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Abstract

In the last few years, deep neural networks’ compression
has become an important strand of machine learning and
computer vision research. Deep models require sizeable
computational complexity and storage when used, for in-
stance, for Human Action Recognition (HAR) from videos,
making them unsuitable to be deployed on edge devices.
In this paper, we address this issue and propose a method
to effectively compress Recurrent Neural Networks (RNNs)
such as Gated Recurrent Units (GRUs) and Long-Short-
Term-Memory Units (LSTMs) that are used for HAR. We use
a Variational Information Bottleneck (VIB) theory-based
pruning approach to limit the information flow through the
sequential cells of RNNs to a small subset. Further, we com-
bine our pruning method with a specific group-lasso reg-
ularization technique that significantly improves compres-
sion. The proposed techniques reduce model parameters
and memory footprint from latent representations, with little
or no reduction in the validation accuracy while increasing
the inference speed several-fold. We perform experiments
on the three widely used Action Recognition datasets, viz.
UCF11, HMDB51, and UCF101, to validate our approach.
We show that our method achieves over 70 times greater
compression than the nearest competitor with comparable
accuracy for action recognition on UCF11.

1. Introduction

Recent years have witnessed tremendous progress in em-
bedded and mobile devices, such as unmanned drones, auto-
matic cars, smart devices, and smart glasses. The demand to
deploy highly accurate Deep Neural Network (DNN) mod-
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els on these devices has become much more intense than
ever. However, some essential resources in these devices,
such as the storage, computational units, and battery power,
are limited, which pose several challenges in incorporating
large DNNs under low-cost/resource settings.

The DNNs specifically used for HAR are usually much
more resource-intensive than those used for other applica-
tions since HAR requires both spatial and temporal infor-
mation processing. Many DNN architectures have been
proposed for HAR, Convolutional Neural Network- LSTM
(CNN-LSTM) [18], being one of the major ones. It com-
prises a Deep Convolutional Neural Network (CNN) feature
extractor, followed by an RNN, specifically an LSTM unit.
A significant amount of research work focuses on CNN ar-
chitectures’ compression, but RNN architectures’ compres-
sion is still an active research area. RNN model compres-
sion is beneficial for efficient inference because sequential
processing of data through the time-steps takes significant
time during inference, especially in CNN-RNN architec-
tures. Further, many sequential models are largely over-
parameterized, and a large number of parameters often lead
to overfitting. Addressing these issues in this paper, we
focus on the compression of LSTM for CNN-LSTMs and
end-to-end LSTM architectures, but the method can be eas-
ily generalized to other RNN architectures as well.

Most of the research work that has been done on RNN
compression and acceleration involves either (i) matrix fac-
torization or tensor decomposition [17, 26, 28, 27], or (ii)
an unconventional deep learning architecture [6, 32]. Other
RNN compression approaches include regularization based
method [25], knowledge distillation [19] and parameter
quantization [2]. Methods based on tensor decomposition
capitalizes on the fact that the large size of an RNN is pri-
marily due to the input-to-hidden matrix of the RNN due to
the large input size. This is especially seen in end-to-end
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RNN training where the input stream is the RGB values of
images, and hence, they focus on the compression of pa-
rameters in the input-to-hidden layers. A group lasso reg-
ularization based LSTM compression method [25] imple-
ments group weight regularization and prunes hidden states
through the intrinsic sparsity in the LSTM structure. It aims
to reduce only the hidden state vector’s size, while the in-
put vector to LSTM is usually much larger than the hidden
state vector. In contrast, we aim to reduce both the input
dimension and the number of hidden states of LSTMs.

