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Abstract

Real-time understanding in video is crucial in various
AI applications such as autonomous driving. This work
presents a fast single-shot segmentation strategy for video
scene understanding. The proposed net, called S3-Net,
quickly locates and segments target sub-scenes, meanwhile
extracts structured time-series semantic features as inputs
to an LSTM-based spatio-temporal model. Utilizing ten-
sorization and quantization techniques, S3-Net is intended
to be lightweight for edge computing. Experiments using
CityScapes, UCF11, HMDB51 and MOMENTS datasets
demonstrate that the proposed S3-Net achieves an accuracy
improvement of 8.1% versus the 3D-CNN based approach
on UCF11, a storage reduction of 6.9× and an inference
speed of 22.8 FPS on CityScapes with a GTX1080Ti GPU.

1. Introduction

Visual environment perception is critical for autonomous
vehicles, say, in the advanced driver assistance system
(ADAS), which requires real-time segmentation and under-
standing of driving scenes such as free-space areas and sur-
rounding behaviors, etc. Compared to the solutions with
LIDARs, RADARs, etc. [3, 18], the computer vision-based
approaches with deep learning can adequately extract scene
information by semantic segmentation [39, 8]. Neverthe-
less, these pixel-wise approaches are designed to segment
all pixels in a frame, which incurs unnecessary compu-
tational complexity and low processing speed. Proposal-
wise methods [17, 15] avoid handling all pixels by learning
only the proposed object candidates, but still require multi-
ple steps of computationally expensive candidate proposal
methods [29, 12]. A large amount of segmentation time
is wasted on the unadopted candidates or overlapped ar-
eas of candidates. Moreover, most existing methods do not
consider the temporal relationship of objects (viz., activi-

ties) in video stream, which is practically essential for au-
tonomous emergency-braking, forward-collision avoidance
and behavior-anticipation systems. As there are numerous
possible activities of pedestrians and vehicles in the real
driving environment, it is challenging to perform fast video
scene understanding using existing segmentation networks.

To overcome these hurdles, we design S3-Net (a scene
understanding network by Single-Shot Segmentation) for
real-time video analysis in autonomous driving. The con-
tributions come from fourfold:

• We devise a single-shot segmentation strategy to
quickly locate and segment the target sub-scenes (op-
timized object areas without background), instead of
segmenting all pixels or every object candidate in a
frame.

• We build an LSTM-based spatio-temporal model
based on the structured time-series semantic features
extracted from the former segmentation model for ac-
tivity recognition in video stream.

• We realize both object segmentation and activity
recognition, for the first time, in a single lightweight
framework.

• We develop a structured tensorization of the LSTM-
based spatio-temporal model, which results in accu-
racy improvement even under deep compression and
hence can be used on terminal/edge devices.

Experimental results on CityScapes [10], UCF11 [23],
HMDB51 [20] and MOMENTS [23] show that the pro-
posed method achieves a remarkable accuracy improvement
of 8.1% over the 3D-CNN based approach on UCF11, a
storage reduction of 6.9× and an inference speed of 22.8
FPS on CityScapes with a GTX1080Ti GPU.

In the following, Section 2 reviews the related works.
Section 3 presents the proposed S3-Net. Section 4 intro-
duces the further improvements of S3-Net by structured
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Figure 1. S3-Net: a single-shot segmentation network for fast video scene understanding towards autonomous driving.

tensorization and trained quantization. Section 5 provides
the experimental results on several large-scale datasets, fol-
lowed by conclusion in Section 6 concludes the paper.

2. Related Work

Modern researches on segmentation mainly fall into 3
categories.

Pixel-wise Existing pixel-wise approaches for segmenta-
tion are designed to predict a category label for each pixel,
which are usually realized by fully convolutional networks
(FCNs) [27, 8].Various improvements like dilated convolu-
tions [39], conditional random fields [40] and two-stream
FCNs [5] are further developed for enhanced performance.
These methods are, however, limited with slow runtime and
relatively low accuracy.

Proposal-wise Driven by the advancement of object detec-
tion networks, recent works perform instance segmentation
with R-CNN to first propose object candidates and then seg-
ment all of them. The work in [11] utilizes the shared con-
volutional features among object candidates in segmenta-
tion layers. DeepMask [29] is developed for learning mask
proposals based on Fast R-CNN. Multi-task cascaded net-
work [12] is developed with an instance-aware semantic
segmentation on object candidates. Mask R-CNN [17] is
developed as the extension of Faster R-CNN with a mask
branch. All these approaches require multiple steps that first
generates object candidates, then segments all of them, and
at last detects and recognizes the correct ones. Apparently,
such object proposal methods waste unnecessary computa-
tion on the unadopted candidates and overlapped areas of
candidates.

