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Figure 1. We propose a new approach for long-term localization in dynamic environments that updates a base map (left) over time as new

data arrives to maintain an up-to-date live map (right). We introduce new stability scores for each world point that take into account both

visibility and recency of observation (using an exponential decay) to distinguish reliable static and unreliable dynamic world points. We show

that this enables localization of unseen query images in the live map with higher accuracy and speed compared to using the initial base map.

Abstract

Visual camera localization using offline maps is widespread

in robotics and mobile applications. Most state-of-the-art

localization approaches assume static scenes, so maps are

often reconstructed once and then kept constant. However,

many scenes are dynamic and as changes in the scene hap-

pen, future localization attempts may struggle or fail entirely.

Therefore, it is important for successful long-term localiza-

tion to update and maintain maps as new observations of the

scene, and changes in it, arrive. We propose a novel method

for automatically discovering which points in a map remain

stable over time, and which are due to transient changes. To

this end, we calculate a stability store for each point based

on its visibility over time, weighted by an exponential decay

over time. This allows us to consider the impact of time when

scoring points, and to distinguish which points are useful

for long-term localization. We evaluate our method on the

CMU Extended Seasons dataset (outdoors) and a new indoor

dataset of a retail shop, and show the benefit of maintain-

ing a ‘live map’ that integrates updates over time using our

exponential decay based method over a static ‘base map’.
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1. Introduction

Pose estimation is a fundamental problem in 3D computer

vision: determining a camera’s position and orientation rel-

ative to a map from just a single image is crucial for many

applications, including robotics and augmented reality (AR).

Many traditional approaches assume that the camera moves

through a static world, such that a map can be reconstructed

once and then reused afterwards. However, this is not the

case for many real-world environments, which are full of dy-

namics, including moving people, cars or trees, and changing

weather, daylight and seasons. Being able to localize in an

environment despite these dynamic changes, at future points

in time, is referred to as long-term localization [2, 9, 37].

In this work, we focus on long-term localization within

retail environments, which have to date received little at-

tention compared to other environments, such as outdoor

street scenes [45]. The main challenge with retail shops is

their highly dynamic nature, as noted by Spera et al. [41].

Shoppers can pick up products and put them back, stores

can restock as often as twice a day, temporary promotions

might lead to products being rearranged, advertising posters

are rotated regularly, and people may pass in front of the

camera and occlude the scene. See the real-world example

in Figure 2. This makes long-term localization in retail envi-

ronments particularly challenging.
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Long-term localization in retail environments enables a

range of new applications, particularly for AR on consumer

smartphones, which have the potential to revolutionize the

sector. Many retail shops are keen to target specific shoppers

through personalization. For example, a shopper might be

shown additional information for a product, a comparison

between similar products nearby, or a map of the shop could

be adapted to show promotions based on a shopper’s prefer-

ences. In large shops, localization can be used for in-shop

navigation or for finding a specific product. A development

of interest is the monitoring of the paths of customers there-

fore enabling analysis of their behavior [32, 41]. In future,

localization could also be useful for robots that automatically

restock products. From a business point of view, variations of

product arrangements can be visualized on top of an aisle for

preview and planning purposes, and maps can be rendered

in AR for training new personnel using AR headsets such as

the HoloLens.

We propose a new long-term localization approach that

is specifically tailored for fast-paced and highly dynamic

retail environments. We build and maintain a live map that

is regularly updated based on new observations made during

shoppers’ AR sessions. The key to maintaining our live maps

is to deduce which 3D scene points remain stable over time,

and which are changing and thus unreliable for localization,

based on their visibility over time. Specifically, we calculate

a stability store for each point that decays exponentially over

time if a point is not observed regularly. In combination with

progressive sampling, this reduces the influence of unreliable

points during pose estimation, and thus makes localization

more robust in the long term. Our main contributions are:

1. A new map maintenance method that enables long-term

localization in dynamic scenes by prioritizing stable 3D

points over time.

2. Two novel time-varying point stability score for use

with progressive samplers like PROSAC [8].