Specifically, we propose a Variational Information Bot-
tleneck (VIB) based method to compress RNNs. The idea
of information bottlenecking introduced by [20] and its
variational form [1] has been successfully utilized to re-
move neurons in CNN and linear architectures [4]. Our ap-
proach proposes a novel way to reduce input feature dimen-
sions and hidden states in RNNs by learning compressed
latent representations. Our method does not require ad-
ditional VIB parameters during inference, just the usual
LSTM parameters. It requires minimal hyperparameter tun-
ing and focuses on reducing the complete LSTM struc-
ture rather than just the input-to-hidden matrix as done in
previous work. Furthermore, none of the previous LSTM
compression techniques have explicitly shown the results
of combining multiple compression methods. We evaluate
end-to-end VIB-LSTM architecture and CNN based VIB-
LSTM architecture on the three most popular action recog-
nition datasets. The proposed approach achieves the most
compression for better or comparable accuracy. The signif-
icant contributions of this paper are the following:

1. We propose a novel VIB-LSTM structure that trains
high accuracy sparse LSTM models.

2. We develop a principled sequential network compres-
sion pipeline that sparsifies pre-trained model matrices
of RNNs/LSTMs/GRUs.

3. We develop a new VIB framework to compress CNN-
LSTM based architectures specifically.

4. We evaluate our method on popular action recognition
datasets to yield compact models with validation accu-
racy comparable to that of state-of-the-art models.

2. Related Work
2.1. Human Action Recognition

Approaches to human action recognition (HAR) involve
either using handcrafted features and machine learning or
using end to end deep learning. Spatio Temporal Interest
Point(STIP) methods [16] of HAR extend the idea of object
feature detection to the 3D domain. Although these meth-
ods are rotation, scale, illumination invariant, they lead to

erroneous classification with camera movements. Trajec-
tory based HAR [9, 24] track specific vital points in the
video to classify actions. These methods adapt to changing
camera angles but require 2-D or 3-D skeletal joint points.
Deep CNN based two-stream architectures take RGB data
and optical flow, calculated from the images, as inputs. Mo-
tion vectors [31] instead of optical flows, change of fusion
point [8], and Temporal Segment Networks improve two-
stream methods of HAR. Calculation of flow requires ad-
ditional processing power. Inflating 2-D CNNs lead to 3-
D CNNs [3], 3D ConvNet [6], and 3-D two stream [32]
which yield high accuracy of action classification, at the
cost of tens of millions of parameters [3], and hundreds of
GFLOPs; not suited to applications on edge.

CNNs pipelined with LSTMs capture long term tem-
poral dependencies of CNN extracted features as done by
methods combining CNNs with stacked LSTMs [29] and
Long term recurrent convolutional networks(LRCN) [7]. 2-
D Conv-LSTM architectures have lower parameters, low
memory footprint from hidden representations, and higher
inference speed than 3-D networks with comparable accu-
racy. Over-parameterized LSTMs in such architectures lead
to overfitting and large resource requirements. Our com-
pressed CNN-VIB-LSTM models need lower parameters
with comparable accuracy to the 3-D counterparts.

2.2. LSTM compression

Approaches to reducing the size of RNN/LSTM/GRU
parameters include low-rank matrix factorization and hy-
brid matrix factorization with improved accuracy over Low-
Rank Matrix Factorization. An improvement over factoriza-
tion methods, the tensor decomposition methods [17][26]
reshape input vector and weight matrices into tensors. As
a contrast, our method reduces the size of input features by
retaining features only relevant to prediction. Compression
of hidden states and gate outputs in [25] yield sparse struc-
tures in LSTM through group lasso regularization. Unlike
our method, it does not consider compression of high di-
mensional input induced large input-to-hidden transforma-
tion matrix of the LSTMs.

Overall parameter reduction of LSTMs has been at-
tempted by [5], who add in a linear layer with activation
after LSTM gates, which controls the joint LSTM weight
matrix’s sparsification through magnitude pruning. Our
method differs from their work since our pruning method
works with an information-theoretic perspective rather than
the magnitude of weights. Moreover, unlike their model,
our compression inducing layers added during training are
removed in the compressed smaller model to be used for in-
ference while still maintaining accuracy. [4] proposes VIB
based method to prune out neurons from fully trained mod-
els yielding sparse structured fully connected and convolu-
tion layers.



3. The Proposed Approach
3.1. Notations and Preliminaries

• X ∈ Rm1×m2×3×T : Input tensor consisting of T
stacked RGB frames (each RGB frame of dimension
m1 ×m2 × 3) from a video.

• Y ∈ {1, 2, ..., a}: Output action class vector, with a
being number of actions.

• D: Joint distribution between X and Y.

