
SLAM in the Field: An Evaluation of Monocular Mapping and Localization on
Challenging Dynamic Agricultural Environment

Fangwen Shu Paul Lesur Yaxu Xie Alain Pagani Didier Stricker
DFKI - German Research Center for Artificial Intelligence

{first name}.{last name}@dfki.de

Abstract

This paper demonstrates a system capable of combining
a sparse, indirect, monocular visual SLAM, with both of-
fline and real-time Multi-View Stereo (MVS) reconstruction
algorithms. This combination overcomes many obstacles
encountered by autonomous vehicles or robots employed
in agricultural environments, such as overly repetitive pat-
terns, need for very detailed reconstructions, and abrupt
movements caused by uneven roads. Furthermore, the use
of a monocular SLAM makes our system much easier to in-
tegrate with an existing device, as we do not rely on a LiDAR
(which is expensive and power consuming), or stereo cam-
era (whose calibration is sensitive to external perturbation
e.g. camera being displaced). To the best of our knowledge,
this paper presents the first evaluation results for monocular
SLAM, and our work further explores unsupervised depth
estimation on this specific application scenario by simulat-
ing RGB-D SLAM to tackle the scale ambiguity, and shows
our approach produces reconstructions that are helpful to
various agricultural tasks. Moreover, we highlight that our
experiments provide meaningful insight to improve monoc-
ular SLAM systems under agricultural settings.

1. Introduction

Agricultural robotics [14, 15, 43, 62] have to function
in environments that can be considered adversarial for most
SLAM algorithms: abrupt movements, variable illumina-
tion, repetitive patterns, and non-rigidness of the environ-
ment are all encountered when performing tasks such as
harvesting, seeding, agrochemical dispersal, supervision
and mapping. Furthermore, while consequent resources
have been spent on improving sensor-fusion for SLAM
(with e.g. IMU or LiDAR) over the past decades, such
systems suffer from sophisticated calibration, added weight,
and additional required computational power. Those points
negatively impact the price, power consumption, and algo-
rithm complexity of the robots, all of which are of major

Figure 1. The geo-referenced dense point cloud (map) of soy-
bean field reconstructed from Rosario dataset [45], sequence 04.

importance to manufacturers as well as users. As such, it is
desirable to keep the robot equipped with as few sensors as
possible for the given task.

To solve those practical issues, we decided to combine
a sparse, feature-based monocular SLAM with both offline
and real-time MVS reconstruction algorithm. We show that
the SLAM system employed in this work is more reliable
for tracking than existing dense SLAM methods, while both
reconstruction algorithms’ outputs are dense enough for the
tasks at hand. We propose the following contributions:

• A usable and efficient dense reconstruction architecture
for agricultural mapping and localization with only a sin-
gle camera.

• Exhaustive experiments of indirect visual SLAM systems
evaluated on recently released public datasets [13, 45]
aimed at agricultural localization and mapping. Com-
pared to the relative work [16, 45] which only evaluated
stereo setting, we provide the first baseline for monocular
SLAM, and improved results for stereo visual SLAM.

• Ablation study of CNN-based self-supervised monocular
depth estimation on aforementioned agricultural dataset.
The estimated depth is used to simulate RGB-D SLAM
with monocular RGB image sequence, which is validated
by experimental analysis and competitive results are pre-
sented in this work compared to the raw stereo setting.
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2. Related work
Agricultural Robotics Recent surveys on agricultural
robotics [14, 15, 43, 62] present applications, challenges,
and show a growing interest in SLAM system integration.
For example, SLAM is a proper solution for occluded GPS
(sometimes blocked by dense foliage) [14], crop-relative
guidance in open fields, tree-relative guidance in orchards,
and more importantly, sensing the crops and its environment
[62]. Various sensors, such as on-board cameras and laser
scanners, have been used for extracting features from the
crops themselves and use them to localize the robot relative
to the crop lines or tree rows in order to auto-steer.

However, here we focus on related work to monocular
vision-based problem instead of discussing the general
problem of sensor-fusion, where only a single camera is
employed and it is a under-explored problem in agricultural
scenario.

