
Learning to Generate Dense Point Clouds with Textures on Multiple Categories

Tao Hu, Geng Lin, Zhizhong Han, Matthias Zwicker
Department of Computer Science, University of Maryland, College Park

taohu@cs.umd.edu, geng@cs.umd.edu, h312h@umd.edu, zwicker@cs.umd.edu

Abstract

3D reconstruction from images is a core problem in com-
puter vision. With recent advances in deep learning, it has
become possible to recover plausible 3D shapes even from
single RGB images for the first time. However, obtaining de-
tailed geometry and texture for objects with arbitrary topol-
ogy remains challenging. In this paper, we propose a novel
approach for reconstructing point clouds from RGB images.
Unlike other methods, we can recover dense point clouds
with hundreds of thousands of points, and we also include
RGB textures. In addition, we train our model on multiple
categories which leads to superior generalization to unseen
categories compared to previous techniques. We achieve
this using a two-stage approach, where we first infer an ob-
ject coordinate map from the input RGB image, and then
obtain the final point cloud using a reprojection and com-
pletion step. We show results on standard benchmarks that
demonstrate the advantages of our technique. Code is avail-
able at https://github.com/TaoHuUMD/3D-Reconstruction

1. Introduction
3D reconstruction from single RGB images has been

a longstanding challenge in computer vision. While re-
cent progress with deep learning-based techniques and large
shape or image databases has been significant, the recon-
struction of detailed geometry and texture for a large va-
riety of object categories with arbitrary topology remains
challenging. Point clouds have emerged as one of the most
popular representations to tackle this challenge because of
a number of distinct advantages: unlike meshes they can
easily represent arbitrary topology, unlike 3D voxel grids
they do not suffer from cubic complexity, and unlike im-
plicit functions they can reconstruct shapes using a single
evaluation of a neural network. In addition, it is straight-
forward to represent surface textures with point clouds by
storing per-point RGB values.

In this paper, we present a novel method to reconstruct
3D point clouds from single RGB images, including the op-
tional recovery of per-point RGB texture. In addition, our

approach can be trained on multiple categories. The key
idea of our method is to solve the problem using a two-
stage approach, where both stages can be implemented us-
ing powerful 2D image-to-image translation networks: in
the first stage, we recover an object coordinate map from
the input RGB image. This is similar to a depth image,
but it corresponds to a point cloud in object-centric coor-
dinates that is independent of camera pose. In the second
stage, we reproject the object space point cloud into depth
images from eight fixed viewpoints in image space, and per-
form depth map completion. We can then trivially fuse
all completed object space depth maps into a final 3D re-
construction, without requiring a separate alignment stage,
for example using iterative closest point algorithm (ICP)
[2]. Since all networks are based on 2D convolutions, it is
straightforward to achieve high resolution reconstructions
with this approach. Texture reconstruction uses the same
pipeline, but operating on RGB images instead of object
space depth maps.

We train our approach on a multi-category dataset and
show that our object-centric, two-stage approach leads to
better generalization than competing techniques. In addi-
tion, recovering object space point clouds allows us to avoid
a separate camera pose estimation step. In summary, our
main contributions are as follows:

• A strategy to generate 3D shapes from single RGB im-
ages in a two-stage approach, by first recovering object
coordinate images as an intermediate representation,
and then performing reprojection, depth map comple-
tion, and a final trivial fusion step in object space.

• The first work to train a single network to reconstruct
point clouds with RGB textures on multiple categories.

• More accurate reconstruction results than previous
methods on both seen and unseen categories from
ShapeNet [3] or Pix3D [22] datasets.

2. Related Work
Our method is mainly related to single image 3D recon-

struction and shape completion. We briefly review previous
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Figure 1: Approach overview. An image X is passed through a 2D-3D network to reconstruct the visible parts of the object,
represented by an object coordinate image C. X and C represent the texture and 3D coordinates of a shape respectively,
which yield a partial shape with texture Pdt when combined by a Joint Texture and Shape Mapping operator. Next, by Joint
Projection, Pdt is jointly projected from 8 fixed viewpoints into 8 pairs of partial depth maps and textures maps, which are
translated to completed maps by the Multi-view Texture-Depth Completion Net (MTDCN) that jointly completes texture and
depth maps. Alternatively, Multi-view Depth Completion Net (MDCN) only completes the depth maps. Finally, the Joint
Fusion operator fuses the completed multiple texture and depth maps into completed point clouds.

works in these two aspects.
Single image 3D reconstruction. Along with the develop-
ment of deep learning techniques, single image 3D recon-
struction has made a huge progress. Because of the regu-
larity, early works mainly learned to reconstruct voxel grids
from 3D supervision [4] or 2D supervision [23] using dif-
ferentiable renderers [29, 25]. However, these methods can
only reconstruct shapes at low resolution, such as 32 or 64,
due to the cubic complexity of voxel grids. Although var-
ious strategies [8, 24] were proposed to increase the reso-
lution, these methods were too complex to follow. Mesh
based methods [27, 16] are also alternatives to increase the
resolution. However, these methods are still hard to han-
dle arbitrary topology, since the vertices topology of recon-
structed shapes mainly inherits from the template. Point
clouds based methods [7, 19, 32, 17] provides another di-
rection for single image 3D reconstruction. However, these
methods also have a bottleneck of low resolution, which
makes it hard to reveal more geometry details.