• v ∈ Rd×T : The d-dimensional output of the Convo-
lutional feature extractor block of CNN-LSTM, corre-
sponding to T frames, with vt ∈ Rd denoting its tth

frame. Note that vt is the input to the LSTM.

• ht ∈ Rn : Hidden state vector or output of the LSTM
corresponding to the tth frame. Also, hT denotes hid-
den state vector corresponding to the last time-step.

• kT ∈ {iT , fT ,oT ,gT }: Usual notations for LSTM
gate outputs corresponding to the last time step.

3.2. Variational Information Bottle-necking (VIB)

Our goal is to learn a compressed representation k̃T ∈
Rl of kT ∈ Rn (l � n) ∀kT while retaining relevant spa-
tial and temporal information in v required for prediction.
Note that compressing kT is equivalent to compressing hT

since there is a deterministic mapping between them. In
Variational Information Bottle-necking (VIB) framework
[1], this is cast as an optimizatiom problem where the goal
is to learn k̃T such that it has least information regarding
the LSTM input v while retaining all the relevant informa-
tion needed for learning the target Y. Mathematically, it
amounts to optimizing the following objective function:

L = min
θ

∑
k̃T∈{iT ,fT ,oT ,gT }

βI(k̃T ,v; θ)− I(k̃T ,Y; θ)

(1)
where I(·) denotes mutual information between two ran-
dom variables and θ is the parameter set of a compres-
sion neural network that transforms v to k̃T , β is a hyper-
parameter which controls the amount of trade-off between
compression and prediction accuracy. To avoid notational
complexity, we denote compressed version k̃T by kT here-
after. Eq. 1 is intractable in general because of the model
complexity and infeasibility of the mutual information term.
Thus, a variational upper bound, L̃ [1] is invoked on it:

L̃ =
∑
kT

EX,Y,v,hT

[
βDKL

[
p
(
kT | v

)
‖q
(
kT
)]

− log q
(
Y | hT

)]
≥ L

(2)

where q(kT ) and q(Y | hT ) denote two variational dis-
tributions which respectively approximate p(kT | v) and
p(Y | hT ) (Refer to Appendix for the derivation). The first
term in Eq. 2 approximates the amount of relevant informa-
tion captured from v while the second term is responsible
for maintaining the prediction accuracy.

3.3. Compression using VIB

With the aforementioned framework, the compressed kT

is defined as follows:

kT = zk � fk(v) ; zk = µk + ε� σk (3)

where � denotes element-wise multiplication, k ∈
{i, f ,o,g}, zk is a random shared vector, µk and σk are
learnable parameters which are shared across time while ε
is sampled from an isotropic Gaussian distribution and f(·)
denoting the standard LSTM equations. With these defini-
tions and assuming the elements of kT to be uncorrelated,
p(kT | vt) takes the following form:

p(kT | v) = N
(
kT ; fk(v)�µk, diag[fk(v)2�σ2

k]

)
(4)

Further, we assume q(kT ) also as an Isotropic Gaussian dis-
tribution with zero mean and learnable vector of variances,
ξk [4].

q(kT ) = N
(
kT ; 0, diag

[
ξk
])

(5)

Note that if any jth element ξkj of the variance vector ξk is
pushed to zero during training, corresponding dimension of
p(kT | v) is pushed to be a degenerate dirac-delta, making
that dimension redundant. Assuming that ξk can be learnt
optimally, KL term in the Eq. 2 takes a closed form expres-
sion, simplifying (Refer to Appendix) the loss in Eq. 2 as
follows:

L̃ =
∑
k

β

l∑
j=1

[
log(1 +

µ2
kj

σ2
kj

) + ψkj

]
−4EX,Y,v,hT

[
log q(Y | hT )

] (6)

where, ψkj ≥ 0 by Jensen’s Inequality and is given by:

ψkj = log
(
EX,Y,v

[
fkj(v)

2
])
−EX,Y,v

[
log
(
fkj(v)

2
)]
(7)

Note from Eq. 6 that our loss function for LSTM is simi-
lar to that obtained for CNN [4]. However, [4] used it for
dimensionality reduction of linear and CNN layers while
ours is specifically for LSTM compression. Also, ψkj can
be assumed to be sufficiently small as removing it from Eq.
6 does not affect our results. Although the expectation in
the second term of the Eq. 6 does not have a closed-form,
its unbiased stochastic approximation such as a monte-carlo
estimate can be used for training the network [12].