3. A new dataset for benchmarking and evaluating long-

term localization in dynamic indoor environments.

2. Related Work

The review of related work will focus on camera pose esti-

mation, primarily on structure-based methods, offline map

maintenance for long-term localization [37], and indoor lo-

calization, specifically for retail environments. Camera pose

estimation can be divided into three categories:

1. Image-based retrieval methods, match a query image

against a database to find nearby images. This provides an

initial estimate of the query image pose by retrieving similar

images from a database [1, 6, 34, 47, 50, 51]. The camera

pose can then be refined by looking for matches between the

Figure 2. A highly dynamic retail environment, eight hours apart.

Only some features remain reliable for localization (in green), while

others (in red) would lead to mismatches and thus errors.

query image and the top-k retrieved images, or by subsequent

matching to 3D pre-built map points [5].

2. Learning-based methods are more recent and may

directly regress camera pose from an input image [19, 20, 49]

by representing the scene as the weights of a neural network.

Learning-based methods do not yet outperform structure-

based methods [36, 38] Other learning methods try to learn

the feature matching function, i.e. given a small image patch

they predict a 3D coordinate [29]. While some learning based

methods as Brachmann and Rother [4] can achieve a higher

pose accuracy than feature-based methods, but they might

fail training in large outdoor scenes.

3. Structure-based methods are based on pre-built

structure-from-motion maps, usually 3D point clouds. These

methods tend to provide more accurate poses than image

retrieval methods [36]. They typically assign one or more

feature descriptors, such as SIFT [25], to each 3D point. For

a given query image and its keypoint descriptors, 2D–3D

correspondences are established using descriptor match-

ing. Once these correspondences are obtained, solving a

perspective-n-point (PnP) problem returns the camera pose

[14, 18, 22, 26, 33, 35]. Adequate correct matches must be

found to be able to estimate a pose, but also to verify that

pose via inlier counting. This number of correct matches is

typically 12 or more [21, 22]. Sattler et al. [37] showed that

this condition might not be sufficient if the query image is

taken under significantly different conditions. For a retail

shop environment, this could, for example, be a query image

of an aisle taken after restocking the previous day.

Structure from motion can be classified based on how

well complex scenes are handled [46]. Prioritizing matching

[7, 21, 35] improves efficiency by terminating once a set

number of matches is found. Other approaches restrict the

search space to improve speed [18, 22, 24], either using

image retrieval [18] or co-visibility information [22, 24].

The quality of correspondences in changing conditions can
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be improved by scoring matches based on image semantics

[43, 46]. Changing conditions can be related to the weather,

as clouds change the lighting conditions, or seasons, e.g.

different colour of tree leaves in autumn and spring, or snow

during winter. Toft et al. [46] assign semantic 3D information

beforehand and segment new query images in categories

such as vegetation, road or building. If the category label in

the query image matches the label of the 3D point, then it is

considered a good candidate.

All the above methods aim to improve 2D–3D matching

within a static point cloud. In contrast, we aim to improve the

subsequent pose estimation stage, specifically the filtering

and rejection of matches, to robustly handle dynamically

changing scenes. We hence introduce the notion of time as

new data arrives and update the point cloud to generate a

time-dependent stability score for each 3D feature point.

Map maintenance for long-term localization is the pro-

cess of updating a point cloud such that localization can still

be achieved after some time, for instance by exploiting addi-

tional images from new user sessions. Utilizing information

from multiple traversals at different points in time has been

explored before [11, 12, 30]. Keeping a static map in mem-

ory, and localizing against it, is insufficient for long-term

localization given that the scene’s appearance changes fre-

quently [11]. For example, a retail shop will look different

after customers have emptied the shelves at the end of the

day.

Dymczyk et al. [11] maintain a point cloud of fixed size

by determining which points from new sessions to keep and

which ones to discard from the old map. Similar to Mühlfell-

ner et al. [30], they use scoring and sampling functions to

determine which points are worth keeping. One potential

scoring function is the number of times a point has been

observed. The more often a point was seen, the more likely

it is to be stable and thus a good match for localization. An-

other proposed sampling function prefers points with similar

descriptors that show little variance.