Single-stage Lately, there are attempts to produce a single-
stage segmentation. FCIS [21] assembles the position-
sensitive score maps within the ROI to directly predict seg-
mentation results. YOLACT [4] tries to combine the proto-
type masks and predicted coefficients and then crops with
a segmented bounding box. PolarMask [36] introduces the
polar representation to formulate pixel-wise segmentation
as a distance regression problem. SOLO [35] divides net-
work into two branches to generate instance segmentation

with predicted object locations. However, they still require
significant amounts of pre- or post-processing before or af-
ter localization, and cannot achieve a real-time speed.

Moreover, in the real driving environment, vehicles
require precise scene understanding not only segmenta-
tion. The direct perception-based approaches are proposed
in [7, 37] to understand the scene with direct training on the
human driving recordings. And a 3D scene understanding
method is introduced in [3] with the use of several cascaded
CNNs. However, these existing works cannot identify the
temporal relationship of objects and activities from video.

In contrast to the above, we propose the practical scene
understanding network S3-Net for autonomous driving. S3-
Net adopts a single-shot segmentation model to quickly
locate and segment the target sub-scenes; and an LSTM-
based spatio-temporal model to precisely recognize activi-
ties from the structured time-series semantic features. With
elaborated tensorization and quantization algorithms, the
proposed framework provides a fast and lightweight scene
understanding for vehicle-mounted edge/terminal devices.

3. S3-Net

This section elaborates the proposed scene understand-
ing network S3-Net, as shown in Fig. 1. It leverages object
segmentation and activity recognition, for the first time, in a
single lightweight framework. Our design targets 3 criteria,
namely, real-time speed, high accuracy and small size.

3.1. Single-shot Segmentation

To precisely detect the free-space areas and determine
the following moves, the frames in autonomous driving are
usually high-resolution (e.g., 2048×1024), which contain a
huge number of pixels. We divide these pixels into 2 parts:
1) Target object areas, which are important but practically
minority in frames. 2) Background areas, which are the
majority in most situations. This implies significant pro-
cessing time can be saved if target areas in a frame can be
quickly and precisely located. With such analysis, we pro-
pose the single-shot segmentation strategy. Instead of han-
dling all pixels (e.g., SegNet [2]) or every object candidate
(e.g., Mask R-CNN [17]) in a frame, the single-shot seg-
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Figure 2. Comparison between the proposal-wise segmentation and the proposed single-shot segmentation.

mentation focuses on only segmenting the target sub-scenes
of optimized object areas without background, as shown in
Fig. 2.

In the proposed single-shot segmentation, we regard the
sub-scene detection as a single-shot regression problem and
directly learn sub-scene coordinates and class probabilities
from raw features. Assuming that Ft ∈ Rl1×l2 are the
video frames and St ∈ Rl1×l2 are the target sub-scenes
of optimized object areas, where subscript t denotes the
time sequence and l represents the mode size of dimension.
First, the sub-scene detector is employed to locate target
sub-scenes:

St = detc(Ft), (1)

using detc operation to represent the sub-scene detection
processing. Note that we set the number of sub-scenes in a
frame to be lower than a certain value (in our experiments
is 25), and we skip the frame if no sub-scene detected. Af-
ter obtaining the target sub-scenes, we apply the sub-scene
segmentor with fewer layers than the proposal-wise meth-
ods to deliver even higher accuracy. Furthermore, as seen
in Fig. 2, the semantic features are extracted from the last
convolutional layer of single-shot segmentation model for
activity recognition, which will be discussed next.

