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Fig. 1: Several examples of synthesised images of our model. We select four groups of images which are arranged with respect
to gender and age. The highlighted features in the textual descriptions are all rendered in the images. The images also exhibit
diversity in terms of the other unspecified features.

Abstract—Text-to-Face (TTF) synthesis is a challenging task
with great potential for diverse computer vision applications.
Compared to Text-to-Image (TTI) synthesis tasks, the textual
description of faces can be much more complicated and detailed
due to the variety of facial attributes and the parsing of high
dimensional abstract natural language. In this paper, we propose
a Text-to-Face model that not only produces images in high
resolution (1024×1024) with text-to-image consistency, but also
outputs multiple diverse faces to cover a wide range of unspecified
facial features in a natural way. By fine-tuning the multi-label
classifier and image encoder, our model obtains the vectors and
image embeddings which are used to transform the input noise
vector sampled from the normal distribution. Afterwards, the
transformed noise vector is fed into a pre-trained high-resolution
image generator to produce a set of faces with the desired facial
attributes. We refer to our model as TTF-HD. Experimental
results show that TTF-HD generates high-quality faces with state-
of-the-art performance.

Index Terms—text-to-face synthesis, multi-label, disentangle-
ment, high-resolution, diversity

I. INTRODUCTION

With the advent of Generative Adversarial Networks (GAN)
[1], image generation has made huge strides in terms of both
image quality and diversity. However, the original GAN model
[1] cannot generate images tailored to meet design specifica-
tions. To this end, many conditional GAN models have been
proposed to fit different task scenarios [2]–[8]. Among these
works, Text-to-Image (TTI) synthesis is a challenging yet less
studied topic. TTI refers to generating a photo-realistic image
which matches a given text description. As an inverse image
captioning task, TTI aims to establish an interpretable mapping
between image space and the text semantic space. TTI has
huge potential and can be used in many applications including
photo editing and computer-aided design. However, natural
language is high dimensional information which is often less
specific but also much more abstract than images. Therefore,
this research problem is quite challenging.

Just like TTI synthesis, the sub-topic of Text-to-Face (TTF)
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synthesis also has practical value in areas such as crime
investigation and also biometric research. For example, the
police often need professional artists to sketch pictures of
suspects based on the descriptions of the eyewitnesses. This
task is time-consuming, requires great skill and often results in
inferior images. Many police may not have access to such pro-
fessionals. However, with a well-trained Text-to-Face model,
we could quickly produce a wide diversity of high-quality
photo-realistic pictures based simply on the descriptions of
eyewitnesses. Moreover, TTF can be used to address the
emerging issues of data scarcity arising from the growing
ethical concerns regarding informed consent for the use of
faces in biometrics research.

A major challenge of the TTF task is that the linkage
between face images and their text descriptions are much
looser than for, say, the bird and flower images commonly
used in TTI research. A few sentences of description are
hardly adequate to cover all the variations of human facial
features. Also, for the same face image, different people may
use quite different descriptions. This increases the challenge
of finding mappings between these descriptions and the facial
features. Therefore, in addition to the aforementioned two
criteria, a TTF model should have the ability to produce
a group of images with high diversity conditioned on the
same text description. In a real-world application, a witness
could choose one image among several possible images which
they believe is the closest the suspect. Diversity is also very
important for biometric researchers to obtain enough photos
of rare ethnicities and demographics when synthesising ethical
face datasets that do not require informed consent.

Note that there are raising ethical concerns in the face
research community regarding some questionable behaviours
such as harvesting faces from internet without user consent.
Constructing face datasets with racial bias where minorities are
often neglected, and offensive slurs from the meta-data of faces
harvested from the internet. As a pioneer work targeting on
resolving these ethical issues, our research start from resolving
the issue of violating user consent first and, to some extent,
combating the racial bias problem by providing ability to
generated desired faces conditioned by text description.

Therefore, to meet these demands, we proposed a model
which includes a novel TTF framework satisfying: 1) high
image quality; 2) improved consistency of synthesised images
and their descriptions; and 3) the ability to generate a group
of diverse faces from the same text description.