3.4. VIB-LSTM - Implementation

We propose to apply the previously mentioned VIB prin-
ciple (Eq. 3) as a layer to the LSTM gate outputs which
gives rise to the following equations for VIB-LSTM:

it = zi � σ(Wix · vt +Uih · ht−1 + bi)
f t = zf � σ(Wfx · vt +Ufh · ht−1 + bf )
ot = zo � σ(Wox · vt +Uoh · ht−1 + bo)
gt = zg � tanh(Wgx · vt +Ugh · ht−1 + bg)
c̃t = f t � c̃t−1 + it � gt

ht = ot � tanh(c̃t)

(8)

where zi, zf , zo and zg are the trainable VIB masks shared
across time, for each of the LSTM gates as shown in Fig-
ure 1. Note that the structure of VIB-LSTM is very similar
to the standard LSTM structure, which makes VIB-LSTM
easy to train.

3.5. LSTM pruning with VIB mask

The VIB masks mentioned in the previous section can be
learned for each gate to push down the redundant elements
of the gate outputs close to zero, which in turn will push the
corresponding elements of the hidden state vector close to
zero. We propose a simple threshold on the following ratio
to prune the parameters of four LSTM gates, using the :

αkj = µ2
kjσ
−2
kj (9)

The rationale for the aforementioned threshold comes from
the following proposition ([4]):

Proposition-1: At any minimum of Eq. 6, αkj = 0
is a necessary condition for I(kTj ,v) = 0 and a sufficient
condition for I(kTj ,v) ≤ ψkj . (Proof given in [4])

The above proposition implies that for minimizing the
mutual information and ignoring the ψ term in Eq. 6, it is
necessary to set αkj to small values. Therefore, in sum-
mary, the units kTj of kT for which αkj = 0, do not con-
tribute significantly in propagating relevant information for
prediction and thus, are valid candidates to be pruned. Con-
sequently, the LSTM hidden state units, LSTM cell state
units and the LSTM parameters connected to such neurons
also become redundant. Therefore, LSTM parameter ma-
trix can be reduced in size by removing the corresponding
redundant rows and columns of the matrix (Refer to Ap-
pendix for more details). Finally, the trainable masks are
not required to be stored, and a standard LSTM with re-
duced hidden vector size can be used for inference.

3.6. VIB pruning for Convolutional Features

To ensure further compression, we propose to use a sim-
ilar VIB principles on the output of the convolutional fea-
tures v, that forms the input to the LSTM layers. This can
be cast as the following objectively similar to Eq. 1:

Lv = min
θv

βvI(v,x; θv)− I(v,Y; θv) (10)

Figure 1. A single VIB-LSTM cell. It has a VIB layer zk (shown
in green) after every gate output, which acts as a trainable mask.
Each zk follows a multivariate Gaussian distribution with trainable
parameters.

Again we invoke a variational upper bound on Eq. 10 (refer
to the Appendix for the derivation):

L̃v = EX,Y,v,hT

[
βvDKL

[
p
(
v | x

)
‖q
(
v
)]

− log q
(
Y | hT

)]
≥ Lv

(11)

The KL-divergence term in Eq. 11 can be simplified af-
ter re-parameterizing v using learnable parameters (µv, σv)
and by assuming gaussian distributional forms for p(v | X)
and q(v), which reduces the loss function as follows:

p(v | X) = N
(
v; fv(X)� µv, diag[fv(X)2 � σ2

v ]

)

q(v) = N
(
v; 0, diag

[
ξv
])

(12)

L̃v = βv
∑
j

log(1 +
µ2
vj

σ2
vj

)− EX,Y,v,hT

[
log q(Y | hT )

]
(13)

Following Proposition-1 with similar arguments as with
VIB-LSTM, redundant units vj of output feature vector or
the VIB-LSTM input v can be pruned by using some thresh-
old on the following quantity:

αvj = µ2
vjσ
−2
fv (14)

Finally, the overall loss function for our method is obtained
by by adding Eq. 6 and Eq. 12 as follows:

Ltotal =
∑
k

β

l∑
j=1

log(1+
µ2
kj

σ2
kj

) + βv
∑
j

log(1 +
µ2
vj

σ2
vj

)

− 5EX,Y,v,hT

[
log q(Y | hT )

]
(15)



Eq. 15 shows that our overall loss function is simply the
cross-entropy loss with regularization terms constraining
the information flow to subsets of units of specific interme-
diate layers. Therefore, we use a VIB mask on feature ex-
tractor output along with VIB-LSTM, and we aim to reduce
the dimensionalities of both vt and ht, which may result in
a massive reduction of LSTM parameters.

3.7. Group Lasso Regularization

Finally, in addition to the proposed method, we also ap-
ply an existing hidden state pruning method [25] where a
structured group lasso regularization is used to push down
the LSTM parameter groups to zero. This method utilizes
the intrinsic sparse structure (ISS) of the LSTM for pruning
redundant hidden state. The corresponding regularization
term takes the form:

R(W) =

K∑
k

‖wk‖2 (16)

where W is the tensor containing all the LSTM parameters,
n is the total number of weight groups equal to the size of
the hidden state vector and ‖.‖2 is the l2-norm. The weight
groups are pruned based on a threshold.

4. Datasets and Models
4.1. Datasets

We have evaluated our proposed method of LSTM
compression on three popular human action recogni-
tion datasets- UCF11 [14], HMDB51 [13] and UCF101
[21]. UCF11 comprises videos from youtube and rep-
resents 11 classes of actions: basketball shooting, bik-
ing/cycling,diving, golf swinging among others. HMBD51
contains 6849 clips classified into 51 action classes, taken
from movies and other public databases. The dataset having
large variations within classes contains daily life activities
such as brushing hair, sitting, and standing besides sports
clips. UCF101 is one of the most challenging datasets due
to large variations in camera motion, object appearance and
pose, object scale, viewpoint, cluttered background, and il-
lumination conditions. The data consists of 13320 videos
of 101 action classes, including Cricket Bowling, Cricket
Shot, Playing Sitar, Pole Vault, Sumo Wrestling, etc.

4.2. Baseline models

For end-to-end LSTM experiments, we compare our
method to tensor decomposition based LSTM compres-
sion techniques [17, 28, 27, 26]. For our experiments on
LSTM compression for CNN-LSTM based architectures,
we compare our approach with baseline (uncompressed
model), namely Naive-LSTM, and with previous LSTM
compression methods, namely tensor ring decomposition

method [17] and a group lasso regularization based com-
pression technique, namely ISS [25]. We also compare
with formerly state-of-the-art architectures used for action
recognition. Two-stream LSTM network architecture [10]
uses both RGB and optical flows as input to the LSTM.
Attention-based ConvLSTM [11] proposes attention based
improvement over CNN-LSTM. Two-stream I3D [3] intro-
duces inflated 3-D convolutions to implicitly model the tem-
poral information in videos.

4.3. Implementation details

End-to-end LSTM Training: For our experiments with
end-to-end LSTM, we use the same configurations as in
[17]. We sample 6 RGB frames from each video and use
160 × 120 × 3 = 57600 dimensional vector, derived from
each frame, as input to the LSTM. The LSTM has a 256-
dimensional hidden state vector and is followed by a Fully-
Connected (FC), Batch Normalization (BN), and softmax
layer.

LSTM training with pre-trained CNN: We take
imagenet-pre-trained convolutional networks to extract fea-
tures from the videos for our LSTM compression exper-
iments with CNN-LSTM architectures. For training our
CNN-VIB-LSTM models, we use two different learning
rates: one for VIB parameters varying from 1 × 10−1 to
1× 10−3, and the other varying from ×10−3 to ×10−5 for
other model parameters. We use dropout with probability
0.5 to avoid overfitting in most of our experiments.