3.2. Spatio-temporal Model

In practice, we construct a spatio-temporal model based
on an LSTM network using the structured time-series se-
mantic features aggregated from each frame. Suppose that
X t ∈ Rl1×l2×...×ld (here dimensions l1, l2, etc. are generic
and not to be confused with those in Ft and St) are the
time-series semantic features structured into the tensor for-
mat, where d is the dimensionality of the tensor. The single-
shot segmentation model uses several convolutional lay-
ers to learn structured time-series semantic features from
frames:

X t = extr(St), (2)

the extr operation represents the corresponding extraction
method in the proposed feature extractor. Specifically, the
X t are structured as an s× f × c tensor, where s is number
of sub-scenes for each frame, f denotes the learned fea-
tures for each sub-scene, and c represents confidence scores
for those sub-scenes. Then the LSTM cells (consisting of
fully-connected layers) in the LSTM network take X t as
inputs, instead of direct video frames Ft, to learn the spatio-
temporal information. Each LSTM cell keeps track of an
internal state that represents its memory and learns to up-
date its state over time based on the current input and past
states, as in the following:

Et = σ(WeX t + UeHt−1 + Be),Zt = σ(WzX t + UzHt−1 + Bz),

Dt = σ(WdX t + UdHt−1 + Bd), C̃t = tanh(WcX t + UcHt−1 + Bc),

Ct = Et � Ct−1 +Zt � C̃t,Ht = Dt � tanh(Ct), (3)

where� denotes the element-wise product, σ(◦) represents
the sigmoid function and tanh(◦) represents the hyperbolic
tangent function. Ht−1 and Ct−1 are the previous hidden
state and previous update factor, Ht and Ct are the current
hidden state and current update factor, respectively. The
weight matrices W and U weigh the input X t and the pre-
vious hidden state Ht−1 to update factor C̃t and three sig-
moid gates, namely, Et, Zt and Dt. Note that all these
data structures have been tensorized and quantized, which
is further discussed in Section 4.

For each frame in autonomous driving, the spatio-
temporal model calculates its information by combining
previous and current features. Therefore, all temporal infor-
mation in video stream can be captured from the beginning
till the current frame, and then activities can be recognized.
Note that we make use of structured time-series semantic
features instead of the direct video frames as inputs to the
LSTM, as shown in Fig. 2. This way, the LSTM is fed with
structured and distilled sub-scene information yielding high
accuracy and performance.
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Figure 3. Workflow of S3-Net based scene understanding: object segmentation and activity recognition.

3.3. Video Scene Understanding

Based on the proposed single-shot segmentation and
spatio-temporal models, S3-Net can run a fast object seg-
mentation and activity recognition, whose workflow is
shown in Fig. 3. First, the raw video frames are fed into the
single-shot segmentation model, the object segmentation re-
sults and semantic features of each frame are stacked. Then,
the structured time-series semantic features are fed into the
spatio-temporal LSTM model. Finally, after processing the
deeply learned features, activities are recognized. As a re-
sult, the proposed S3-Net represents a highly-optimized ap-
proach to autonomous driving.

4. Other Improvements

To deal with high-dimensional video-scale inputs, the
weight matrix mapping from the input to the hidden layer
becomes extremely large. To address this issue, we present
the structured tensorization and trained quantization algo-
rithms during the training of the S3-Net as follows.

4.1. Structured Tensorization

A tensor is a d-dimensional generalization of a vector or
matrix, denoted by calligraphic letters X ∈ Rl1×l2×...×ld
where X (h1, h2, . . . , hd) is an element specified by the in-
dices h1, h2, . . . , hd. One can tensorize a vector x or matrix
X into a high-dimensional tensor X using the reshape op-
eration, as depicted in Fig. 4. The total number of elements
is l1l2 · · · ld which grows exponentially as d increases. In
practice, tensor decomposition is used to find a low-rank
approximation that expresses the original tensor by a num-
ber of small tensor factors. This often reduces the compu-
tational complexity from exponential to only linear, thereby
eluding the curse of dimensionality.

In S3-Net, the initial inputs of spatio-temporal model
are time-series semantic features, which are already struc-
tured as an s × f × c tensor. In practice, we adopt a struc-
tured tensorization strategy to advance S3-Net. Given a d-
dimensional feature tensor X , the tensorization reads

X (h1, h2, . . . , hd) =

r1,...,rd−1∑
α1,...,αd−1

G1(1, h1, α1)

G2(α1, h2, α2) . . .Gd(αd−1, hd, 1),

(4)

2-d matrix1-d vector
l2 l2

3-d tensor

reshape

reshape

l2 l2

l3

l1l1

l3
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Figure 4. Reshaping a vector into a matrix and then into a 3-
dimensional tensor.
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Figure 5. Tensor decomposition of a 3-dimensional tensor.