Besides low resolution, lack of texture is another is-
sue which significantly affects the realism of the generated
shapes. Current methods aim to map the texture from single
images to reconstructed shapes either represented by mesh
templates [13] or point clouds in a form of object coordinate
maps [21]. Although these methods have shown promising
results in some specific shape classes, they usually can only
work in category-specific reconstruction. In addition, the
texture prediction pipeline of [13] sampling pixels from in-
put images directly work on symmetric object with a good
viewpoint. Though some other methods (e.g. [34, 23]) pre-
dict nice novel RGB views by view synthesis, they can only
work on category-specific reconstruction.

Different from all these methods, our method can jointly
learn to reconstruct high resolution geometry and texture
by a two-stage reconstruction and taking object coordi-
nate maps (also called NOCS map in [26, 21]) as inter-

mediate representation. Different from previous methods
[33, 32] which use depth maps as intermediate representa-
tion and require camera pose information in their pipelines,
our method does not require camera pose information.
Shape completion. Shape completion is to infer the whole
3D geometry from partial observations. Different methods
use volumetric grids [5] or point clouds [31, 30, 1] as shape
representation for completion task. Points-based methods
are mainly based on encoder and decoder structure which
employs PointNet architecture [18] as backbones. Although
these works have shown nice completed shapes, they are
limited to low resolution. To resolve this issue, Hu et al. [9]
introduced Render4Completion to cast the 3D shape com-
pletion problem into multiple 2D view completion, which
demonstrates promising potential on high resolution shape
completion. Our method follows this direction, however,
we can not only learn geometry but also texture, which
makes our method much different.

3. Approach

Most 3D point cloud reconstruction methods [17, 4, 6]
solely focus on generating 3D shapes {Pi = [xi, yi, zi]}
from input RGB images X ∈ RH×W×3, where H × W
is the image resolution and [xi, yi, zi] are 3D coordinates.
Recovering the texture besides 3D coordinates is a more
challenging task, which requires learning a mapping from
RH×W×3 to {Pi = [xi, yi, zi, ri, gi, bi]}, where [ri, gi, bi]
are RGB values.

We propose a method to generate high resolution 3D pre-
dictions and recover textures from RGB images. At a high
level, we decompose the reconstruction problem into two
less challenging tasks: first, transforming 2D images to 3D
partial shapes that correspond to the observed parts of the
target object, and second, completing the unseen parts of
the 3D object. We use object coordinate images to repre-



sent partial 3D shapes, and multiple depth and RGB views
to represent completed 3D shapes.

As shown in Fig. 1, our pipeline consists of four sub-
modules: (1) 2D-3D Net, an image translation network
which translates an RGB image X to a partial shape Pd

(represented by object coordinate image C); (2) the Joint
Projection module, which first jointly maps the partial shape
Pd with texture X to generate Pdt, a partial shape mapped
with texture, and then jointly project Pdt into 8 pairs of par-
tial depth [D1, . . . , D8] and texture views [T1, . . . , T8] from
8 fixed viewpoints (the 8 vertices of a cube); (3) the multi-
view texture and depth completion module, which consists
of two networks: Multi-view Texture-Depth Completion
Net (MTDCN), which generates completed texture maps
[T ′1, . . . , T

′
8] and depth maps [D′1, . . . , D

′
8] by jointly com-

pleting partial texture and depth maps, and as an alterna-
tive, Multi-view Texture-Depth Completion Net (MDCN),
which only completes depth maps and generates more ac-
curate results [D̂1, . . . , D̂8]; (4) the Joint Fusion module,
which jointly fuses the completed depth and texture views
into completed 3D shape with textures, like Sd+t and Sdt.

3.1. 2D RGB Image to Partial Shapes

We propose to use 3-channel object coordinate images
to represent partial shapes. Each pixel on the object coor-
dinate image represents a 3D point, where its (r, g, b) value
corresponds to the point’s location (x, y, z). An object co-
ordinate image is aligned with the input image, as shown in
Figure 1, and in our pipeline, it represents the visible parts
of the target 3D object. With this image-based 3D repre-
sentation, we formulate the 2D-to-3D transformation as an
image-to-image translation problem, and propose a 2D-3D
Net to perform the translation based on the U-Net [20] ar-
chitecture as in [11].

Unlike the depth map representation used in [33] and
[32], which requires camera pose information for back-
projection, the 3-channel object coordinate image can repre-
sent a 3D shape independently. Note that our network infers
the camera pose of the input RGB image so that the gener-
ated partial shape is aligned with ground truth 3D shape.

3.2. Partial Shapes to Multiple Views

In this module, we transform the input RGB image X
and the predicted object coordinate image C to a partial
shape mapped with texture, Pdt, which is then rendered
from 8 fixed viewpoints to generate depth maps and texture
maps. The process is illustrated in Fig. 2.
Joint Texture and Shape Mapping. The input RGB image
X is aligned with the generated object coordinate image C.
An equivalent partial point cloud Pdt can be obtained by
taking 3D coordinates from C and texture from X .