Training with UCF11: For training our models with
UCF11, we take a randomly sampled sequence of 32 frames
per video, i.e., 1.06 seconds from each video. Instead of 32
or more frames, as done in the previous approaches [17],
we note that training with eight frames per video does not
lead to any accuracy degradation and makes the training
faster. Image size is kept at 299×299 for input to imagenet
pretrained-Inception v3 [22] and 240×240 for input to im-
agenet pre-trained- Efficientnet-b1 [23].

Training with HMDB51 and UCF101: For training
our models with HMDB51 and UCF101, we use both RGB
and TV-L1 optical flow [30]. We randomly crop the video
frames and resize them to 240 × 240. For both HMDB51
and UCF101, we fuse the RGB and optical flow features and
pass as input to the LSTM. We re-scale the values of the op-
tical flow to [0,255]. All the images are center cropped and
normalized for batching of the data.

5. Results and Observations
We evaluate our end-to-end VIB-LSTM architecture

on UCF11 and CNN-VIB-LSTM architecture on all three
datasets. Many tensor decomposition based LSTM com-
pression methods [17] compress only the input-to-hidden
transformation matrix and compare only the number of cor-
responding matrix’s parameters. We instead compare the



Methods LSTM LSTM Accuracy
Parameters Compression

Ratio
Naive-LSTM 59.246M 1 69.7%
TT-LSTM [26] 0.268M 221.0 79.6%
BT-LSTM [27] 0.268M 221.0 85.3%
TR-LSTM [17] 0.267M 221.8 86.9%
HT-LSTM [28] 0.266M 222.7 87.9%
VIB-
LSTM(ours)

0.1778M 332.2 85.4%

Table 1. Performance comparison between various LSTM com-
pression methods applied to end-to-end LSTM architecture with
the UCF11 dataset. VIB-LSTM outperforms other compressed
methods as it prunes away a significantly larger number of re-
dundant parameters while maintaining comparable validation ac-
curacy.

Methods Total LSTM Accuracy
Parameters Parameters

Two-Stream [10] 134.3M 5.9M 94.6%
Attention-
ConvLSTM[11]

10.03M 4.72M 93.48%

Comparison of LSTM compression methods
Naive-LSTM 55.38M 33.57M 98.53%
TR-LSTM [17] 23.15M 1.340M 93.8%
ISS [25] 21.97M 0.16M 94.6%
VIB-LSTM (ours) 21.86M 2052 98.53%
VIB-LSTM+ISS 21.86M 1680 90.2%
EfficientNet +VIB-
LSTM (ours)

7.8M 1680 96.6%

Table 2. Comparison of parameters and accuracy of different
LSTM compression methods and state-of art architectures on
UCF11 dataset shows VIB-LSTM’s amazing performance w.r.t
both the compression and the validation accuracy.

total number of LSTM parameters. To compare the extent
of compression, we use the compression ratio, which is the
ratio of the total number of LSTM parameters in the uncom-
pressed model to that in the compressed model.

5.1. Comparison on UCF11 dataset

On training end-to-end VIB-LSTM with UCF11, we ob-
tain sizable reduction in the total number of LSTM parame-
ters with validation accuracy comparable to the other LSTM
compression methods, as shown in Table 1. Our experi-
ments show that end-to-end VIB-LSTM uses only 1312 out
of 57,600 values in the raw input tensor, for prediction.

For CNN-LSTM based architecture, we use Incep-
tion v3 as the feature extractor [22] and 2048 dimensional
hidden state vector for the LSTM, with similar settings as
in [17]. By incorporating VIB-LSTM into the Naive CNN-
LSTM model, we achieve 16, 360× reduction in LSTM size

Figure 2. Performance comparison on the various classes of
UCF11 dataset, between the baseline Naive-LSTM model [17] and
our VIB-LSTM trained model.