where Gk ∈ Rrk−1×lk×rk is the tensor core and rk is the
tensor train rank, αk is the summation index ranging from
1 to rk. Using the notation Gk(hk) ∈ Rrk−1×rk (a matrix
slice from the 3-dimensional tensor Gk), (4) can be written
compactly as

X (h1, h2, . . . , hd) = G1(h1)G2(h2) . . .Gd(hd). (5)

The decomposition of a 3-dimensional tensor is intu-
itively shown in Fig. 5. Since each integer lk in (5) can
be further decomposed as lk = nk · mk, each tensor core
Gk can be reformed with Gt

k ∈ Rnk×mk×rk−1×rk , and
Gt

k(jk, ik) ∈ Rrk−1×rk . Therefore, the decomposition for
the tensor X ∈ R(n1×m1)×(n2×m2)×...×(nd×md) can be re-
formulated as:
X ((j1, i1), (j2, i2), . . . , (jd, id)) = Gt1(j1, i1)G

t
2(j2, i2) . . .G

t
d(jd, id).

(6)

Such double-index trick is then used to tensorize the LSTM-
based spatio-temporal model in S3-Net, as shown in Fig. 6.
Specifically, the most costly computation in LSTM is the
large-scale matrix-vector multiplication generically repre-
sented as y = Wx + b where W ∈ RN×M is the weight
matrix, x ∈ RM is the feature vector, b ∈ RN is the
bias vector. To approximate Wx with much fewer param-
eters, we first reshape W ∈ RN×M into a tensor W ∈



Structured time-series 

semantic features

Structured tensorizationTensorized LSTM

W((j1,i1),(j2,i2), ,(jd,id))

W

W

Spatio-temporal LSTM model

+×

× ×

+

x x

G1(j1,i1)

r1

1

G2(j2,i2)

r2

r1

G3(j3,i3)

r3

r2

x x

Gd(jd,id)

rd-1

1

Tensor cores G

Figure 6. Structured tensorization of the spatio-temporal LSTM model.

R(n1×n2×···×nd)×(m1×m2×···×md), where N = Πd
k=1nk

and M = Πd
k=1mk. Following (6), W(h1, h2 · · · , hd) can

be rewritten as Gt1(j1, i1)Gt2(j2, i2) . . .Gtd(jd, id). Simi-
larly, we can reshape x ∈ RM , b ∈ RN into d-dimensional
tensors X ∈ Rm1×m2×...×md , B ∈ Rn1×n2×...×nd . As a
result, the output y ∈ RN also becomes a d-dimensional
tensor Y ∈ Rn1×n2×...×nd . Therefore, the matrix-vector
multiplication can be expressed in the tensor form with usu-
ally low-rank cores

Y(j1, j2, . . . ,jd) =

m1∑
i1=1

m2∑
i2=1

. . .

md∑
id=1

[Gt1(j1, i1)G
t
2(j2, i2) . . .

Gtd(jd, id)X (i1, i2, . . . , id)] + B(j1, j2, . . . , jd).

(7)

The settings of mk and nk in our structured tensorization
are determined by 2 criteria: 1) Make the tensorization-
based parameters uniformly small; 2) Keep the sizes of di-
mensions not far from the already-structured inputs (in our
experiments we structure 25×425×8 into 25×25×17×8).
This way, accuracy improvement can be maintained even
under deep compression, which will be reported in Sec-
tion 5.

4.2. Trained Quantization

The network processing with full-precision parameters
requires unnecessarily large software and hardware re-
sources. Here we present a quantization strategy on the
whole S3-Net framework for further improvement. Note
that we apply the quantized constraints during both net-
work training and inference, called the trained quantization.
Since the main parameters in S3-Net are weights and fea-
tures, the trained quantization with 8-bit weights and fea-
tures can result in high compression and efficiency. Note
that such particular choice of 8-bit is determined by several
S3-Net realizations from 4-bit to 10-bit. Assuming wk is
the full-precision weight entry, it can be quantized into its
8-bit counterpart wqk as:

w
q
k =


wk
|wk|

, 0 < |wk| ≤ 1
27
,

floor(27 × wk), 1
27

< |wk| < 1,

(27 − 1)
wk
|wk|

, |wk| ≥ 1,

0, |wk| = 0,

(8)

where the function floor takes the smaller nearest integer.
We also enforce 8-bit features by quantizing a real feature
element xk into its 8-bit xqk ∈ [0, 1]:

x
q
k =

1

28
×

{
floor(28 × xk), 0 ≤ xk < 1,

28 − 1, xk ≥ 1.
(9)

Note that the batch normalization and max-pooling layers
are also quantized into 8-bit similarly.