Dataset There is a large body of recent and ongoing
research regarding SLAM and Visual Odometry for both
indoor scenes [6, 17, 28, 58, 52] and outdoor urban scenes
[8, 24, 37, 38], just to name a few. We do not consider
datasets such as [4, 18, 29, 54] as they are extremely
specialized for particular tasks like weed/crop classification
which are not relevant to this work. To the best of our
knowledge, only two datasets aimed at localization and
mapping under agricultural environments are available:
the Sugar Beets dataset [13] and the Rosario dataset
[45]. The former presents a large-scale agricultural robot
dataset including downward looking images, captured by a
multi-spectral camera and an RGB-D sensor, and we found
out it is difficult to track using monocular visual SLAM
(downwards looking frames do not cover enough space,
and even successive ones have small overlapping regions).
The latter consists of 6 sequences recorded in a soybean
field, captured by forward looking stereo camera, showing
real and challenging cases such as highly repetitive scenes,
reflection and burned images caused by direct sunlight and
rough terrain, among others.

Advanced Mapping As one of the fundamental tasks
of mobile robotics, an early work [50] presented the
benefits of building a map of a vehicle’s surroundings for
precision agriculture. More recently, [19] has demonstrated
a multi-sensor SLAM method for 4D crop monitoring and
reconstruction. Another application similar to agricul-
tural mapping is urban mobile mapping system (MMS)
presented by [5, 10, 11]. There, the choice of dense
reconstruction algorithm was more restricted. Commercial
software like Pix4D [3] and Agisoft Metashape [1] provide
sophisticate mapping pipelines with the support of Ground
Control Points (GCPs) for indirect geo-referencing and
quality control, and [12] presented good results of direct

geo-referencing by providing camera poses by GPS.
However, it is difficult to implement those algorithms on
close-range agricultural mapping when image alignment is
very challenging due to repetitive texture. There also exists
highly accurate open source methods like COLMAP [55]
and VisualSFM [63], however those frameworks only work
offline, and can take up to a few hours to process the data.

When considering real-time dense mapping, it is natural
to first try out direct/semi-direct SLAM, in which raw pix-
els are used for processing, instead of extracting and then
matching features using descriptors. They make it possi-
ble to directly reconstruct dense maps as they do not rely
on keypoints, but use the entire available data. This ap-
proach has received much attention in the past few years,
first with DTAM [42], then with other noteworthy works
such as LSD-SLAM [21], SVO [22] and DSO [20]. How-
ever, experiments have shown that the aforementioned di-
rect methods have problem initializing at all on the agricul-
tural image sequences (e.g. Rosario dataset). And the lack
of datasets makes the comparison of system performance
and robustness in agricultural settings difficult, as we high-
light later in this work.

This led us to work with the recently released framework
OpenVSLAM [59] which was built upon ORB-SLAM2
[40] without specific change on the core algorithms but
provides a new framework with high usability and exten-
sibility. After some careful modifications w.r.t agricultural
scenarios (which we explain in Section 3), we are able
to initialize and track reliably on challenging agricultural
image sequences. Then, initialized by the pose graph
generated from SLAM, we adapted COLMAP as an offline
dense reconstruction solution, and we ended up working
with REMODE [46] for real-time dense reconstruction,
which was designed as a standalone, monocular reconstruc-
tion module running in parallel with another VO (Visual
Odometry) module.

Simulating RGB-D Sensor Unsupervised learning of
depth from unlabelled monocular videos [9, 25, 26, 32, 66]
has recently drawn attention as it has notable advantages
than the supervised ones and is also the core problem in
SLAM [27]. Loosely inspired by the work of CNN-SLAM
[60] and others [34, 35, 64, 65], we integrate Monodepth2
[26] as an additional depth predictor to tackle the scale
problem of monocular SLAM and the demand of estimating
dense depth map during tracking. Such choice is based
on the fact that there is no ground truth depth available
from dataset Rosario, therefore we have to generate ground
truth from stereo image pair using method of SGBM
[31] but only train the depth predictor self-supervised.
The predicted depth will be used with monocular image
sequence and simulate RGB-D camera which usually has
problem working in such outdoor environments.
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In this work, we base our experiments on the Rosario
dataset [45] as it is appropriate to evaluate monocular
SLAM systems. Notice that there is no other relevant work
[16, 45] presents any result of monocular SLAM but only
results from stereo SLAM, and our experiment shows rea-
sonably good results on some of the sequence and no track-
ing lost on all the sequences of Rosario in general. As dis-
cussed before, the Sugar Beets dataset [13] is discarded due
to its irrelevance for dense reconstruction and incompatibil-
ity with monocular SLAM.