We denote a pixel on X as pXi = [uXi , v
X
i , r

X
i , g

X
i , b

X
i ],

where uXi and vXi are pixel coordinates, and similarly, a

Figure 2: Joint Projection.

point on C as pCi = [uCi , v
C
i , x

C
i , y

C
i , z

C
i ]. Given pXi and

pCi appearing at the same location, which means uXi = uCi
and vXi = vCi , then pXi and pCi can be projected into 3D
coordinates as Pi = [xi, yi, zi, ri, gi, bi] on partial shape
Pdt, where ri, gi, bi are RGB channels and xi = xCi , yi =
yCi , zi = zCi , ri = rXi , gi = gXi , bi = bXi .

Joint Projection. We render multiple depth maps D =
{D1, . . . , D8} and texture maps T = {T1, . . . , T8} from
8 fixed viewpoints V = {V1, . . . , V8} of the partial shape
Pdt, where Dn ∈ RH×W , Tn ∈ RH×W×3, n ∈ [1, 8].

Given n, we denote a point on depth map Dn as
pDi = [uDi , v

D
i , d

D
i ] where uDi and vDi are pixel coordi-

nates and dDi is the depth value. Similarly, a point on Tn
is pTi = [uTi , v

T
i , r

T
i , g

T
i , b

T
i ], where rTi , g

T
i , b

T
i are RGB

values. Then, we transform each 3D point Pi on the partial
shape Pdt into a pixel p′i = [u′i, v

′
i, d
′
i] on depth map Dn by

p′i = K(<nPi + τn) ∀i, (1)

where K is the intrinsic camera matrix, <n and τn are the
rotation matrix and translation vector of view Vn. Note that
Eq. (1) only projects the 3D coordinates of Pi.

However, different points on Pdt may be projected to the
same location [u, v] on the depth map Dn. For example,
in Fig. 2, p1 = [u, v, d1], p2 = [u, v, d2], p3 = [u, v, d3]
are projected to the same pixel pDi = [uDi , v

D
i , d

D
i ] on Dn,

where uDi = u, vDi = v. The corresponding point on the
texture map Tn is pTi = [uTi , v

T
i , r

T
i , g

T
i , b

T
i ] where uTi =

u, vTi = v.

To alleviate this collision effect, We implement a pseudo-
rendering technique similar to [10, 15]. Specifically, for
each point on Pdt, a depth buffer with a size ofU×U is used
to store multiple depth values corresponding to the same
pixel. Then we implement a depth-pooling operator with
stride U × U to select the minimum depth value. We set
U = 5 in our experiments. In depth-pooling, we store the
indices of pooling (j) and select the closest point from the
view point Vn among {p1, p2, p3}. For example, in Fig. 2,
pooling index j = 1, the selected point is p1, and the cor-
responding point on Pdt is P1. In this case, we copy the
texture values from P1 to pTi .



3.3. Multi-view Texture and Depth Completion

In our pipeline, a full shape is represented by depth im-
ages from multiple views, which are processed by CNNs to
generate high resolution 3D shapes as mentioned in [15, 9].
Multi-view Texture-Depth Completion Net (MTDCN).
We propose a Multi-view Texture-Depth Completion Net
(MTDCN) to jointly complete texture and depth maps. MT-
DCN is based on a U-Net architecture. In our pipeline, we
stack each pair of partial depth map Dn and texture map Tn
into a 4-channel texture-depth map Qn = [Tn, Dn], Qn ∈
RH×W×4, n ∈ [1, 8]. MTDCN takes Qn as input, and
generates completed 4-channel texture-depth maps Q′n =
[T ′n, D

′
n], Q

′
n ∈ RH×W×4, where T ′n andD′n are completed

texture and depth map respectively. The completions of the
car model are shown in Fig. 3. After fusing these views, we
get a completed shape with texture Sdt in Fig. 1.

In contrast to the category-specific reconstruction in
[13], which samples texture from input images, thus having
its performance relying on the viewpoint of the input im-
ages and the symmetry of the target objects, MTDCN can
be trained to infer textures on multiple categories and does
not assume objects being symmetric.
Multi-view Depth Completion Net (MDCN). In our ex-
periments, we found it very challenging to complete both
depth and texture map at the same time. As an alterna-
tive we also train MDCN, which only completes partial
depth maps [D1, . . . , D8] and can generate more accurate
full depth maps [D̂1, . . . , D̂8]. We then map the texture
[T ′1, . . . , T

′
8] generated by MTDCN to the MDCN-generated

shape Sd to get a reconstructed shape with texture Sd+t as
illustrated in Fig. 1.

Different from the multi-view completion net in [9],
which only completes 1-channel depth maps, MTDCN can
jointly complete both texture and depth maps. It should
be mentioned that there is no discriminator in MTDCN or
MDCN, in contrast to [9].