Based on proposed structured tensorization and trained
quantization, we tensorize all matrix-vector products in the
S3-Net similarly to (7) and quantize all tensor core entries
(i.e. those entries in G1, · · · ,Gd) into 8-bit. Due to these
improvements, the computational complexity of S3-Net re-
duces from O(ndm) to O(dr2maxnm), where rmax is the
maximum rank of cores Gk, and nm is the maximum model
size nk ·mk of tensor weights W .

5. Experiments
The advantages of the S3-Net are demonstrated by

comparisons with state-of-the-art results. Our experimen-
tal setup employs Tensorflow for coding and NVIDIA
GTX-1080Ti for hardware realization. We validate
S3-Net by evaluations on 1 large-scale segmentation
dataset: CityScapes [10] and 3 challenging activity recog-
nition datasets: UCF11 [23], HMDB51 [20] and MO-
MENTS [28].

5.1. Evaluation on Object Segmentation

To verify the performance of S3-Net on video object seg-
mentation, we apply the CityScapes for comparison. This
large-scale dataset contains high-quality pixel-level annota-
tions of 5000 images of 2048×1024 resolution collected in
street scenes from 50 different cities. Following the eval-
uation protocol for the single-shot segmentation and fur-
ther activity recognition, we select 8 object labels: person,
rider, car, truck, bus, train, motorcycle, bicycle (be-
longing to 2 super categories: human and vehicle), which
have the possibility of performing an activity, and all other
labels are considered as background. Note that the sub-
scene detector has been pre-trained on COCO [22] with



Figure 7. Sample visual results of S3-Net on CityScapes.

Approach AP AP50 person rider car truck bus train motorcycle bicycle

Pixel-level-Encoding [31] 8.9 21.1 - - - - - - - -
InstanceCut [19] 13.0 27.9 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7
SGN [24] 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4
PolygonRNN++ [1] 27.6 44.6 - - - - - - - -
SegNet [2] 29.5 55.6 29.9 23.4 43.4 29.8 41.0 33.3 18.7 16.7
SSAP [14] 32.7 51.8 35.4 25.5 55.9 33.2 43.9 31.9 19.5 16.2
Mask R-CNN [17] 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0
Mask R-CNN[COCO] [17] 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7
PA-Net [25] 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8
GMIS [26] 27.3 45.6 31.5 25.2 42.3 21.8 37.2 28.9 18.8 12.8
Box2Pix [32] 13.1 27.2 - - - - - - - -
S3-Net 32.3 57.2 35.8 27.9 51.3 29.7 39.5 29.1 24.3 20.4
“-” represents not reported or no open source for evaluation.

Table 1. Accuracy comparison with state-of-the-arts on CityScapes.

these 8 categories. The training, validation, and test sets
contain 2975, 500 and 1525 images, respectively.

The segmentation accuracy is measured in terms of
the standard average precision metrics: AP and AP50,
where AP50 represents the score over intersection-over-
union (IoU) threshold 0.5. Moreover, the individual AP
scores for every class are further evaluated. Some state-
of-the-art results on CityScapes are chosen for accuracy
comparison, as listed in Table 1. It can be seen in Ta-
ble 1 that S3-Net outperforms various approaches and is
only slightly lower than SSAP [14]. Specifically, the AP
of S3-Net reaches 32.3, which is 0.3 higher than the Mask
R-CNN[COCO] [17] and 0.5 higher than the PA-Net [25].
Sample visual results on CityScapes are presented in Fig. 7.
It is found that S3-Net can precisely locate and segment the
target sub-scenes, even for crowds in the distance.