To achieve these goals, we propose a pre-trained BERT
[9] multi-label model for natural language processing. This
model outputs sparse text embeddings of length 40. We then
fine-tune a pre-trained MobileNets [10] model using CelebA’s
[11] training data where the images have paired labels. Next,
we predict labels from the input images. Then we structure
a feature space with 40 orthogonal axes based on the noise
vectors and the predicted labels. After this operation, the input
noise vectors can be moved along specified directions to render
output images which exhibit the desired features. Last, but
certainly not least, we use the state-of-the-art image generator,

StyleGAN2 [12], which maps the noise vectors into a feature
disentangled latent space, to generate high-resolution images.
As Fig. 1 shows, the synthesised images match the features
of the description while exhibiting both good diversity and
excellent image quality.

II. CONTRIBUTIONS

Note that this work is one part of the EDITH project which
has been reviewed by the Office of Research Ethics and is
deemed to be outside the scope of ethics review under the
National Statement on Ethical Conduct in Human Research
and University policy.

Our work has the following main contributions.
• Proposes a novel TTF-HD framework comprising a multi-

label text classifier, an image label encoder, and a feature-
disentangled image generator to generate high-quality
faces with a wide range of diversity.

• Adds a novel 40-label orthogonal coordinate system to
guide the trajectory of the input noise vector.

• Uses state-of-the-art StyleGAN2 [12] as the generator to
map the manipulated noise vectors into the disentangled
feature space to generate 1024×1024 high-resolution
images.

This paper is continued as follow. In Section 2, we review
the important works in TTI, TTF, and models of the generators.
In Section 3, we describe our proposed framework in detail. In
Section 4, experimental results are presented both qualitatively
and quantitatively and an ablation study is conducted to
show the importance of the vector manipulating operations.
In Section 5, we conclude our work by summarising our
contributions and the limitations of our approach.

III. RELATED WORKS

A. Text-to-Image Synthesis

In the area of TTI, Reel et al. [6] first proposed to
take advantage of GAN, which includes a text encoder and
an image generator and they simply concatenated the text
embedding to the noise vector as input. Unfortunately, this
model failed to establish good mappings between the keywords
and the corresponding image features. Moreover, due to the
final results being directly generated from the concatenated
vectors, the image quality was so poor that images were be
easily spotted as fake. To address these two issues, StackGAN
[7] proposed to generate images hierarchically by utilising
two pairs of generators and discriminators. Later, Xu et al.
proposed AttnGAN [8]. By introducing the attention mech-
anism, this model successfully matched keywords with the
corresponding image features. Their interpolation experimen-
tal results indicated that the model could correctly render
the image features according to the selected keywords. This
model works remarkably well in translating bird and flower
descriptions. However, in these cases the descriptions are
mostly just one sentence. If the descriptions are longer, the
efficacy of text encoding deteriorates because the attention
map becomes harder to train.



Fig. 2: TTF-HD diagram. The text is fed into the multi-label classifier T which then outputs a text vector ltrg that represents
40 facial attributes. The image generator G firstly synthesises an image from a random noise vector z. Then the image encoder
E outputs the image embeddings lorg. The differentiated embedding ldiff is used to manipulate the original noise vector from
z to ẑ. Finally, the generator synthesises an image with the desired features from ẑ.

B. Text-to-Face Synthesis

Compared to the number of works in TTI, the published
works in TTF are far fewer. The main reason is that a face
description has a much weaker connection to facial features
compared to that of, say, bird or flower images. Typically,
the descriptions of birds and flowers are primarily about the
colour of the feathers or petals. Descriptions of faces can be
much more complicated with gender, age, ethnicity, pose, and
other important facial attributes. Moreover, most of the TTI
models are trained on Oxford-102 [13], CUB [14], and COCO
[15] which are not face image datasets. When dealing with
faces, the only face dataset that is suitable is Face2text [16]
which has only five thousand pairs of samples — this not large
enough to train a satisfactory model.

With all of the challenges mentioned above, there are still
several inspiring works engaging in Text-to-Face synthesis.
In a project named T2F [17], Akanimax proposed to encode
the text descriptions into a summary vector using the LSTM
network. ProGAN [18] was adopted as the generator of the
model. Unfortunately, the final output images exhibited poor
image quality. Later, the author improved his work, which he
named T2F 2.0, by replacing ProGAN with MSG-GAN [19].
As a result, both image quality and image-text consistency
improved considerably, but the output showed low diversity
with regard to facial appearance.

To address the data scarcity issue, O.R. Nasir et al. [20]
proposed to utilise the labels of CelebA [11] to produce
structured pseudo-text descriptions automatically. In this way,

the samples in the dataset are paired with sentences which
contain positive feature names separated by conjunctions and
punctuation. The results are 64×64 pixel images showing a
certain degree of diversity in appearance. The best output
image quality so far is from Chen et al. [23] which also
adopted the model structure of AttnGAN [8]. Therefore, this
work has the same issues with text encoding mentioned
previously.

