
which regularizes the importance of the segmentation head. As shown in fig. 6b, the
model performs best on full images when λ is in the range of 0.5× 10−4 to 5× 10−4.
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Error (Fg): 67.6

Error (Bg): 130.2 

Error (Fg): 11.6

Error (Bg): 68.9 

Error (Fg): 37.5

Error (Bg): 256.0

Error (Fg): 7.1 

 

Error (Fg): 115.2

Error (Bg): 21.3 

Error (Fg): 99.0

Error (Bg): 6.7 

Error (Bg): 234.3

Fig. 5: Enhancing CSRet+ with the ability to suppress background (w/BS) produces more accu-
rate density maps with less errors on background regions (Error Bg) and significantly sharper
foreground estimates (Error Fg).

Fig. 6: Results for different values of α (a) and λ (b).

This provides a good trade-off between not using the segmentation head (λ = 0) and re-
lying on it too much (λ too large). Moreover, MAE on foreground is the lowest when λ
is around 10−4, while MAE on background consistently decreases as the segmentation
head gets more and more importance (i.e., λ increases). These results show the impor-
tance of training a model that is well balanced and performs well on both foreground
and background regions. In our experiments, we use λ to 10−4.

Training foreground mask Mgt. In sec. 4 we chose α = 1 to generate the ground
truth foreground masks used to train our segmentation head (di = max(si, 15) · α).
Our intuition for this is twofold: (i) d should be at least as large as the Gaussian kernel
σ = 15 used to define GT maps (otherwise non-zero pixels’ count would be wrongly
assigned to background) and (ii) it should be as close as possible to the true size of
the head (si). To verify this hypothesis, we experiment here with different values of
α and train with different foreground/background definitions. Results in fig. 6a show
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UCF-QNRF Shanghai Tech A Shanghai Tech B WorldExpo GCC (MAE)
Method Venue & Year MAE MSE MAE MSE MAE MSE Avg MAE Rand Cam Loc

MCNN [35] CVPR 2016 277 426 110.2 173.2 26.4 41.3 11.6 100.9 110.0 154.8
SwitchCNN [19] CVPR 2017 228 445 90.4 135.0 21.6 33.4 9.4 - - -
CP-CNN [23] ICCV 2017 - - 73.6 106.4 20.1 30.1 8.9 - - -
SaCNN [34] WACV 2018 - - 86.8 139.2 16.2 25.8 8.5 - - -
IG-CNN [18] CVPR 2018 - - 72.5 118.2 13.6 21.1 11.3 - - -
CSRNet [11] CVPR 2018 - - 68.2 115.0 10.6 16.0 8.6 38.2 61.1 92.2
CL-CNN [8] ECCV 2018 132 191 - - - - - - - -
SANet [3] ECCV 2018 - - 67.0 104.5 8.4 13.6 8.2 - - -
PACNN [20] CVPR 2019 - - 66.3 106.4 8.9 13.5 7.8 - - -
CSRNet+PACNN [20] CVPR 2019 - - 62.4 102.0 7.6 11.8 - - - -
SFCN [28] CVPR 2019 102.0 171.4 64.8 107.5 7.6 13.0 9.4 36.2 56.0 89.3
FF [22] ICCV 2019 93.8 146.5 65.2 109.4 7.2 12.2 - - - -
DSSINet [13] ICCV 2019 99.1 159.2 60.6 96.0 6.8 10.3 6.7 - - -
BL [14] ICCV 2019 88.7 154.8 62.8 101.8 7.7 12.7 - - - -
MBTTBF-SCFB [24] ICCV 2019 97.5 165.2 60.2 94.1 8.0 15.5 - - - -
PGCNet [31] ICCV 2019 - - 57.0 86.0 8.8 13.7 8.1 - - -
CSRNet+SPANet [6] ICCV 2019 - - 62.4 99.5 8.4 13.2 7.9 - - -
SANet+SPANet [6] ICCV 2019 - - 59.4 92.5 6.5 9.9 7.7 - - -

CSRNet+ w/BS - 86.3 153.1 62.6 103.3 7.2 11.5 8.1 30.2 39.3 65.6
CSRNet+ w/BS (pre-trained) - - - 58.3 100.1 6.7 10.7 7.9 32.6 40.2 69.8

Table 5: Quantitative results of CSRNet+ enriched with a segmentation branch, on five popular
datasets, against several approaches in the literature. “pre-trained” refers to models pre-trained
on the large-scale UCF-QNRF dataset.

that the best performance is indeed achieved by setting α to 1. Nevertheless, results
also show that our model can deal well with more relaxed masks and still achieve great
performance until the point where di becomes too large and almost every pixel is labeled
as foreground (i.e., α > 4).

4.3 Comparison with the state-of-the-art
In the previous sections we evaluated the effect of reducing background mistakes for
crowd counting by enriching a model with a segmentation branch (sec. 4.1). For com-
pleteness, we now compare this architecture against other works in the literature. Re-
sults are presented in table 5. Despite its simplicity, our approach achieves remarkably
competitive performance on all the five datasets, on par with the state-of-the-art. We
find these results very encouraging, as they show that sometimes there is no need for
complex architectures, but rather for simple solutions that tackle the right problem. Fi-
nally, we present some qualitative results of this approach in fig. 5.

5 Conclusions
We presented an extensive analysis on a problem that has been overlooked by the liter-
ature, yet it plays a fundamental part in the overall crowd counting performance. Our
results showed that the problem of counting on background regions is significant and in
it is responsible for 18-49% of the total count error. Furthermore, we showed that this
problem can be substantially mitigated by teaching the counting network the concept
of background. By simply enriching a crowd counting network with a background seg-
mentation branch we were able to reduce these mitakes by up to 83%, leading to better
crowd counting performance (up to 20%). Finally, such a simple architectural change
led to results on par with the state-of-the-art, on all the evaluated datasets. We find these
results remarkable and a clear indication that future research should start addressing this
problem more directly.
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