5.2. Evaluation on Activity Recognition

For activity recognition, we use UCF11 and HMDB51
video datasets for accuracy comparison. The UCF11 con-
tains 1600 video clips, falling into 11 activity classes that
summarize the human activities visible in each clip such as

Approach UCF11 HMDB51
Bag-of-words approach [23] 71.2% 59.4%
Two-stream CNN [30] 73.3% 66.4%
Original LSTM [16] 76.1% 69.6%
CNN+RNN [33] 83.7% 67.6%
3D-CNN [9] 89.2% 78.6%
Tensorized LSTM [38] 81.3% 71.1%
Two-Stream Fusion + IDT [13] 93.5% 69.2%
Temporal Segment Networks [34] 94.2% 69.4%
Two-Stream I3D [6] 97.9% 80.2%

S3-Net 98.3% 80.8%
Table 2. The activity recognition accuracy (top-1) comparison on
UCF11 and HMDB51 datasets.

biking, diving orwalking. We resize the RGB frames into
160 × 120 at the FPS of 24 and sample all frames of each
video clip as the input data. The HMDB51 provides 3 train-
test splits each consisting of 5100 videos, falling into 51
classes of human activities like Drink, Jump or Throw.
The training set contains 3570 videos (70 per class) and the
test set has 1530 videos (30 per class). Each video has an
FPS of 30. Table 2 shows the comparison between S3-Net
with state-of-the-art results on the UCF11 and HMDB51
datasets. It can be seen that S3-Net significantly outper-
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Figure 8. Sample visual results of S3-Net based scene understanding on MOMENTS.

Task Approach Storage(MB) FPS(CityScapes) FPS(MOMENTS)

Object segmentation

SegNet [2] 112 2.4 15.7
SSAP [14] - 3.4 19.2
Mask R-CNN [17] 245.6 6.9 41.5
PA-Net [25] 245.6 5.3 34.7
Box2Pix [32] - 10.9 -

Activity recognition

Two-stream CNN [30] 243.2 3.3 20.1
Original LSTM [16] 616.3 5.9 38.0
CNN+RNN [33] 720.5 - 11.5
3D-CNN [9] 395.7 8.2 48.3

Object segmentation + Activity recognition S3-Net 89.2 22.8 137.3
Table 3. The model size and speed comparisons on CityScapes and MOMENTS.

forms other approaches. Specifically, on UCF11 dataset,
the top-1 accuracy of S3-Net reaches 98.3%, 8.1% higher
than the 3D-CNN [9] and 4.1% higher than the Temporal
Segment Networks [34]. The quantitative comparison re-
sults demonstrate the unique benefit of the proposed S3-Net
arises from the use of structured tensorization, namely, ac-
curacy improvement even under deep compression.

We further report experimental results on the large-scale
video dataset MOMENTS that contains one million labeled
3-second video clips involving people, animals, objects
and natural phenomena that capture the gist of a dynamic
scene. Each clip is assigned with 339 activity classes such
as walking, playing or jogging. Based on the majority
of the clips, we resize every frame to a standard size of
340 × 256 at an FPS of 25. After training, S3-Net runs a
real-time video scene understanding on MOMENTS. Sam-
ple visual results of S3-Net on MOMENTS are shown in
Fig. 8. We observe that all objects in these frames can be
located and segmented, then activities in video stream can

be recognized precisely.

5.3. Performance Analysis

Besides the impressive functions and accuracy of the
proposed framework, the compactness and speed are also
outstanding compared to existing approaches. Table 3
shows the model size and speed comparisons among dif-
ferent baselines. It can be seen that S3-Net achieves an
excellent compression ratio, namely, 6.9× and 2.9× stor-
age reduction when compared to the original LSTM [16]
and Mask R-CNN [17], respectively. The whole S3-Net
costs only 89.2MB to perform both object segmentation
and activity recognition with good accuracy. Moreover, S3-
Net runs at 22.8 FPS on the high-resolution CityScapes,
while 137.3 FPS on MOMENTS, which is considered “very
fast” for both object segmentation and activity recognition
tasks. Since the model size is significantly reduced and the
speed is highly accelerated, the proposed S3-Net provides a
turnkey solution for fast and lightweight video scene under-



Scale Depth AP AP50 Acc(%) FPS

480
9 24.6 48.7 89.8 33.1

12 28.2 51.5 95.1 31.3
15 28.5 52.1 95.6 28.8

800
9 29.4 53.5 95.8 26.5

12 32.3 57.2 98.3 22.8
15 32.8 57.9 98.5 19.6

Table 4. Sub-scene Detector: Larger and deeper layers bring
higher accuracy, while too large or deep layers highly slow down
the speed.

Backbone AP AP50 FPS
ResNet-101-FPN 34.9 59.5 13.4
ResNet-50-FPN 32.3 57.2 22.8

Table 5. Backbone Architecture: Better backbones bring expected
benefits, but not all frameworks rely on the deeper networks.