3.4. Joint Fusion

With the completed texture maps T ′ = [T ′1, . . . , T
′
8] and

depth maps D′ = [D′1, . . . , D
′
8] by MTDCN and more

accurate completed depth maps D̂ = [D̂1, . . . , D̂8] by
MDCN, we jointly fuse the depth and texture maps into a
colored 3D point, as illustrated in Fig. 1.
Joint Fusion for MTDCN. Given one point pD

′

i =

[uD
′

i , vD
′

i , dDi ] on D′n, and the aligned point pT
′

i =

[uT
′

i , v
T ′

i , rT
′

i , gT
′

i , bT
′

i ] on the texture map T ′n, where
uD

′

i = uT
′

i and vD
′

i = vT
′

i , the back-projected point on
Sdt is P ′i = [x′i, y

′
i, z
′
i, r
′
i, g
′
i, b
′
i] by

P ′i = <−1s (K−1pD
′

i − τn) ∀i. (2)

Note that Eq. 2 only back-projects the depth map D′n to
the coordinates of P ′i, while the texture of P ′i is obtained

Figure 3: Completions of texture and depth maps.

from pT
′

i , where r′i = rT
′

i , g′i = gT
′

i , b′i = bT
′

i . We also
extract a completed shape Sd without texture.
Joint Fusion for MDCN. We map the texture [T ′1, . . . , T

′
8]

generated from MTDCN to the completed shape of MDCN
Sd+t. The joint fusion process is similar. However, since
texture and depth maps are generated separately, a valid
point on a depth map may be aligned to an invalid point on
the corresponding texture map, especially near edges. For
such points, we take their nearest valid neighbor on the tex-
ture map. Since Sd is generated by direct fusion of depth
maps [D̂1, . . . , D̂8], Sd+t has the same shape as Sd.

3.5. Loss Function and Optimization

Training Objective. We perform a two-stage training and
train three networks: 2D-3D Net (G1), MTDCN (G2), and
MDCN (G3). Given an input RGB image X , the gener-
ated object coordinate image is C = G1(X). The training
objective of G1 is

G1
∗ = argmin

G1

||G1(X)− Y ||1, (3)

where Y is the ground truth object coordinate image.
Given an partial texture-depth images Qn = [Tn, Dn],

n ∈ [1, 8], the completed texture-depth images Q′n =
G2(Qn), we get the optimal G2 by

G2
∗ = argmin

G2

||G2(Qn)− Y ′||1, (4)

where Y ′ is the ground truth texture-depth image.
MDCV only completes depth maps and takes 1-channel

depth maps as input. Given a partial depth map Dn, the
completed depth map D̂n = G3(Dn). G3 is trained with

G3
∗ = argmin

G3

||G3(Dn)− Ŷ ||1, (5)

where Ŷ is the ground truth depth image.
Optimization. We use Minibatch SGD and the Adam op-
timizer [14] to train all the networks. More details can be
found in the supplementary material.



4. Experiments

We evaluate our methods (Ours-Sd+t generated by
MDCN, and Ours-Sdt by MTDCN) on single-image 3D re-
construction and compare against state-of-the-art methods.
Dataset and Metrics. We train all our networks on syn-
thetic models from ShapeNet [3], and evaluate them on both
ShapeNet and Pix3D [22]. We render depth maps, texture
maps and object coordinate images for each object. More
details can be found in the supplementary material. The im-
age resolution is 256 × 256. We sample 100K points from
each mesh object as ground truth point clouds for evalua-
tions on ShapeNet, as in [15]. For a fair comparison, we use
Chamfer Distance (CD) [7] as the quantitative metric. An-
other popular option, Earth Mover’s Distance (EMD) [7],
requires that the generated point cloud has the same size
as the ground truth, and its calculation is time-consuming.
While EMD is often used as a metric for methods whose
output is sparse and has fixed size, like 1024 or 2048 points
in [6, 17], it is not suitable to evaluate our methods that gen-
erates very dense point clouds with varied number of points.

4.1. Single Object Category

We first evaluate our method on a single object cate-
gory. Following [29, 15], we use the chair category from
ShapeNet with the same 80%-20% training/test split. We
compare against two methods (Tatarchenko et al. [23] and
Lin et al. [15]) that generate dense point clouds by view
synthesis, as well as two voxels-based methods, Perspec-
tive Transformer Networks (PTN) [29] in two variants, and
a baseline 3D-CNN provided in [29].

The quantitative results on the test dataset are reported
in Table 1. Test results of other approaches are referenced
from [15]. Our method (Ours-Sd+t) achieves the lowest CD
in this single-category task. A visual comparison with Lin’s
method is shown in Fig. 4, where our generated point clouds
are denser and more accurate. In addition, we also infer the
textures of the generated point clouds.

4.2. General Object Categories from ShapeNet

We also simultaneously train our network on 13 cate-
gories (listed in Table 3) from ShapeNet and use the same
80%-20% training/test split as existing methods [4, 17].
Reconstruct novel objects from seen categories. We test
our method on novel objects from the 13 seen categories
and compare against (a) 3D-R2N2 [4], which predicts vol-
umeric models with recurrent networks, and (b) PSGN [6],
which predicts an unordered set of 1024 3D points by fully-
connected layers and deconvolutional layers, and (3) 3D-
LMNet which predicts point clouds by latent-embedding
matching. We only compare methods that follow the same
setting as 3D-R2N2, and do not include [15] which assumes
fixed elevation or OptMVS [28]. We use the pretrained

Figure 4: Reconstructions on single-category task.

models readily provided by the authors, and the results of
3D-R2N2 and PSGN are referenced from [15]. Note that
we extract the surface voxels of 3D-R2N2 for evaluation.