3. Implementation Details

First, a monocular feature-based tracking system is used
to compute the poses of the camera and acts as the fron-
tend. Then, this information, alongside the original frames,
is passed to the backend: a Multi-View Stereo (MVS) re-
construction pipeline that generates a dense point cloud of
the agricultural scene, which works either in real-time or
offline. We decided to use OpenVSLAM [59] which was
built upon ORB-SLAM2 [40] as our monocular, feature-
based tracker. Although literature on SLAM is diverse,
most state-of-the-art systems are dense (such as [20, 22])
or fuse more than one type of sensor [33, 41, 47], however,
ORB-SLAM2 is still as of today the best reference when it
comes to feature-based SLAM systems.

3.1. Monocular, Feature-based Tracker

While the task of reconstructing a dense-map of
the environment naturally pushes towards choosing a
dense/semi-dense SLAM, experiments have shown that the
adversarial nature of agricultural scenes made those sys-
tems unreliable. Meanwhile, we noticed that feature-based
methods do not necessarily suffer from the drawbacks
inherent to our domain. Descriptors can be made invariant
to lighting and (partially) to blurring, such as [7, 36, 51],
which means the tracking is resilient to e.g. holes in the
ground, or variable lighting condition due to clouds.

Auto-Masking of Far Points We made modifications
to the SLAM system to mask points belonging to the
horizon-line dynamically, as they do not bring the depth
information necessary to perform tracking. This is done by
estimating the limit between sky (known to be seen at the
top of the frame) and the field (known to be at the bottom
of the frame), then masking the top of the image until this
limit (plus an offset, used to filter all points which close to
horizon line), see Figure 3 (a) and (b) for masking example.

Monocular Initialization The threshold that makes
monocular tracking module choose between homography
and fundamental matrix model to initialize has been
changed so the system picks the fundamental matrix more

Figure 2. The workflow of COLMAP initialized by monocular
SLAM for dense reconstruction. Figure modified from original
workflow of [55].

often:

RH =
SH

SH + SF
(1)

where SH and SF are the scores computed parallel for
homography and fundamental matrix, as explained in [39].
We found out a robust heuristic to select homography under
agricultural settings is RH > 0.5 or even RH > 0.8 in
some extreme case. This is purely a domain adaptation
change, as we know planar structure are virtually nonex-
istent in the agricultural scenes we study. The number of
ORB features extracted in each frame is also increased
drastically to 4000, such as to make the tracking more
resilient to potential wrong matches (which arise due to the
repetitive nature of the scenes).

Scale Absolute world scale is not observable from a
monocular SLAM alone. This is a problem we need to
tackle as the scale of our reconstruction directly depends
on the scale of our tracker. However, we argue that this
problem is easy to solve since it is possible to recover scale
information in many ways. GPS, IMU, or even using some
object of known dimensions, can all be used to recover
scale information.

We used GPS information in our implementation as it is
available in the dataset we worked with. The estimated tra-
jectory from monocular SLAM will be aligned with scale
correction as described in [58]. Geo-registration of camera
center with absolute 3D coordinates will be established be-
fore offline MVS reconstruction, as it is described in next
section. Moreover, using predicted depth with monocu-
lar camera to simulated RGB-D sensor is an alternative to
tackle the scale issue, which is evaluated in Section 4.

3.2. MVS Dense Reconstruction

Once the pose graph has been created, it can be passed to
an MVS component that densely reconstructs the environ-
ment using the input frames and the corresponding camera
poses. This reconstruction can be done either real-time or
offline. Naturally, offline solutions provide much more ac-
curate results, which is of interest for some agricultural ap-
plications such as 4D monitoring [19]. Real-time solutions,
on the other hand, provide an initial estimate of the scene
which can be used in other tasks where reconstruction does
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not need to be very dense, such as auto steering.
Therefore, the employed SLAM system in this work was

embedded with an real-time MVS pipeline, while storing
the data for an offline reconstruction once the exploration
was finished.