Churchill and Newman [9] save complete past sessions

and use multiple localizers to associate session data to previ-

ous sessions. If a low number of localizers succeeded, then

the current session is added as new, and it is used for future

localizations. However, in areas with many daily changes,

such as retail shops, the number of stored sessions increases

quickly, resulting in large memory consumption. We differ

from this approach as we only append descriptors on 3D

points, and compute a time-variant score per point. FAB-

MAP [10] has been one of the most used place recognition

algorithms [11]. It is appearance-based, uses a bag of words

representation of sensor data, and scenes are represented as

words from a vocabulary. Incoming data is then matched

to the closest word. While it provides a level of robustness,

its matching still fails over large changes in environmental

appearance [27].

Indoor localization [23, 40, 48] has not received a lot

of attention compared to outdoor localization [16, 18, 21,

22, 26, 46, 50]. Localization in retail shops has received

even less attention [41]. Indoor localization is particularly

challenging because of symmetric and repetitive elements,

large image changes as furniture/items can move around, and

the lack of features in texture-less areas [45]. Retail shops

are different as they are full of various products and thus

tend to be more textured. The most related work to ours is by

Spera et al. [41, 42], who have benchmarked images-based

retrieval techniques and methods based on regression against

a dataset of images from a retail shop. Spera et al. [41] aimed

for the 3DoF pose of a shopping trolley, while we aim for full

6DoF poses to support handheld mobile AR. They did not

investigate 3D structure-based localization methods due to

hardware limitations and complexity. Since we seek accurate

camera poses and would like to avoid retraining for each

new shop, we extend 3D structure-based methods to support

long-term localization in dynamic environments. We refer

to work by Dymczyk et al. [11] and Sattler et al. [37] for a

more complete picture of the field.

3. Methodology

Long-term localization is a hard problem due to the chal-

lenge of establishing reliable correspondences between a

query image and the world map. Our proposed method as-

sumes that the same dynamic place is visited frequently, e.g.

via a warehouse robot or a self-driving car, or by shoppers

in a shop. Our goal is to maintain the number of map points

and to augment them with metadata that reflects the changes

over time, such that future localizations are more likely to

succeed. We draw inspiration from Stylianou et al. [44], that

keeping descriptors over time can improve feature matching.

We follow a standard feature-based pose estimation pipeline,

based on prebuilt structure-from-motion maps. In each ses-

sion, a set of new timestamped images arrives, which are

used to update the live map by appending new descriptors

to the existing 3D points and recomputing point stability

scores using exponential decay. In this paper, we update the

live map at the end of each session. Features are extracted

from a query image, then using nearest-neighbor matching,

we match them with to the mean descriptors of 3D points.

Lowe’s ratio is applied for outlier filtering before estimating

camera poses using PROSAC [8] or RANSAC [13]. Finally,

we refine the pose matrix by refitting it to all inliers.

The visibility matrix V represents which points (columns)

are visible in which image (rows). An element vi,p in this

matrix is 1 if and only if point p is visible in image i, and it is

zero otherwise. This is easily obtainable from SfM software.

After every session, points will have a new stability score we

define as σ, inferred by applying exponential decay. A point

with a high score is more likely to be observed in future ses-

sions. Using these scores, we focus on the subsequent pose
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Table 1. Toy example that illustrates two types of stability scores,

per session and per image, applied to an example visibility matrix

of 4 points (columns) and 6 images (rows), captured in 3 sessions

(bottom entries are the most recent images). The columns under

‘session’ and ‘image’ illustrate the corresponding weights given

to each visibility value in the row. The per-session stability score

(Equation 2) treats all images in a session the same and thus cannot

distinguish between points 2 and 3. The per-image stability score

(Equation 3) favors more recent observations, even in the same

session.