Table 3 shows the quantitative results. Since most meth-
ods need ICP alignment as a post-processing step to achieve
finer alignment with ground truth, we list the results with-
out and with ICP. Specially, PSGN predicts rotated point
clouds, so we only list the results after ICP alignment. Ours-
Sd+t outperforms the state-of-the-art methods on most cat-
egories. Specifically, we outperform 3D-LMNet on 12 cat-
egories out of 13 without ICP, and 7 with ICP. In addition,
we achieve the lowest CD in average. Different from other
methods, our methods do not rely too much on ICP, and
more analysis can be found in Section 4.4.

We also visualize the predictions in Fig. 6. It can be
seen that our method predicts more accurate shapes with
higher point density. Besides 3D coordinate predictions, our
methods also predict textures. We demonstrate ours-Sd+t

from two different views (v1) and (v2).
Reconstruct objects from unseen categories. We also
evaluate how well our models generalizes to 6 unseen cat-
egories from ShapeNet: bed, bookshelf, guitar, laptop, mo-
torcycle, and train. The quantitative comparisons with 3D-
LMNet in Table 4 shows a better generalization of our
method. We outperform 3D-LMNet on 4 categories out of
6 before or after ICP. Qualitative completions are shown in
Fig. 5. Our methods perform reasonably well on the recon-
struction of bed and guitar, while 3D-LMNet interprets the
input as sofa or lamp from the seen categories respectively.

4.3. Real-world Images from Pix3D

To test the generalization of our approach to real-world
images, we evaluate our trained model on the Pix3D dataset
[22]. We compare against the state-of-the-art methods,
PSGN [6], 3D-LMNet [17] and OptMVS [28]. Following
[17] and [22], we uniformly sample 1024 points from the
mesh as ground truth point cloud to calculate CD, and re-
move images with occlusion and truncation. We also pro-
vide the results of taking denser point cloud as ground truth
in the supplementary. We have 4476 test images from seen



Method CD
3D CNN (vol. loss only) 4.49

PTN (proj. loss only) 4.35
PTN (vol. & proj. loss) 4.43

Tatarchenko et al. 5.40
Lin et al. 3.53
Ours-Sdt 3.68

Ours-Sd+t 3.04

Table 1: CD on single-category task.
Category Pd Ours-Sd+t

airplane 10.53 4.19
bench 7.85 3.40
cabinet 19.07 4.88

car 11.14 2.90
chair 8.69 3.59

display 12.43 4.71
lamp 11.95 6.18

loudspeaker 20.26 6.39
rifle 9.47 5.44
sofa 10.86 4.07
table 8.83 3.27

telephone 9.83 3.16
vessel 9.08 3.79
mean 10.58 3.91

chair 9.04 3.04

Table 2: Mean CD of partial shape Pd and
completed shape Sd+t to ground truth.

Category 3D-R2N2 PSGN 3D-LMNet Ours-Sdt Ours-Sd+t

airplane (4.79) (2.79) 6.16 (2.26) 3.70 (3.37) 4.19 (3.66)
bench (4.93) (3.80) 5.79 (3.72) 4.27 (3.83) 3.40 (3.10)
cabinet (4.04) (4.91) 6.98 (4.46) 6.77 (5.89) 4.88 (4.50)

car (4.81) (3.85) 3.17 (2.91) 2.93 (2.95) 2.90 (2.90)
chair (4.93) (4.24) 7.08 (3.74) 4.47 (4.12) 3.59 (3.22)

display (5.04) (4.25) 7.89 (3.72) 5.55 (4.94) 4.71 (3.85)
lamp (13.03) (4.56) 11.36 (4.57) 8.06 (7.13) 6.18 (5.65)

loudspeaker (6.69) (6.00) 7.95 (5.46) 9.53 (8.28) 6.39 (5.74)
rifle (6.64) (2.67) 4.46 (2.55) 5.31 (4.28) 5.44 (4.30)
sofa (5.50) (5.38) 6.06 (4.44) 4.43 (3.93) 4.07 (3.57)
table (5.26) (4.10) 6.65 (3.84) 4.59 (4.26) 3.27 (3.14)

telephone (4.61) (3.50) 3.91 (3.10) 4.98 (4.72) 3.16 (2.90)
vessel (6.82) (3.59) 6.30 (3.81) 4.13 (3.85) 3.79 (3.52)
mean (5.93) (4.13) 6.14 (3.59) 4.68 (4.26) 3.91 (3.56)

Table 3: Average CD of multiple-seen-category experiments on ShapeNet. Num-
bers beyond ‘()’ are the CD before ICP, and in ‘()’ are after ICP.