C. Feature-Disentangled Latent Space

Conventionally, the generator will produce random images
from noise vectors sampled from a normal distribution. How-
ever, we desire to control the rendering of the images in
response to the feature labels. To do this, Chen et al. [24]
proposed to disentangle the desired features, by maximising
the mutual information between the latent code c of the
desired features and the noise vector x. In his experiments,
he introduced a variation distribution Q(c|x) to approach
P (c|x). Finally, the latent code indicates that it has managed
to learn interpretable information by changing the value in
a certain dimension. However, the latent code in this work
has only 3 or 4 dimension; we require 40 features, which is
much more complicated. Later, Karras et al. [21] established
a novel style-based generator architecture, named StyleGAN,
which does not take the noise vector as input like the previous
works. The input vector is mapped into an intermediate latent
space through a non-linear network before being fed into the
generator network. The non-linear network consists of eight
fully connected layers. A benefit for such a setting is that



the latent space does not have to support sampling according
to any fixed distribution [21]. In other words, we have more
freedom to combine desired features.

IV. PROPOSED METHOD

Our proposed model, named TTF-HD, comprises a multi-
label classifier T , image encoder E, and a generator G is
shown in Fig. 2. Details will be discussed in the following
subsections.

A. Multi-Label Text Classification

To conduct the TTF task, it is of vital importance to have
sufficient facial attribute labels to fully describe a face. We
propose to use the CelebA [11] dataset which includes 40
facial attribute labels for each face. To map the free-form
natural language descriptions to the 40 facial attributes, we
propose to fine-tune a multi-label text classifier T to obtain
text embeddings of length 40. Note that the keywords in the
descriptions are the same words or synonyms of text labels in
the CelebA dataset. Some labels might be considered offensive
to some people, but we need to use these labels so we can
compare our approach to the work of others — we truly do
not wish to cause offence even to synthesized people.

With these considerations, we adopt the state-of-the-art
natural language processing model, Bidirectional Transformer
(BERT) [9]. In light of the fact that this is a 40-class clas-
sification task, we choose to use the large network of the
BERT model as it has better performance on high-dimensional
training data. Some features have different names for their
opposites attributes. For example, when training the model T ,
the feature “age” could be represented by either young” or
old” where, for example, young” might be represented by a
value close to 1 and old” might be close to 0. If a feature
isn’t specified, it is set to 0. This process is shown in Fig. 3.
Finally, the classifier outputs a text vector of length 40 for
each description.

Fig. 3: A possible classification result of the text classifier T .

Note that one advantage of our text classifier compared
to the earlier text encoders is that there is no restriction
on the length of text descriptions. In previous works, the
text is mostly crammed into one or two sentences. For face
descriptions, length is generally much longer than for bird
and flower descriptions, which makes traditional text encoders
inappropriate.

B. Image Multi-Label Embeddings

In the proposed framework, an image encoder E is required
to predict the feature labels of the generated images. To do
this, we fine-tune a MobileNet model [10] with the samples
of CelebA [11]. The reason for choosing MobileNet is that
it is a light-weight network model that has a good trade-off

between accuracy and speed. With this model, we can obtain
the image embeddings which have the same length as the text
vectors of the images generated from the noise vectors.

C. Feature Axes

After training the image encoder, now we can find the re-
lationship between the noise vectors and the predicted feature
labels by logistic regression. The length of the noise vectors
is 512 (x ∈ R512) and the length of thefeature vectors is 40
(y ∈ R40). Therefore, we obtain:

y = x ·B (1)

where B is the matrix of dimension 512×40 to be solved.
This matrix needs to be orthogonalised because we must

disentangle all the attributes so that the noise vectors can move
along a certain feature axis without affecting the others. By
the Gram-Schmidt process, the projection operator is:

proju(v) =
〈v,u〉
〈v,v〉

u (2)

where v is the axis to be orthogonalised and u is the reference
axis. Then, we obtain:

uk = vk −
k−1∑
j=1

projuj
(vk),

wk =
uk
‖uk‖

, (k = 1, 2, ...40) .

(3)

In (3), the matrix W = [w1,w2, ...wk] is normalised so that
W is unitary.

After these steps, we obtain the feature axes which are used
to guide the update direction of the input noise vectors to
obtain the desired features in the output images.