Offline Dense Reconstruction We choose COLMAP [57]
for the offline, dense reconstruction of our map. It has a
well-engineered implementation of Structure-from-Motion
(SfM) workflow with Multi-View Stereo (MVS) algorithm
[56]. The output of SfM is the scene graph includes the
camera poses and sparse point cloud, which is considered
the same as the output of a sparse SLAM (pose graph).
Replacing the SfM part, the standard pipeline is modified
by passing the key-frame poses computed by monocular
OpenVSLAM to obtain better results. The workflow is
illustrated in Figure 2. Note that in the image registra-
tion stage, we reconstruct sparse point cloud again (not
required, but more convenient) to provide neighbourhood
information for MVS, in the meantime geo-register im-
age by providing absolute coordinates of camera center.
This is similar as the direct geo-referencing using GPS
measurement introduced in [12]. Thus, the generated
point cloud (Figure 1) is up to real scale and prepared for
post-processing, see Figure 8 for the geometric analysis on
the point cloud.

Online Dense Reconstruction There are few real-
time MVS reconstruction pipelines, for the obvious
reason that accurate dense reconstruction requires a lot
of computational power. Still, we are able to integrate
REMODE (REgularized MOnocular Depth Estimation)
[46] with monocular OpenVSLAM to generate maps
whose accuracy are high enough for some agricultural
tasks such as auto-steer. REMODE creates depth filters for
every keyframe on per-pixel basis and works on all tracked
frames (unlike our offline mode, where only keyframes
are used). The filter is initialized with high uncertainty in
depth and the mean is set to the average scene depth in the
reference frame. Given a set of triangulated noisy depth
measurements d1, d2, ..., dk that correspond to same pixel
location, the estimated depth measurement d̃k is modeled
with a Gaussian + Uniform mixture model distribution
[61]:

p(d̃k|d̂, ρ) = ρN (d̃k|d̂, τ2k ) + (1− ρ)U(d̃k|dmin, dmax)
(2)

where a good depth measurement is assumed to be dis-
tributed around the true depth d̂ while outlier depth mea-
surements are uniformly distributed within an interval
[dmin, dmax]. ρ and τ2k are the probability and the variance
of a good measurement. Each new observation is added to
its filter, until the covariance is low enough. Thence the fil-
ter is considered as having converged, and the 3D point is

(a) Tracked image (b) Auto-masked image

(c) Estimated depth map (d) Dense point cloud

Figure 3. Real-time monocular dense reconstruction from RE-
MODE [46] on Rosario [45], sequence 03, which is running in
parallel with monocular SLAM used in this work.

created in the map using the estimated depth. The output
of our system using the online MVS pipeline can be seen
Figure 3.

3.3. Self-Supervised Monocular Depth Estimation

We employ Monodepth2 [26] as our depth estimation
method, which can be self-supervised trained on both
monocular videos and stereo pairs. The model is a fully
convolutional U-Net [49] (encoder-decoder structure).
When trained on monocular videos, an extra pose esti-
mation network is established to predict the egomotion
between image pairs.

Training We trained Monodepth2 with monocular
(M), stereo (S) and mixed method (MS) either from
pretrained encoder on ImageNet [53] or starting with high
resolution mixed model pretrained (MS*) on KITTI [23]
(mono+stereo 1024x320) which is provided by C. Godard
et al. [26]. The depth encoders of all models mentioned are
ResNet-18 [30]. All models are trained with a batch size of
6 on single GPU (GEFORCE GTX 1080 Ti) for 10 epochs.
The learning rate is set as 1 × 10−4 at the beginning and
drops by 0.1 every 4 epochs. Images from the right camera
is used in training, while images from left camera are only
involved in the computation of loss. We did not perform
horizontal flips as training augmentation, because the prin-
ciple points of both cameras are not perfectly in the middle
of the frame in Rosario dataset. Other data augmentations
include random brightness, contrast, saturation, and hue
jitter with respective ranges of±0.2,±0.2,±0.2, and±0.1.