Figure 3. Comparison of LSTM Compression ratios achieved by
different LSTM compression methods on same CNN-LSTM ar-
chitecture with UCF11. Our approach surpasses other methods by
a sizeable difference.

with significant improvement in accuracy, as shown in Ta-
ble 2. Thus, the proposed VIB-LSTM model reduces over-
fitting and classifies several actions better than the Naive-
LSTM model, as shown in Figure 2. Compared to [17] and
[25], VIB-LSTM based models achieve higher compres-
sion ratio with accuracy comparable to that of the Naive-
LSTM model, as shown in Figure 3. After training with
VIB-LSTM, the input and the hidden state vector dimen-
sions of LSTM come down from 2048 to 49 and 9, respec-
tively. Moreover, combining the group lasso method [27]
with VIB-LSTM leads to even more significant compres-
sion with a little drop in the accuracy (refer to Table 2).
Moreover, several FC parameters following the redundant
hidden states of LSTM also become redundant, thus fur-
ther reducing the total number of model parameters. We
also perform experiments by taking EfficientNet-b1 [23] ex-



Methods Total LSTM Accuracy Total LSTM Accuracy
Parameters Parameters Parameters Parameters

HMDB Dataset UCF101 Dataset
Attention-ConvLSTM [11] 10.03M 4.72M 67.1% 10.03M 4.72M 92.88%
Two-StreamI3D-
only imagenet-pretrained [3] 25M - 66.4% 25M - 93.4%
TS-LSTM [15] 53.5M 9M 69.0% 53.5M 9.44M 94.3%

Comparison of LSTM compression methods
Naive-LSTM (uncompressed) 55.38M 33.57M 62.9% 48.41M 9.44M 92.6%
Naive-TS-LSTM (uncompressed) 55.38M 33.57M 69.0% 48.41M 9.44M 93.5%
TR-LSTM [17] 55.38M 1.340M 63.8% - - -
ISS [25] - - - 59.57M 1.7M 90.2%
VIB-LSTM (Ours) 21.86M 0.41M 64.5% 21.86M 0.46M 92.2%
TS-VIB-LSTM (Ours) 21.86M 0.41M 68.16% 21.86M 0.46M 93.15%

s

Table 3. Performance comparison of different methods on split 1 of HMDB51 and UCF101 datasets. VIB-LSTM compresses Naive-LSTM
by 81× for HMDB51 and by 20× for UCF101.

tracted features with VIB-LSTM, which yields even smaller
model which is much suitable for deployment on small edge
devices.

5.2. Comparison on HMDB51 dataset

In the experiments with HMDB51, we randomly sample
25 frames from each video and save the Inception v3 ex-
tracted features to train the model. A random sampling at
every epoch reduces overfitting as the model sees more vari-
ation in the data and generalizes better. In Table 3, we com-
pare the CNN-VIB-LSTM model with the baseline uncom-
pressed Naive-CNN-LSTM model and other compression
methods. Our VIB-LSTM achieves better accuracy with
a compression ratio of 81× compared to 25× in the TR-
LSTM. Temporal segment(TS) batch norm [15], when used
in conjunction with Naive-LSTM, reduces overfitting, and
improves the validation accuracy. We further compare our
VIB-LSTM trained model with state-of-art architectures.
Two-Stream I3D [3] comprising 25M parameters of inflated
Inception v1 gives 66.4% accuracy. Our TS-VIB-LSTM
model gives much higher accuracy with about 3.14M lesser
number of parameters and with much lesser flops due to 2D
CNN in our model rather than 3D CNN. TS-VIB-LSTM
has 11 times lower LSTM parameters than Attention-based
convolutional-LSTM [11]. The LSTM hidden state vector
size is a hyperparameter, challenging to tune while work-
ing on large datasets. Our proposed method eliminates this
problem. After training with a reasonably significant LSTM
hidden state size, VIB-LSTM can bring down the hidden
state vector to a size relevant to prediction. For a compara-
ble number of parameters, VIB-LSTM-compressed models
perform much better than naive models, as shown in Figure
4.

Figure 4. Performance comparison of Naive-TS-LSTM and TS-
VIB-LSTM for comparable number of parameters validated on
HMDB51 dataset. VIB model performs much better for the same
0.41M total LSTM parameters marked by the circle.