D. Noise Vector Manipulation

Manipulating the noise vectors is vital to our work because
this determines whether the output images will have the
described features as the text corpus. In the model diagram
Fig. 2, this is the process of changing the random noise
vector from z to ẑ by (4) where l is a column vector which
determines the direction and magnitude of the movement along
the feature axes.

ẑ = z +W · l (4)

To ensure that the model will produce an image with the
desired features no matter where the noise vectors are located
in the latent space, we introduce four operations.

Differentiation. As shown in Fig. 2, the text classifier
embedding output is denoted ltrg and the predicted embedding
from the initial random vector is given by lorg = E(G(z)).
Intuitively, we can use ltrg to guide the movement of noise
vectors along the feature axes. However, the value range of ltrg
is [0, 1]. This means that the model cannot render features in
the opposite direction, say, young versus old, because there are
no labels corresponding to the opposite values. To solve this,



Fig. 4: Images produced with single-sentence input. With fewer specified labels in the text, the model generates samples with
higher diversity.

we use differentiated embeddings ldiff to guide the feature
editing obtained by (5)

ldiff = ltrg − lorg. (5)

In this way, the noise vectors can be moved in both positive
and negative directions along the feature axes because the
value range of the differentiated embeddings is [−1, 1]. For
the features which have a similar probability value in both the
text embeddings and the image embeddings, their probability
value is cancelled out and they will not be rendered repeatedly
in the output images. This operation is shown in Fig. 2. For
each feature, according to its probability level in ltrg and lorg,
the movement direction can be positive, negative or neutral.

Note that to minimize interference of the unspecified fea-
tures in the text descriptions, we do not apply the differenti-
ation operation to such features. Instead we keep their value
as zero in the differentiated embeddings.

Nonlinear Reweighting: In the differentiated embeddings,
the labels with values approaching -1 or 1 are the specified
features where the text descriptions are specified in either a
positive or negative way. Apart from these labels, there may
be some other labels whose values are between -1 and 1 which
tend to interfere with the desired feature rendering. Therefore,
we need to emphasize the specified features. To do this,
we scale the differentiated embeddings range slightly from
[−1, 1] to

[
−π3 ,

π
3

]
. Then we compute the tan(.) of the mapped

differentiated embeddings. As a result, values approaching the
ends of the range will get a higher weighting. In our case,

since tan(pi/3) =
√
3, the reweighed value range is now[

−
√
3,
√
3
]
.

Normalization: As the noise vectors are sampled from
a normal distribution, they have a higher probability to be
sampled near the origin where the probability density is high.
However, the more steps we move the vectors along different
feature axes, the larger the distance becomes between these
vectors and the origin, which will lead to more artifacts in
the generated images. That is why we need to renormalise
the vectors after each movement along the axes. This distance
can be denoted as L1 distance. Therefore, for the noise vector
X = [x1,x2, ...xn], we get X ′ = [x′1,x

′
2, ...,x

′
n] with (6)

‖x‖1 =

N=512∑
i=1

|xi|

x′i =
xi
‖x‖1

(i = 1, 2, ..., 512)
(6)

Feature lock: To make the face morphing process more
stable, we have a feature lock step each time we move the
vectors along a certain axis. In other words, the model only
uses the axes along which the vectors have been moved as the
basis axes to disentangle the following feature axis. While for
other axes of unspecified attributes in the textual descriptions,
the movement direction and step size along such axes are
not fixed to ensure diversity in the generated images. In this
way, noise vectors are locked only in terms of the features
mentioned in the descriptions.



Fig. 5: Image morphing process of each group in ablation study. (A) A group with all operations. (The default setting for TTF-
HD) (B) A group with reweighting, differentiation, and normalisation operations. (C) A group with reweighting, differentiation
operations. (D) A group with the reweighting operation. (E) Blank group. We fix the noise vector input of each group. The
figure shows the morphing process from the random image on the left column to the final output on the right column.

E. High Resolution Generator

The generator G we use is a pre-trained model of Style-
GAN2 [12]. On the basis of mapping the noise vectors which
are sampled from the normal distribution to the intermediate
latent space, StyleGAN2 improves the small artifacts by
revisiting the structure of the network. With this generator,
not only can the model synthesise high-resolution images, but
it can also render the desired features from the manipulated
input vectors.

V. EXPERIMENTS & EVALUATION

Dataset: The dataset we use is CelebA [11] which contains
over 200k face images. For each sample, there is a paired
one-shot label vector whose length is 40. In addition, there
is another paired text description corpus set in which every
description has up to 10 sentences. There may be some
redundant sentences in some of them, but every description
includes all the features the paired label vector indicates. We
use this dataset to fine-tune the pre-trained multi-label text
classifier and the pre-trained image encoder.