Ground Truth and Metric Rosario dataset contains
only stereo images, the depth ground truth is generated
with SGBM [31] algorithm and therefore relative noisy. To
perform quantitative evaluation, we scaled the predicted
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depth with the ratio between the median values of predicted
depth and ground truth, as done in [26]:

D∗
predict =

median(Dgt)

median(Dpredict)
Dpredict (3)

where the performance metrics of depth estimation used
in this work are: Absolute Relative Error (Abs Rel),
Square Relative Error (Sq Rel), Root Mean Square Er-
ror (RMSE), RMSE log and Accuracy with threshold
(1.25, 1.252, 1.253), marked with red (lower the better) and
blue (higher the better) in Table 2.

In the comparison of the depth estimation accuracy of
all six methods in terms of the metrics above, the best
results appear both in monocular (M*) and mono+stereo
(MS*) training strategies, which results in difficulty of se-
lecting the best model. Thus, we had to simulate RGB-D
SLAM with all the possible model at hand (presented in
Table 3). The qualitative results of the depth estimation us-
ing SGBM and the depth prediction from Monodepth2 with
mixed training (MS*) are shown in Figure 4. More results
are presented in the supplementary material. The network
provides generally accurate depth map, but meets some de-
fects on texture-copy artifacts (e.g. the vehicle windows,
5th row) and on objects with intricate shape (e.g. human
bodies and vehicles, 1st row and 4th row).

4. Experiments and Results
Three sets of experiments are presented. The first one is

the performance benchmarking on dataset Rosario [45] with
different SLAM configurations, where we provide the base-
line for monocular SLAM and improved results for stereo
SLAM, compared to the relative work [16, 45] which only
evaluated stereo setting successfully. Then, along with eval-
uating monocular SLAM, we establish the ablation study
using predicted depth image to simulate RGB-D SLAM.
Finally, we discuss the dense point cloud generated in this
work.

4.1. Dataset and Evaluation Methodology

Exhaustive experiments were established on the Rosario
dataset in this work, which is a recently released dataset
composed of six different sequences in a soybean field. The
available sensor measurements include stereo images (672
× 376, 15 Hz) and GPS-RTK (5 Hz). The sensors were
synchronized and calibrated (both intrinsic and extrinsic).
The difficulty of the sequences varies as shown in Table 1.
For more details about the agricultural robotic and sensors,
please refer to [45].

The qualitative results of MVS dense reconstruction can
be seen in Figure 1 and 3, where we show the reconstructed
point clouds from both offline and online methods. Note
that the pose graph was geo-registered by providing the ab-
solute position of the camera center before implementing

Dataset Rosario S-PTAM [44] ORB-SLAM2 [40] OpenVSLAM [59]
Sequence Length Stereo Stereo Mono Stereo Mono

01 easy 615.15 3.85 (0.63%) 1.41 (0.23%) X 1.35 (0.22%) 10.19 (1.66%)
02 easy 320.16 1.80 (0.56%) 2.24 (0.70%) X 1.95 (0.61%) 28.17 (8.80%)
03 medium 169.45 2.37 (1.40%) 3.50 (2.06%) X 1.75 (1.03%) 4.29 (2.53%)
04 medium 152.32 1.49 (0.98%) 2.21 (1.45%) X 1.48 (0.97%) 6.14 (4.03%)
05 difficult 330.43 X 2.23 (0.68%) X 1.65 (0.50%) 23.66 (7.16%)
06 difficult 709.42 X 5.19 (0.73%) X 3.41 (0.48%) 91.13 (12.85%)

Table 1. Absolute trajectory error (ATE) [m] (ratio ATE over
trajectory length, in %) (X stands for tracking failure). The
results of S-PTAM and Stereo ORB-SLAM2 are extracted from
Rosario [45], Mono ORB-SLAM2 is evaluated in this work with
default configuration but the system cannot initialize on any se-
quence.

offline MVS on it (typical accuracy of GPS-RTK is around
1cm horizontally and around 2cm vertically). For specific
tasks like 4D monitoring of crops, this dense point cloud
can be used to calculate different kinds of geometric fea-
tures such as point density.