Category 3D-LMNet Ours-Sdt Ours-Sd+t

bed 13.56 (7.13) 12.82 (8.43) 11.46 (6.51)
bookshelf 7.47 (4.68) 8.99 (7.96) 5.63 (4.89)

guitar 8.19 (6.40) 7.07 (7.29) 5.96 (6.33)
laptop 19.42 (5.21) 9.76 (7.58) 7.08 (5.67)

motorcycle 7.00 (5.91) 7.32 (6.75) 7.03 (5.79)
train 6.59 (4.07) 9.16 (4.38) 9.54 (3.93)

mean 10.37 (5.57) 9.19 (7.06) 7.79 (5.52)

Table 4: Average CD of multiple-unseen-category experiments on ShapeNet.

Category PSGN 3D-LMNet OptMVS Ours-Sdt Ours-Sd+t

chair (8.98) 9.50 (5.46) 8.86 (7.23) 8.35 (7.40) 7.28 (6.05)
sofa (7.27) 7.82 (6.54) 8.25 (8.00) 8.54 (7.18) 8.41 (6.83)
table (8.84) 13.57 (7.62) 9.09 (8.88) 9.52 (9.06) 8.53 (7.97)

mean-seen (8.55) 9.73 (6.04) 8.75 (7.67) 8.54 (7.55) 7.74 (6.53)

bed* (9.23) 13.11 (9.02) 12.69 (9.01) 10.91 (8.41) 11.04 (8.19)
bookcase* (8.24) 8.32 (6.64) 8.10 (8.35) 10.38 (9.72) 8.99 (8.44)

desk* (8.40) 11.75 (7.72) 9.01 (8.50) 8.64 (8.16) 7.64 (7.18)
misc* (9.84) 13.45 (11.34) 13.82 (12.36) 12.58 (11.03) 11.48 (9.30)
tool* (11.20) 13.64 (9.09) 14.98 (11.27) 13.27 (11.70) 12.18 (9.02)

wardrobe* (7.84) 9.46 (6.96) 6.96 (7.26) 9.15 (8.80) 8.33 (8.26)
mean-unseen (8.81) 11.67 (8.22) 10.48 (8.83) 10.19 (8.86) 9.57 (8.07)

Table 5: Average CD on both seen and unseen category on Pix3D dataset. All numbers are
scaled by 100. ‘*’ indicates unseen category.

Figure 5: Results on
ShapeNet unseen category

categories, and 1048 from unseen categories.

Reconstruct novel objects from seen categories in Pix3D.
We test the methods on 3 seen categories (chair, sofa, table)

that co-occur in the 13 training sets of ShapeNet, and the
results are shown in Table 5. Even on real-world data, our
networks generate well aligned shapes, while other meth-



Figure 6: Reconstructions of the seen categories on ShapeNet dataset. ‘C’ is the generated object coordinate image, and ‘GT’
is another view of the target object. Ours-Sdt is generated by MTDCN, Ours-Sd and Ours-Sd+t are generated by MDCN.

ods largely rely on ICP. Qualitative results are shown in
Fig. 7. Our method performs well on real images and gen-
erates denser point clouds with reasonable texture. Besides
more accurate shape alignment, our method also predicts
better shapes, like the aspect ratio in the ‘Table’ example.
Reconstruct objects from unseen categories in Pix3D.
We also test the pretrained models on 7 unseen categories
(bed, bookcase, desk, misc, tool, wardrobe), and the results
are shown in Table 5. Our methods outperform other ap-
proaches [6, 28, 17] in mean CD with or without ICP align-
ment. Fig. 7 shows a qualitative comparison. For ‘Bed-1’
and ‘Bed-2’, our methods generate reasonable beds, while
3D-LMNet regards them as sofa or car-like objects. Sim-
ilarly, we generate reasonable ‘Desk-1’ and recovers the
main structure of the input. For ‘Desk-2’, our method es-
timates the aspect ratio more accurately and recovers some
details of the target object, like the curved legs. For ‘Book-
case’, ours generates a reasonable shape, while OptMVS or
3D-LMNet take it as a chair. In addition, we also success-
fully predict textures for unseen categories on real images.

4.4. Ablation Study

Contributions of each reconstruction stage to the final
shape. Considering both 2D-3D and view completion nets
perform reconstruction, in Table 2, we compare the gener-
ated partial shape Pd with the completed shape Ours-Sd+t

Method S-seen S-unseen P-seen P-unseen
3D-LMNet 0.42 0.46 0.38 0.30
Ours-Sd+t 0.09 0.29 0.16 0.16

Table 6: Relative CD improvements after ICP.

on their CD to ground truth on the multiple-category and
single-category (chair) task. For the former, the mean CD
decreases from 10.58 to 3.91 after the second stage.
Reconstruction accuracy of MTDCN and MDCN. As
shown in Tables 3, 4, 5, and Figures 6, 7, 4, MDCN gen-
erates denser point clouds with smoother surfaces, and the
mean CD is lower. Fig. 3 highlights that the completed
maps by MDCN are more accurate than those of MTDCN.
The impact of ICP alignment on reconstruction results.
Besides CD, pose estimation should also be evaluated in the
comparisons among different reconstruction methods. We
evaluate the pose estimations of 3D-LMNet and our meth-
ods by comparing the relative mean improvement of CD
after ICP alignment in Table 6 (S: ShapeNet, P: Pix3D),
which is calculated from the data in Table 3, 4, 5. A big-
ger improvement means a worse alignment. Although the
generated shapes of 3D-LMNet are assumed to be aligned
with ground truth, its performance still relies heavily on ICP
alignment. But our methods rely less on ICP, which implies
that our pose estimation is more accurate. We use the same



Figure 7: Reconstructions on Pix3D dataset. ‘C’ is object coordinate image, and ‘GT’ is ground truth model.