Session Image Visibility matrix

# weight # weight P1 P2 P3 P4

1 0.13 1 0.13 1 0 0 1

1 0.13 2 0.18 1 0 0 1

2 0.25 3 0.25 0 1 0 0

2 0.25 4 0.35 0 0 1 0

3 0.50 5 0.50 0 0 0 0

3 0.50 6 0.71 1 0 0 0

stability per session – σs
p 0.76 0.25 0.25 0.25

stability per image – σi
p 1.02 0.25 0.35 0.31

estimation stage, that is improving the matching filtering

stage, by including time data, in RANSAC and PROSAC

as a score as we explain further in this section. We call this

updated map the live map.

For evaluation and comparison purposes, we also prepare

a base map, i.e. a map constructed using data only from a

single session without any subsequent updates.

3.1. Exponential Decay of Visibility

Our key insight is that once a point has been observed in an

image, the value of this visibility information decreases over

time, becoming increasingly unreliable as time passes due

to the dynamic nature of the world. We model this decrease

over time as an exponential decay:

N(t) = 2−λt, (1)

where λ is the decay constant and t is the time that has passed.

This is inspired by nuclear physics, where exponential decay

models how radioactive atoms decay over time, i.e. how they

lose energy by emitting ionizing particles. In that scenario,

λ−1 is called the half-life and measures the time required for

a quantity to decay to half its initial value. For example, for

a decay of λ = 1, each time step results in decay by half, i.e.

N(0) = 1, N(1) = 0.5, N(2) = 0.25, and so on.

Table 1 shows an illustrative toy example with a visibility

matrix of 4 points and 6 images. We show two cases where

the exponential decay has been applied on a per-session or

per-image basis, which we explain in more detail next. For

example, point P1 in Table 1 was seen in the most recent

image (#6) and session (#3), and is thus weighted highly.

We consider images in the visibility matrix already decayed

because we treat all images in V as past images.

Per-Session Stability Score Each new session of local-

ized images from SfM is appended to the bottom of the

visibility matrix V as a row. The values of the visibility ma-

trix are then weighted per session, as illustrated in Table 1.

Specifically, for session number s ∈ [1, S], the weight is

N(S − s+ 1), for a decay of λ = 1, which corresponds to

a half-life of one session. We sum the weighted visibility

for each point p across all images to obtain the per-session

stability score:

σs
p =

I∑

i=1

N(S − si + 1) · vi,p, (2)

where I is the number of images (number of rows of visibility

matrix V), si is the session number of image i, and vi,p is

the visibility of point p in image i.

Per-Image Stability Score Our second stability score pro-

vides more granularity by weighting points on a per-image

basis, giving more recent observations a higher weight:

σi
p =

I∑

i=1

N(I − i+ 1) · vi,p. (3)

To achieve a similar speed of decay as the per-session sta-

bility score σs
p, we set the decay constant to λ = S/I , such

that the half-life λ−1 = I/S corresponds to the average

number of images per session. This is why images 1, 3 and

5 in Table 1 have the same weight for both stability scores.

Both methods provide coarse and fine accuracy accordingly.

In Table 1, point 2 and point 3 have the same ss value. The

si distribution though differentiates between the two points,

and assigns to point 3 a higher value.

Both stability scores summarize how recently and fre-

quently points have been observed over time. A high score

likely identifies a point that was visible in the last few ses-

sions. Points on permanent structures, such as shop shelves,

furniture or long-term decorations will have the highest

scores. This is because points on stable structures will be

seen more frequently and they thus accumulate more and

higher weights in their stability scores. Another point, even

if seen multiple times in the past, might still receive a

lower score compared to the former. This accurately models

changes in a dynamic scene such as a retail store or outdoor

environment. Products that are on a shelf and seen by a recent

customer will tend to be better candidates for localization,

than products that were not seen either because of occlusion

or having been bought or removed. If products are bought

or removed, the stability score of associated points will con-

tinue to decay over time. Once products are restocked or

put back, the stability score of points on the product will

increase again. In most retail shops, products tend to be at
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the same spot when restocked. Images with scores below a

user-defined threshold could be culled to save memory and

computational resources.