The quantitative results of absolute trajectory error
(ATE) estimated from SLAM are shown in Table 1 and 3,
corresponding trajectories are illustrated in Figure 5, 6 and
supplementary material. Besides the standard evaluation of
ATE for SLAM systems, we also highlight the importance
of point density which is used in the field of agricultural
mapping (the post-processing results can be seen in Figure
8). As introduced in [50], a satisfactory methodology to
simplify the resolution of 3D field maps while maintaining
the key information is through the concept of 3D density
and density grids. The idea of the 3D density is rooted in
the properties of the conventional density, which establishes
a relationship between the mass of a substance and the vol-
ume that it occupies:

d = N/V (4)

Where N indicates the number of points and V indicates
the 3D volume with a radius defined by the user. Two prac-
ticable approaches to apply the concept of 3D density is to
compute either a precise density: the density is estimated by
counting for each point the number of neighbors N (inside
a sphere of radius R); or by computing approximate den-
sity: it is then simply estimated by determining the distance
to the nearest neighbor (which is generally much faster).
This distance is considered as being equivalent to the above
spherical neighborhood radius R (and N = 1). In this work,
we first compute the precise density, namely, the number
of neighbors N with radius of 0.1 m (the absolute scale is
known from geo-registration), see Figure 8. Thereafter the
volume density is calculated simply as:

d = N/(4/3 · πR3) (5)

4.2. Ablation Study

Part of our contribution is evaluating self-supervised
depth estimation on agricultural image sequence, along with
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Figure 4. Qualitative results of self-supervised monocular
depth estimation on Rosario [45]. First column: selected raw
RGB images; Second column: ground truth depth images gener-
ated with SGBM [31]; Third column: predicted depth using Mon-
odepth2 [26] with mixed training strategy (MS*). More results
please see supplementary material.

Method Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

M 0.151 2.110 2.961 0.205 0.913 0.978 0.989
M* 0.150 2.118 2.934 0.204 0.915 0.978 0.989
S 0.231 1.716 5.632 0.646 0.665 0.905 0.919
S* 0.235 1.737 5.650 0.644 0.657 0.900 0.919
M+S 0.116 0.747 3.147 0.221 0.886 0.929 0.963
M+S* 0.116 0.742 3.165 0.222 0.885 0.929 0.962

Table 2. Ablation study. Quantitative results of Monodepth2 [26]
depth estimation using different variants of training methods on
Rosario [45]. Legend: S - Self-supervised stereo supervision; M -
Self-supervised mono supervision; * - start with model pretrained
on KITTI [23] (otherwise, the depth encoder is initialized with
pretrained weights on ImageNet [53]).

monocular visual SLAM and simulating RGB-D SLAM.
Therefore, a comparison between different training strat-
egy on Rosario [45] is given in Table 2 using Monodepth2
[26]. We evaluated all the models trained to simulate RGB-
D SLAM, where the estimated ATEs are shown in Table 3.
To provide a baseline for future work, there is no specific
change in the CNN structure in this work. We discuss the
problem regarding to Monodepth2 in Section 4.2.2.

OpenVSLAM ATEs estimated on Dataset Rosario
Setting Train 01 02 03 04 05 06

Mono+DGT - 8.32 4.94 5.70 4.31 5.92 13.60
Mono+DCNN M X X X X X X
Mono+DCNN M* 10.99 12.46 16.98 14.52 13.58 33.35
Mono+DCNN S 5.21 3.80 2.79 3.01 3.26 8.40
Mono+DCNN S* 5.25 3.78 2.73 2.96 2.90 8.62
Mono+DCNN MS 5.44 3.57 2.54 2.71 2.95 7.52
Mono+DCNN MS* 5.37 3.41 2.62 2.94 2.63 7.79

Mono+Dscaled
GT - 7.44 2.03 0.678 0.25 2.39 5.78

Mono+Dscaled
CNN M X X X X X X

Mono+Dscaled
CNN M* 9.30 2.91 1.04 0.72 3.60 10.30

Mono+Dscaled
CNN S 2.31 1.40 0.59 0.28 2.37 6.35

Mono+Dscaled
CNN S* 2.71 1.35 0.59 0.29 1.98 6.95

Mono+Dscaled
CNN MS 3.61 1.35 0.60 0.26 2.24 6.14

Mono+Dscaled
CNN MS* 3.29 1.26 0.57 0.26 1.75 6.18

Stereo (baseline) - 1.35 1.95 1.75 1.48 1.65 3.41
Table 3. Ablation study. Quantitative results using estimated
depth simulating RGB-D SLAM, where DGT and DCNN indicate
whether the depth is generated from stereo image pair as ground
truth or estimated from Monodepth2 used in this work, scaled
means the estimated trajectory is aligned with scale correction.
Baseline (stereo OpenVSLAM) extracted from Table 1.