Experimental setting: In our evaluation experiments, we
randomly choose 100 text descriptions. With each of them,

the model will randomly generate 10 images. Therefore, the
test set has 1000 images in total. As the experiments show,
there will be significant image morphing when the noise vector
moves twice along certain feature disentangled axis. Thus, we
set the step size as 1.2, which multiplies the reweighted output
of the differentiated vector. This guarantees a final weight
which is used to move along the axis of around 2 (

√
3× 1.2).

A. Qualitative Evaluation
Image quality: Fig. 1 also shows the paired descriptions in

each group. We can see that most of the generated images are
correctly rendered with the specified features.

Image diversity. To show the proposed method has great
feature generalisation capacity, we conduct the image synthesis
conditioned on the single-sentence description. In other words,
apart from the key features that the sentences describe, the
model should diversify the other facial features in the output.
As Fig. 4 shows, for each single-sentence description, the
proposed model produces images with high diversity.

B. Quantitative Evaluation
In this section, we apply three metrics to evaluate the above

three criteria respectively. They are Inception Score (IS) [25]



which is used in many previous works, Learned Perceptual
Image Patch Similarity (LPIPS) [22] which is for evaluating
the diversity of the generated images, and Cosine Similarity
which is widely used to evaluate the similarity of two chunks
of a corpus in natural language processing. Due to the lack of
the source code for most of the works in the TTF area such as
T2F 2.0 [17], we compare our experimental results with the
TTF implementation of AttnGAN [8] which has produced the
best results so far.

TABLE I: Evaluation results of different models

Methods IS CS* LPIPS
TTF-HD (ours) 1.117±0.127 0.664 0.583±0.002
AttnGAN 1.062±0.051 0.511 ——
*Maximum for each group.

Table I shows the evaluation results of different models.
We see the proposed TTF-HD method outperforms the state-
of-the-art method AttnGAN [8] in terms of both image quality
and Text-to-Image similarity.

C. Ablation Study

In Section 3, we propose four operations to manipulate the
noise vector to get the desired features. In this subsection,
we conduct the ablation study and discuss the effects of the
different operations applied.

To conduct the ablation study, we have 5 experiment set-
tings. We choose one face description and produce 100 random
images under each experimental setting respectively. Then, we
use the above three metrics to evaluate the effect of different
operations.

Fig. 5 shows the morphing process of the generated im-
ages. We can see that with the proposed four manipulating
operations, Group A can finally obtain an output with all
desired features. While for other groups, the final morphing
images all suffer from artifacts on the rendering of the face
and the background. This is because with too many feature
axis moving steps, the noise vector has been moved to a low-
density region of the latent space distribution, which leads to
the mode collapse problem.

TABLE II: Ablation study evaluation results

Exp. Evaluation Metrics
Settings IS CS* LPIPS
Group A 1.122±0.043 0.754 0.634±0.005
Group B 1.116±0.080 0.739 0.608±0.005
Group C 1.187±0.062 0.762 0.603±0.005
Group D 1.101±0.095 0.683 0.521±0.006
Group E 1.102±0.033 0.706 0.532±0.005
*Maximum for each group

Table II shows the quantitative evaluation metrics on dif-
ferent groups of TTF-HD. We can see that Group A has the
best diversity score as well as the second-best performance in
terms of both IS and CS score. This suggests that applying all
proposed operations leads to a good trade-off between image
quality, text-to-face similarity and diversity.

VI. CONCLUSION

In this paper, we set three main goals in the text-to-face
image synthesis task: 1) High image resolution, 2) Good text-
to-image consistency, and 3) High image diversity. To this end,
we propose a model, named TTF-HD, comprising a multi-
label text classifier, an image encoder, a high-resolution image
generator, and feature-disentangled axes. From both qualitative
and quantitative evaluative comparisons, we see the generated
images exhibit good image quality, text-to-image similarity,
and image diversity.

However, the model is still not entirely robust. There are
always some images in the batch that are far more consistent
with the text descriptions. This is possibly caused by insuf-
ficient accuracy of the text classifier and image encoder due
simply to the lack of training data. In addition, features in
the latent space are still not well disentangled, so that when
you are moving the noise vector along one feature axis, other
features which are highly correlated with it may also change.
These issues must be addressed in future research.
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