ICP implementation as 3D-LMNet [17].

4.5. Discussion

In sum, our method predicts shape better, like pose esti-
mation, the sizes and aspect ratio of shapes in Fig. 7. We
attribute this to the use of intermediate representation. The
object coordinate images containing only the seen parts, are
easier to infer compared to direct reconstructions from im-
ages in [6, 28, 17]. Furthermore, the predicted partial shapes
also constrain the view completion net to generate aligned
shapes. In addition, our method generalizes to unseen cat-
egories better than existing methods. Qualitative results in
Fig. 5 and 7 show that our method captures more generic,
class-agnostic shape priors for object reconstruction.

However, our generated texture is a little blurry since we

regress pixel values, instead of predicting texture flow [13]
which predicts texture coordinates and samples pixel values
directly from inputs to yield realistic textures. However,
[13]’s texture prediction can only be applied on category-
specific task with a good viewpoint of the symmetric object,
so it cannot be applied on multiple-category reconstruction
directly. We would like to study how to combine the pixel
regression methods and texture flow prediction methods to-
gether to predict realistic texture on multiple categories.

5. Conclusion

We propose a two-stage reconstruction method for 3D
reconstruction from single RGB images by leveraging ob-
ject coordinate images as intermediate representation. Our



pipeline can generate denser point clouds than previous
methods and also predict textures on multiple-category re-
construction tasks. Experiments show that our method out-
performs the existing methods on both seen and unseen cat-
egories on synthetic or real-world datasets.
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This supplementary material provides additional experi-
mental results and technical details for the main paper.

A. Optimization

Our pipeline implements a two-stage reconstruction ap-
proach, including 2D-3D transformation by a 2D-3D net,
and view completion by either the Multi-view Depth Com-
pletion Net (MDCN) or the Multi-view Texture-Depth
Completion Net (MTDCN). In Fig. 8 we take MDCN as
an example. We implement all of our networks in PyTorch
1.2.0.
Training 2D-3D net. We use Minibatch SGD and the
Adam optimizer [14] to train 2D-3D net, where the momen-
tum parameters are β1 = 0.5, β2 = 0.999. We train 2D-3D
net for 200 epochs with an initial learning rate of 0.0009,
and the learning rate linearly decays after 100 epochs. The
batch size is 64.

We train our networks in two stages, as shown in Fig. 8.
We denote the training input data (single RGB images) of
2D-3D net as X1, and test data as T1. The training input
data (object coordinate images) of MDCN is X2, and test
data is T2, which correspond to the output of 2D-3D net
given X1 or T1 as input respectively.

Let us denote f(C) as the average error ofC, like the av-
erage L1 distance to ground truth. In our case, C is a set of
object coordinate images. In general, since X1 is available
during training while T1 is novel input, f(X2) is smaller
than f(T2) by a large margin, that is, the relative difference
ε = |f(X2) − f(T2)|/f(X2) is large. For example, the
training input X2 is often less noisy than the test data T2,
which results in a large ε and limits the generalizability of
MDCN. In contrast, a smaller ε leads to better generaliz-
ability.

To decrease ε, we train two 2D-3D networks separately,
a ‘good’ net (G) and a relatively ‘bad’ (B) one such thatB’s
performance on the training set, f(B(X1)), is similar toG’s
performance on the test set, f(G(T1)). In this way, X2 =
B(X1) will look similar to T2 = G(T1), which improves
the generalizability of MDCN. We control the number of
training samples to train the two networks. G is trained
with 8 random views per 3D object, while B is trained with
only 1 for each. Note that we trained our net on both a
category-specific task and a multiple-category task, hence
we obtained 4 networks in total, 2 for each task.
Training multi-view completion net. Different from the
training of 2D-3D net, we only need to train one view com-
pletion net for both MTDCN and MDCN.

Since MTDCN and MDCN have a similar network struc-
ture as 2D-3D net, we use the same optimizer setup. For
MDCN, the initial learning rate is 0.0012, and the batch size
is 128. For MTDCN, the learning rate is 0.0008, and the
batch size is 48. Note that in our network, we concatenate
all the 8 views of a 3D object into one image whose size is

Figure 8: Two-stage Training.

2048 × 256, so that we do not need to store a shape mem-
ory or shape descriptor for each object mentioned in [9],
because they are generated on the fly on one single GPU,
which makes the pipeline more efficient than [9].