5.3. Comparison on UCF101 dataset

As with HMDB51 setup, both spatial RGB frame fea-
tures and temporal optical flow features of UCF101 videos
extracted using Inception v3 are concatenated before pass-
ing on to the LSTM models. The baseline models, Naive-
LSTM and Naive-TS-LSTM, have 512 hidden states each.
The VIB-LSTM compressed models have negligible ac-
curacy degradation compared to the uncompressed Naive-
LSTM models, while more than 20 times a reduction in
the number of LSTM parameters is achieved. Using only
3.8% of the original input features, VIB-LSTM has 270
prediction-relevant hidden states. We make use of the tem-
poral segment (TS) batch norm [15], which improves the
accuracy of TS-VIB-LSTM over VIB-LSTM, as shown in
Table 3. We experiment with different hyperparameter val-
ues β (usually, we take β > 1). The amount of compression



Figure 5. Variation in performance of the model with respect to
the degree of compression obtained for different values of β with
UCF101. L and H denote the effective size of the VIB-LSTM
input vector and VIB-LSTM hidden state vector, respectively.

is proportional to the value of beta. We observe that accu-
racy degrades significantly after a particular point with in-
creasing compression and decreasing the number of LSTM
parameters due to large values of β (≥ 2), as shown in Fig-
ure 5. This behavior is similar to the other two datasets as
well. Further, our TS-VIB-LSTM model achieves compa-
rable accuracy with much lesser total parameters than Two-
Stream I3D [3] and Attention-based convolutional-LSTM
[11].

5.4. Ablation Experiments

For the CNN-LSTM architecture taken in our experi-
ments, we perform ablation experiments using UCF11 to
analyze the particular importance of VIB-LSTM and feature
masking VIB layer. We first use VIB-LSTM only, without
the feature mask layer. This allows a reduction of the hid-
den state size with VIB-LSTM but constricts a reduction in
the LSTM input size. We observe that VIB-LSTM with-
out compressed input features can efficiently prune many
redundant parameters, as it results in a compression ratio
of about 510 with accuracy over 98.5%. Next, we use only
the feature mask layer with Naive-LSTM and observe that
it barely yields a compression ratio of 2. The ablation re-
sults (Refer Table 4) show that VIB-LSTM alone can induce
huge sparsity in the LSTM parameter matrix; however, we
get much better performance on using VIB-LSTM clubbed
with the feature mask layer.

5.5. Inference on Raspberry Pi

Raspberry Pi model 3 with 1GB RAM, 64-bit quad-
core Arm Cortex-A53 CPU is selected to test the infer-
ence speed-up using our approach over Naive-LSTM for the
same task. We test the Naive-LSTM and VIB-LSTM model
using a single video and a batch of 10 videos from UCF11,
running on only one processor core to avoid automated par-
allelism. Features extracted from Inception v3 CNN are

Network
Architecture

Total
Params

LSTM
Params

Accuracy

Naive-LSTM 55.38M 33.57M 98.53%
w/o VIB on LSTM 38.81M 17.06M 98.53%
w/o feature mask
layer

21.92M 65856 98.53%

VIB-LSTM with
feature mask layer

21.86M 2052 98.53%

Table 4. Ablation experiment results obtained by first removing
feature mask layer and then by removing VIB-LSTM.

given input to both Naive-LSTM(33.5 Million parameters)
and VIB-LSTM(2052 parameters) separately. VIB-LSTM
shows up to 100x speed up over Naive-LSTM.

6. Conclusion

In this paper, we present a generic RNN compression
technique based on the VIB theory. Specifically, we pro-
pose a compression scheme that extracts the prediction-
relevant information from the input features. To this end,
we formulate a loss function aimed at LSTM compression
with end-to-end and CNN-LSTM architectures for HAR.
We minimize the formulated loss function to show that
our approach significantly compresses the baseline’s over-
parameterized LSTM structural matrices. Our approach im-
proves the performance of large-capacity baseline models
by reducing the problem of overfitting in them, and reduces
both the memory footprint and the computational require-
ments. Thus, our approach can produce models suitable for
deployment on edge devices, which we show by deploying
our VIB-LSTM trained model on Raspberry Pi and infer-
encing it.
Further, we show that our approach can be effectively used
with other compression methods to obtain even more sig-
nificant compression with a little drop in accuracy. More
study is required on our assumption of uncorrelated features
and hidden states. Our approach can be extended to sev-
eral other sequence modeling applications, such as machine
translation and speech synthesis.
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