Figure 5. Estimated trajectories and the ground truth of
Rosario dataset, sequence 01. The illustrated results are refer
to our quantitative results shown in Table 1 and Table 3 regard-
ing to OpenVSLAM: Stereo, Mono, Mono+Dscaled

GT (RGBD GT)
and Mono+Dscaled

CNN (RGBD CNN, trained model MS*). Results
of sequence 02-06 are presented separately in Figure 6.

4.2.1 Visual SLAM on Rosario

As shown in Table 1, we present absolute trajectory error
(ATE) estimated from monocular OpenVSLAM used in this
work, and improved results for stereo SLAM which outper-
forms the previous baselines from [45] in general. Each
result of this work was calculated by averaging 5 runs on
each sequence. Notice that there is no specific algorithm
improvement comparing OpenVSLAM to ORB-SLAM2.
Some domain adapted modification on the threshold used
in this work was introduced in Section 3. Comparing to the
default configuration of monocular SLAM, our modifica-
tion solved problems of initialization and tracking failure,
which is the reason no other work [16, 45] can present re-
sults from monocular SLAM. In fact, sequence 03 and 04
are the two easiest sequences for SLAM as the movement
is simple straight forward, where we obtain good results
by simulating RGB-D SLAM and competitive good results
from Monocular setting.
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(a) Sequence 02 (b) Sequence 03 (c) Sequence 04

(d) Sequence 05 (e) Sequence 06

Figure 6. Estimated trajectories and the ground truth of Rosario dataset, sequence 02-06.

Problematic Drifts Serious drift may occur after the
camera inverted its direction (U-turn), such as sequence
02, 05, and 06 evaluated with Mono SLAM (Figure 6:
(a), (d) and (e)). Worst case happen on sequence 06 with
Monocular setting, where the scale and estimated trajectory
drift dramatically (Figure 6: (e), the trajectory in green).
We also observe that the estimated trajectory on sequence
01, 06 from simulated RGB-D SLAM, drifts after U-turn.
We conclude that this is due to the error from ground
truth depth generation (see Figure 5 bottom-left, result
of RGB GT) and self-supervised training (see Figure 5
bottom-right, result of RGB CNN).

Drifts in Z-Axis As we cannot assume a perfect 2D
ground plane existing under agricultural scenario and
the drifts in z-axis direction have to be considered. The
3D trajectories estimated from SLAM with xyz view are
illustrated in the supplementary material.

Scale Correction We simulate RGB-D sensor but get
better ATE results using scale correction when aligning the
trajectory with ground truth (see Table 3: Mono+Dscale

GT

and Mono+Dscale
CNN ), while the results from Mono+Dscale

CNN

are close to the results from Stereo SLAM, which shows
that similar performance can be obtained by simulating
RGB-D camera instead of using a raw stereo camera.
However, the ground truth depth image should introduce a
similar scale as it is generated from the stereo image pair
but we still need scale correction, which means the obvious
error was introduced during ground truth generation using
the method of SGBM [31]. Comparing all the results

of Mono+DCNN , shows that the Monodepth2 also has
trouble to learn the accurate scale from agricultural image
sequences in a self-supervised fashion, which is further
discussed in next Section 4.2.2.

Reproducibility Running Stereo SLAM on Rosario
[45] is straightforward and reasonable good results can be
obtained, however, we observe that the heuristic threshold
used for initializing monocular tracking and the number of
ORB features extracted will influence the robustness of the
system (as discussed in Section 3). Thus, we provide our
experimental results in the supplementary material, where
interested readers can find every single value calculated
from different SLAM configurations and from 5 test runs
on each data sequence.