3.2. Pipeline

In this section, we present our long-term localization pipeline

in more detail. The first stage is to create a base map from the

initial session. For this, we use COLMAP [39] with default

settings and extract up to 2000 features for reconstruction.

For incoming new query images, we extract 800 SIFT fea-

tures and use brute-force matching between the descriptors

of the 2D keypoints and the mean descriptor for each 3D

point in the map. We use 800 features to match modern

SLAM frameworks, such as ORB-SLAM2 [31], which use

numbers of around 1,000. Every time a new image is added

to the map, we append the newly extracted descriptors to the

corresponding 3D points’ list of descriptors to update the

mean descriptors of each 3D point.

We fetch the two nearest neighbors for a query descriptor,

and we pick the one with the lower Euclidean distance from

the query descriptor. We use a value of 0.9 for Lowe’s ratio

test [25], similar to Toft et al. [46], to avoid rejecting correct

matches. As a baseline, we run RANSAC [13], as well as a

weighted variation of RANSAC (“with σs”) similar to Toft

et al. [46]. This variation does not pick random matches

uniformly, but according to a predefined probability density,

which we obtain by normalizing the per-session stability

scores σs of all identified matches. For example, if there

are 50 matches between a query image’s descriptors and the

corresponding 3D points in the live map, then 50 σs scores

will be normalized and used as a distribution to sample from.

This way, we promote that more stable points are selected

preferentially. We use a maximum of 3,000 iterations for

both RANSAC versions.

To optimally utilize our new stability scores, we use

PROSAC [8], which stands for progressive sample consen-

sus. Unlike RANSAC, which treats all matches the same

by drawing random samples uniformly, PROSAC adds a no-

tion of quality or priority to matches. When using PROSAC,

matches must be sorted in descending order based on some

score, the higher the score, the better the match. By default,

PROSAC uses the inverse of Lowe’s ratio [8]. In the next

section, we evaluate and compare a variety of PROSAC ver-

sions using different combinations of our stability scores and

Lowe’s ratio.

For both RANSAC and PROSAC, we use an inlier thresh-

old of 5 pixels for the reprojection error, like Sattler et al.

[37]. Once we have the correspondences from RANSAC or

PROSAC, we estimate the camera pose using P3P [14] based

on all inlier matches.

4. Experiments and Evaluation

In this section, we evaluate and compare our proposed ap-

proach to baseline methods on two datasets. We next intro-

duce these datasets and baselines, as well as the metrics we

use for evaluation and comparison.

4.1. Datasets

Most long-term localization datasets, such as CMU Extended

Seasons [37] and RobotCar Oxford [28], are focused on out-

door environments, which mostly exhibit cyclical changes,

such as day/night, seasonal and weather changes. Indoor

scenes, especially retail shops, arguably exhibit less cyclical

and more random changes, mostly caused by human inter-

actions, such as moving objects around. Current outdoor

datasets for long-term localization are therefore not ideal for

evaluating methods like ours that are tailored to indoor local-

ization. Since there are no available datasets for long-term

localization in retail shops, we created a new dataset for this

specific purpose.

CMU Extended Seasons [3, 37] This dataset contains

100,000 images taken over a period of 12 months in Pitts-

burgh, PA, USA. Images were captured with a stereo rig

mounted on an SUV. We only used the left camera view for

our benchmarks to simulate a standard monocular session.

The dataset contains 25 slices, each representing a traversal

of a specific sub-area of the complete route. We use 5 slices

for benchmarking, specifically slices 3, 4, 6, 10 and 11. Each

slice contains images taken at different times, months apart,

in 12 different conditions. These conditions are our sessions.

We reconstruct the base map from the ‘sunny/no foliage’

condition, like Sattler et al. [37]. This base map is visualized

in Figure 3. We set aside one session to use as a query

session. We use the remaining sessions as additional sessions

to create the live map on top of the base map. To create the

base map and obtain ground-truth poses for the query session

images, we use COLMAP [39]. We obtain the query images’

ground-truth poses by localizing them with COLMAP in the

live map after localizing all other remaining sessions, but

do not keep the poses in that map. In a real-life scenario,

the data will be continuously and perpetually added as it is

received. For now, we only have a fixed number of sessions

in a particular dataset. Not all query images localize, as

expected. For those that do localize, we save their pose as

ground truth for later evaluation. To validate that the query

images localized accurately, we visually inspected the latest

live map’s 3D points projected on each query image, using

COLMAP camera poses and intrinsics, and found the results

were satisfactory as points were projected correctly on the

images.