COCO AP AP50 Acc(%)
with 32.3 57.2 98.3
without 27.9 53.6 92.0

Table 6. Pretrained COCO Model: Pretrained model on COCO
remarkably improves accuracy.

standing, say, in autonomous driving.

5.4. Ablation Study

We run a series of ablations to further analyze S3-Net.
All experiments are valuated on CityScapes and UCF11
with the same software-hardware environments. Note that
in all tables, we apply AP and AP50 as the object segmenta-
tion accuracy on CityScapes and Acc as the activity recog-
nition accuracy on UCF11.

Sub-scene Detector The first concern arises from the be-
ginning of the network. As the sub-scene detector learns im-
portant coordinates for the subsequent parts, the input frame
scale and depth should be investigated. In Table 4, we com-
pare different detectors’ scales and depths. At a frame scale
of 800, changing the head depth from 9 to 12 provides 2.9
AP and 2.5 Acc gains while 12 to 15 provides 0.5 AP and
0.2 Acc gains and becomes stable. Therefore, we conclude
that 12 is the best choice for layer depth of the sub-scene
detector. Next, setting depth to be 12, changing input frame
scale from 800 to 480 provides 8.5 FPS gains, and causes
4.1 AP and 3.2 Acc losses. In practice, we apply S3-Net-
800 as the default, and enable S3-Net-480 when the frame
sizes are small, say, in MOMENTS.

Backbone Architecture For the backbone architecture of
the single-shot segmentation model, we evaluate S3-Net
with 2 different backbones: ResNet-50-FPN and ResNet-
101-FPN, as shown in Table 5. The results show that re-
placing ResNet-101-FPN to ResNet-50-FPN provides 9.4
FPS gains, and causes 2.6 AP losses. We stress that S3-Net
can get competitive accuracy with the lightweight backbone
when compared with larger-scale networks. Subsequently,
we employ ResNet-50-FPN as the default backbone due to
its compactness.

Inputs Acc(%)
Raw frame data 79.7
Non-structured semantic features 92.4
Structured semantic features 98.3

Table 7. Structured Time-series Semantic Features: Optimized in-
puts of the spatio-temporal model bring expected benefits.

Structured tensorization × × X X
Trained quantization × X × X

AP 32.6 32.3 32.6 32.3
Acc(%) 76.1 75.9 98.4 98.3
Storage(MB) 972.5 243.1 356.8 89.2
FPS 2.8 3.1 22.1 22.8

Table 8. Tensorization and Quantization: Unique benefit of accu-
racy improvement under deep compression.

COCO Pretrained Model Here we evaluate the impacts
of the COCO pretrained model used in training. Table 6
reports the accuracy with/without COCO pretrained model.
We have the observation that the COCO pretrained model
provides a 4.3 AP and 6.3 Acc improvement on CityScapes
and UCF11.

Structured Time-series Semantic Features The structured
time-series semantic features plays an important role in the
proposed spatio-temporal model for activity recognition. In
Table 7, we report the Acc scores with 3 different inputs
to the spatio-temporal model: 1) raw frame data, 2) non-
structured semantic features and 3) structured semantic fea-
tures. As we can see, the proposed method gets the highest
Acc among all schemes, which demonstrate its importance.

Tensorization and Quantization Finally, in Table 8, we
present the ablation study on tensorization and quan-
tization by testing different training strategies, namely,
with/without quantization/tensorization. The series of eval-
uations demonstrate the unique benefit arises from the struc-
tured tensorization and trained quantization, namely, accu-
racy improvement even under deep compression.

6. Conclusion

This paper has proposed the S3-Net for fast video scene
understanding. A single-shot segmentation method is pro-
posed to quickly locate and segment the target sub-scenes,
instead of handling all pixels or every object candidate in
the frame. Then, an LSTM-based spatio-temporal model
is built from highly structured time-series semantic features
for activity recognition. Moreover, the structured tensoriza-
tion and trained quantization are utilized to significantly ad-
vance the S3-Net, making it friendly for edge computing.
Using the benchmarks of CityScapes, UCF11, HMDB51
and MOMENTS, S3-Net achieves a remarkable accuracy
improvement of 8.1%, a storage reduction of 6.9× and an
inference speed of 22.8 FPS, thereby rendering it a strong
candidate for real-time video scene understanding in au-
tonomous driving.
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