B. More Experimental Results

Quantitative results on Pix3D. We report the results of tak-
ing dense point clouds as ground truth in Table 7. Each
ground truth point cloud has 40K points, different from Ta-
ble 5 in the paper, which is tested with 1024 points for each
ground truth point cloud. Our method is the best on both
dense and sparse ground truth point clouds, compared with
existing methods (e.g., PSGN [6], 3D-LMNet [17], Opt-
MVS [28]).
Qualitative results of novel car objects from ShapeNet.
Among the 13 seen categories from ShapeNet [3], car ob-
jects generally have more distinct textures. In this part, we
show more qualitative completions of cars in Fig. 9, and
compare against 3D-R2N2 [4], PSGN [6], and 3D-LMNet
[17]. We can generate denser point clouds with reason-
able textures given inputs with different colors or shapes. It
should be mentioned that for the first car object, our method
Sd+t generate the correct shape, while other methods fail.

C. Dataset Processing

We describe how we prepare our data for network train-
ing and testing. The dataset we use is ShapeNet [3]. For
each model, we render 8 RGB images at random viewpoints
as input, and 8 depth/texture image pairs as ground truth in
MDCN training. All images have size 256× 256.
Scene setup. The camera has a fixed distance, 2.0, to the
object center, which coincides with the world origin. It al-
ways looks at the origin, and has a fixed up vector (0, 1, 0).
What vary among the viewpoints is the location of the cam-
era.



Category PSGN 3D-LMNet OptMVS Ours-Sdt Ours-Sd+t

chair (8.36) 8.90 (4.72) 8.20 (6.54) 7.76 (6.78) 6.66 (5.37)
sofa (6.33) 6.84 (5.53) 7.24 (7.05) 7.61 (6.19) 7.47 (5.84)
table (8.07) 12.88 (6.79) 8.24 (8.06) 8.87 (8.37) 7.82 (7.20)

mean-seen (7.84) 9.02 (5.23) 7.98 (6.89) 7.86 (6.83) 7.03 (5.76)

bed* (8.47) 12.39 (8.24) 11.91 (8.19) 10.21 (7.67) 10.31 (7.41)
bookcase* (7.49) 7.49 (5.77) 7.17 (7.44) 9.54 (8.86) 8.18 (7.61)

desk* (7.70) 11.06 (6.98) 8.15 (7.73) 7.97 (7.45) 6.91 (6.42)
misc* (9.36) 12.98 (10.92) 13.28 (11.96) 12.10 (10.53) 10.97 (8.80)
tool* (10.92) 13.39 (8.80) 14.69 (10.98) 12.97 (11.39) 11.89 (8.71)

wardrobe* (6.96) 8.52 (5.95) 5.89 (6.27) 8.25 (7.89) 7.52 (7.43)
mean-unseen (8.08) 10.95 (7.45) 9.65 (8.03) 9.48 (8.12) 8.85 (7.31)

Table 7: Average Chamfer Distance (CD) [7] on both seen and unseen category on Pix3D [22] dataset with 40K points as
ground truth point cloud. All numbers are scaled by 100, and * indicates unseen category. Numbers beyond ‘()’ are the CD
before ICP alignment [2], and in ‘()’ are after ICP.

Figure 9: Reconstructions of car objects on ShapeNet dataset. ‘C’ is the generated object coordinate image, and ‘GT’ is
another view of the target object. Ours-Sdt is generated by MTDCN, Ours-Sd and Ours-Sd+t are generated by MDCN.

Rendering of RGB images. We use the Mitsuba renderer
[12] to render all RGB images.
Rendering of depth images. Unlike previous works [31,
15] which use a graphics engine like Blender to render
depth images, ours utilizes a projection method that is sim-
ilar to the Joint Projection introduced in Section 3.2 of the
main paper. However, different from Joint Projection which
projects partial shapes, the ground truth shape for each ob-
ject is denser, which has 100K points sampled from mesh
models, and the depth buffer is increased from 5 × 5 to
50 × 50 to alleviate collision effects. Because our projec-
tion method is mainly based on matrix calculation, it ren-
ders depth maps faster than ray tracing of graphics engines.
Rendering of object coordinate images. Following the
depth projection pipeline, we also render object coordinate
images as the ground truth to train the 2D-3D nets. First,
since in our method, the object coordinate images repre-
sent the observed parts of objects, we render a depth map
from the viewpoint of the input RGB image by projection

method. Next, we back-project the depth map into a partial
shape {Pi = [xi, yi, zi]}, which can be represented by an
object coordinate image, where RGB values are [xi, yi, zi].
It should be mentioned that the input RGB image, the inter-
mediate representation of depth map, and the object coordi-
nate image has the same pose, which means they are aligned
in pixel level.
Fusion of depth maps. We fuse the 8 completed depth
maps into a point cloud with the Joint Fusion techniques in-
troduced in the main paper. We also use voting algorithm
to remove outliers as mentioned in [9]. We reproject each
point of one view into the other 7 views, and if this point
falls on the shape of other views, one vote will be added.
The initial vote number for each point is 1, and we set a
vote threshold of 5 to decide whether one point is valid or
not. In addition, radius outlier removal method is used to
remove noisy points that have less than 6 neighbors in a
sphere of radius 0.012 around them. However, according
to our experimental results, these post-processing methods



have little effect on the quantitative results. For example,
for single-category task (shown in Table 1 in the main pa-
per), the Chamfer Distance decreases from 3.09 to 3.04 after
these post-processing steps.