Retail Shop Dataset Since there are no available datasets

for long-term localization in retail shops, we created our own.

We collected the dataset over the span of 5 days, in which we
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Figure 3. The base map for the CMU dataset is constructed using

only the left camera images in the ‘sunny/no foliage’ condition.

The starting point is shown in the bottom right.

visited a local shop twice a day, once at opening time in the

morning and once later in the evening before closing time

(see example in Figure 2). This allowed for sufficient time in

between for customers to interact with the scene by picking

up products, and for the shop to be restocked twice a day.

Each session contains about 450 RGB images of 640×480

resolution obtained from ARCore [15], and covered both

sides of a small shopping aisle. We used ARCore as a foun-

dation for a larger augmented reality application. We chose

a low image resolution to reduce network bandwidth and

transfer time when sending images to a server.

We use images from the first day to construct the base

map. For the live map, we use session images taken subse-

quently and hold out one session for querying, similarly for

the CMU Extended Seasons dataset. Considering that most

sessions in the retail shop were captured close in time, most

images were localized successfully.

4.2. Baselines and Comparisons

We quantitatively compare several versions of our proposed

method to vanilla RANSAC [13] and vanilla PROSAC [8],

on both the base and live map. PROSAC uses the inverse

Lowe’s distance ratio of d2/d1, where d1 is the distance

of the closest 3D point’s descriptor, and d2 the distance of

the second-closest match. We also compare to our modi-

fied RANSAC version, using the per-session stability score

σs (“with σs”) against the same version of RANSAC using

vp =
∑I

i=1
vi,p, which is simply the sum of each column in

the visibility matrix (“with v1”). This equates to the number

of cameras a point was viewed from, which is one scoring

function proposed by Dymczyk et al. [11]. In both cases,

Figure 4. To illustrate the difference between our proposed time-

infused score and the plain visibility score (i.e. the number of

cameras a point was viewed from), we selected a random picture

from the live map and project the map onto it. Each point here

is associated with a stability score σ
i (left image) and a visibility

score v1 (right image). The higher the value, the more stable the

point is. Most of the products’ points from the left cropped-image

are darker from the ones in the right. This confirms our hypothesis,

that those points on the products (i.e. dynamic objects) and are less

likely to be used for pose estimation using our score σ
i.

we normalize the scores across all matches to construct-

ing a probability distribution to sample from. This enables

us to preferentially sample stable matches during the inner

RANSAC loop. Finally, we estimate two poses for each

query image, one in the base map and one in the live map,

using our matching function. We compare both poses to the

ground-truth poses obtained from COLMAP as described in

Section 4.1 and measure the error between them.

We explain the score used for RANSAC and its variations,

and the PROSAC scores. A 3D point from a live map is asso-

ciated with two scores, σs and σi. From the feature matching

stage, an image’s query feature will be associated with the

two nearest neighbors, i.e. 3D points. Each 3D point from

the live map has a σs and σi. An image’s query feature after

matching will be associated with 6 scores, used in evaluation.

Two for its nearest neighbor σs
1
, σi

1
and two for its second

nearest neighbor σs
2
, σi

2
. Finally two v1 and v2. In Figure 4

we visualize the difference between the stability score σi

and the simple score of v. Darker points indicates more dy-

namic points, thus will have a lower probability being used

in pose estimation, which is the case using score σi. On the

contrary using the score v, products (dynamic objects) have

a higher value, lighter color, which is undesirable. In Table 2

we show the scores we used for PROSAC’s scoring list and

our RANSAC’s distribution.