4.2.2 Self-Supervised Depth Estimation on Rosario

Failure on Textureless Region Comparing to urban scenes
datasets like KITTI [23], most frames in Rosario dataset
[45] contain a large portion of textureless sky regions.
When using stereo training strategy (S/S*), Monodepth2
produces imprecise depth values on low texture regions.
When using mixed strategy (MS/MS*), it estimates relative
precise depth values on these regions, which is more dis-
tinct with foreground objects. Due to the correspondence
difficulty, the photometric reconstruction error is ambigu-
ous in large textureless regions. Therefore, a wide range of
predicted depth values can produce the same photometric
error, which is hard to be optimized based on the left-right
consistency assumption [25].
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(a) RGB image (b) Mono (M*) (c) Stereo (S*) (d) Mixed (MS*)

Figure 7. Failure on objects with textureless background. The
network smooths the depth prediction of the sky with the fore-
ground object and results to ambiguous contour of the object.

The feature-based SLAM system combined with auto-
masking of far points (as discussed in Section 3.1), tracks
no feature point on the textureless region, thus minimizing
the negative effects of the unreliable depth estimation.
However, we observe some failure cases, which may influ-
ence the performance of the SLAM system. As illustrated
in Figure 7, the depth prediction of textureless region
around the foreground object is polluted, which results in
ambiguous boundary of the foreground object. This bloom-
ing effect is driven by the edge-aware smoothness loss
[48] and appears more likely on objects with intricate shape.

Effect of Pretraining As shown in Table 3, through
the comparison of all the training strategies with/without
weights pretrained on KITTI, we find out using pretrained
model on other dataset does not explicitly improves the
SLAM performance. This reveals that the transferability of
Monodepth2 (with ResNet-18 as depth encoder) is limited.
However, pretrained model guarantees the stability and
robustness of RGB-D based tracking, while tracking failure
continues to happen on all the sequence using the model
specifically from monocular training (M) without pre-
trained on KITTI. Obviously, the depth and scale ambiguity
is not learned by monocular training (M) standalone.

As stated above, we recommend interested readers to uti-
lize Monodepth2 with the mixed training strategy and pre-
trained weights (MS*) to reproduce our work and research
on similar agriculture scenes.

4.3. Dense Reconstruction

In general, MVS can be initiated either with SfM or
visual SLAM depending on whether the input data is
an ordered sequence or unordered images, which means
one of the pre-conditions is the poses of the images
can be successfully recovered beforehand. In this work,
we are able to reconstruct the dense point cloud offline
(Figure 1) up to real scale after geo-registration, where
the potential drifts are eliminated by GPS measurement.
However, the employed real-time algorithm REMODE
estimates depth based on depth filter, which approximates
the mean and variance of the depth at each pixel’s position
and updates the depth uncertainty when there is a new
measurement (new image captured from the camera). The
implementation of depth filter naturally requires a high

Figure 8. Volume density (R = 0.1 m) of the dense point cloud
shown in Figure 1. Left: the density heatmap of the point cloud;
Top-right: the histogram of volume density; Bottom-right: a sub-
set of the dense point cloud.

frame rate to converge the depth uncertainty which is not
the case regarding dataset Rosario (15Hz). While we are
still able to reconstruct coarse dense point cloud on the
fly using REMODE (Figure 3), a potential improvement
could be to initialize the depth filter according to the depth
estimated from CNN (e.g. consider depth estimated from
Monodepth2 as the prior knowledge of the scene geometry)
to accelerate convergence, as discussed in [35].

Point Cloud and Density The volume density is cal-
culated using CloudCompare [2], which is an open-source
3D point cloud and mesh processing software (see Figure
8). The density of the map stays relatively constant
throughout the sequence, except during slowdowns and
stops. In those cases, more keyframes are taken within the
same area, increasing the density of the map in this region.
Moreover, we illustrate on a very small subset of the dense
point cloud, where we can see the height of the crops. The
crops and ground can be easily recognized, separated, and
measured, which provides very valuable information.

5. Conclusion
Our work successfully presented a monocular vision-

based architecture for mapping and localization explored
under challenging agricultural environment, with new base-
lines provided for the relevant research community. Future
works can explore other types of indirect SLAM systems,
such as ones integrating GPS, or IMU, thus leveraging the
advantages of feature-based tracking described here without
the drifting issue.
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