Lowe [25] proposed a simple method for filtering key-

point matches by removing matches when the second-best

match is almost as good as the first one. The rationale behind

the inverse of Lowe’s ratio is that the higher the ratio d2/d1,

the more informative the match is [8]. Using the same logic

we assume a match is more informative when the ratio be-

tween the stability score per image values is higher, σi
1
/σi

2
.
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Table 2. Comparison of the convergence behavior of different RANSAC and PROSAC versions with various scoring functions when applied

on the base and live maps. Columns show the average number of inlier and outlier matches, the number of iterations, run time in seconds,

and the average pose and orientation errors in meters and degrees, respectively. Each number is the average value over 15 independent runs.

Notice that the translation errors for the retail shop are lower than for CMU due to the smaller size of the scene (~6 m compared to hundreds).

5 CMU Slices Retail Shop

Inl. Outl. Iters Secs Er.[m] Er.[°] Inl. Outl. Iters Secs Er.[m] Er.[°]

Base Map

RANSAC [13] 47 105 749 1.52 2.00 5.46 86 123 320 0.15 0.07 5.46

PROSAC [8] (d2/d1) 38 113 30 0.30 1.58 4.77 72 137 26 0.05 0.07 7.41

Live Map

RANSAC [13] 57 108 519 1.00 0.46 2.06 104 124 246 0.12 0.02 2.18

RANSAC with σs
1

58 107 364 1.04 0.38 1.71 106 122 163 0.14 0.02 1.88

RANSAC with v1 58 107 386 0.95 0.40 1.98 106 122 166 0.14 0.02 1.53

PROSAC [8] (d2/d1) 46 119 8 0.13 0.92 3.44 83 145 10 0.04 0.07 6.65

PROSAC with max(σs
1
, σs

2
) 41 125 75 0.22 1.74 3.75 84 145 44 0.05 0.05 4.94

PROSAC with max(σi
1
, σi

2
) 40 126 78 0.26 1.51 3.21 82 146 42 0.06 0.05 5.09

PROSAC with max(v1, v2) 40 126 77 0.25 1.88 4.06 83 145 40 0.05 0.06 5.27

PROSAC with σi-LR 47 119 65 0.20 0.76 3.13 89 140 53 0.05 0.04 3.79

Similarly for the stability score per session, σs
1
/σs

2
. A high

value for σs
1

means that this is a more static point compared

to a low value of σs
2
, the value of the second nearest neighbor.

There needs to be enough difference between the best and

second-best matches [25]. Since a higher value of the inverse

Lowe’s ratio, d2/d1 and σs
1
/σs

2
indicate a more discrimina-

tive and stable point respectively, we use the product of both

as a score, denoted as σi-LR.

In our RANSAC versions for the live map, we used σs
1

and

v1. For each set of matches, we normalized the values and

use them to sample potential inliers, similarly to Toft et al.

[46], instead of uniformly drawing as in vanilla RANSAC.

4.3. Metrics

Here we explain the metrics we use to measure and compare

the performance and accuracy of methods in Table 2. All

reported metrics are averaged over 15 independent runs.

We measure performance using the number of inliers, out-

liers, RANSAC/PROSAC iterations and run time. Generally,

the higher the number of inliers and the lower the number

of outliers, the more robust the estimated camera pose is. A

higher percentage of inliers also tends to decrease the maxi-

mum number of iterations used by the RANSAC/PROSAC

model fitting, and thus the required run time. Run times are

measured on a computer with a quad-core 4 GHz CPU and

16 GB RAM. All methods are implemented in Python.

We measure the accuracy of poses similar to Sattler et al.

[37]. The position error is computed as the Euclidean dis-

tance between the estimated and ground-truth camera cen-

ters, ‖Cest − Cgt‖2, while the absolute orientation error is

calculated from the estimated rotation matrix Rest and the

ground-truth rotation matrix Rgt [17].

Table 3. Average number of matches per image for each slice of

the CMU dataset and the Retail Shop. Our live map consistently

produces more matches than the base map, on average 10% more.

Base Map Matches Live Map Matches

CMU Slice #3 160 175

CMU Slice #4 218 222

CMU Slice #6 140 165

CMU Slice #10 126 136

CMU Slice #11 113 130

Retail Shop 209 229

4.4. Results

Table 2 shows the mean number of inliers, outliers and itera-

tions, run time in seconds, as well as translation and rotation

errors of all the query images for all five slices of the CMU

dataset and the retail shop dataset, for both the base and

live map. The results show that the live map consistently

increases the number of inliers compared to the base map,

for all RANSAC and PROSAC versions. This clear increase

allows some query images that failed to localize in the base

map to be localized in the live map. The live map also con-

sistently reduces run time and pose errors compared to using

the base map. The most accurate poses are obtained using

RANSAC with our per-session stability score σs
1

on the

CMU dataset, and using RANSAC with summed visibility

on the retail shop dataset. Among all versions of PROSAC,

our score σi-LR consistently returned more inliers and lower

pose errors than all other PROSAC versions on both datasets.

We suggest that this version of PROSAC is a good alternative
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Figure 5. Decrease in run time, translation and rotation errors as more sessions are added to the live map of the retail store dataset. On the

left, we show vanilla RANSAC [13], and on the right, we show our PROSAC version using the σ
i-LR score.
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Figure 6. Number of inliers as 7 sessions are added over time for the

retail shop live map, for vanilla RANSAC (red) and our PROSAC

version with stability score σ
i-LR (blue). In both cases, there is a

steady increase of inliers as more sessions are added to the live

map, indicating more robust long-term localization.

to RANSAC on the live map if speed is a priority and not

accuracy. All PROSAC versions were 2–8 times faster than

RANSAC, with vanilla PROSAC being the fastest.

Table 3 shows the average number of matches per image

for each CMU slice and the retail shop dataset. There is a

consistent increase in the number of matches from the base

map to the live map, on average around 10 percent more. One

can argue that they could be noise missed by Lowe’s ratio.

This is not the case given the improvements in performance

shown in Table 2.

Figure 5 and Figure 6 show that the live map keeps im-

proving over time as more and more sessions of images are

added. As shown in Figure 6, there is a consistent increase

in the number of inlier matches during both RANSAC and

our PROSAC version with σi-LR score. At the same time,

Figure 5 shows that both the run time and the translation and

rotation errors are steadily reduced as additional sessions are

integrated into the live map of the retail shop dataset.

These results demonstrate that including information

about time for a 3D point leads to improved long-term lo-

calization results compared to relying only on appearance

information, as represented by SIFT features.

5. Conclusion and Future Work

In this paper, we proposed a new method that exploits the

value of time in structure-from-motion data to enable more

robust long-term localization in dynamic environments. We

show that by applying exponential decay on a visibility ma-

trix extracted by SfM, we can score the stability of all 3D

points over time on a per-session or even per-image basis.

Our results demonstrate that live maps continuously improve

over time as new data is integrated. However, this requires

frequent data input from users, which might be a limitation in

some circumstances. Also, new session data should be able

to uniformly localize. If only segments of a session localize

the live map then will contain parts that are not updated

hence useful for future localizations. Collecting data over a

year so all the seasonal cyclic changes are captured could

be a possible “bootstrap” stage before deploying an ExMap.

Our findings also confirm earlier statements by Mühlfellner

et al. [30] and Stylianou et al. [44] that merging data from

multiple sessions and keeping SIFT data over time helps im-

proves long-term localization. This provides an improvement

over static maps, which are not updated over time and thus

quickly become outdated, leading to an increased failure rate

of localization.

The experiments carried out have shown that along with

appearance information such as SIFT descriptors when our

time-related scores are combined we can improve the number

of inliers returned by PROSAC/RANSAC and increase the

pose accuracy, without increasing the number of points in

a map. Over time we only keep the descriptors of previous

localized images for each existing 3D point, thus our method

is not memory-expensive. In future work, we would like to

explore adding new points or compressing existing maps

based on these scores. We plan to release the source code of

our method and the retail shop dataset.
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