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Abstract

Point cloud analysis is attracting attention from Artifi-
cial Intelligence research since it can be widely used in ap-
plications such as robotics, Augmented Reality, self-driving.
However, it is always challenging due to irregularities, un-
orderedness, and sparsity. In this article, we propose a
novel network named Dense-Resolution Network (DRNet)
for point cloud analysis. Our DRNet is designed to learn
local point features from the point cloud in different resolu-
tions. In order to learn local point groups more effectively,
we present a novel grouping method for local neighbor-
hood searching and an error-minimizing module for cap-
turing local features. In addition to validating the net-
work on widely used point cloud segmentation and clas-
sification benchmarks, we also test and visualize the per-
formance of the components. Comparing with other state-
of-the-art methods, our network shows superiority on Mod-
elNet40, ShapeNet synthetic and ScanObjectNN real point
cloud datasets.

1. Introduction
With the help of rapid progress in 3D sensing technol-

ogy, an increasing number of researchers are now focus-
ing on 3D point clouds. Different from complex 3D data
e.g., mesh and volumetric data, point clouds have a simpler
data format. Typically, point clouds are easier to collect us-
ing different types of scanners [3] with specific algorithms:
e.g., LiDAR scanners [12] and Simultaneous localization
and mapping (SLAM) algorithms. Traditional algorithms
addressing point cloud learning [32, 24, 31, 37] used to es-
timate geometric information and capture indirect clues uti-
lizing complicated models. In contrast, deep learning mod-
els provide explicit and effective data-driven approaches to
acquire information from 3D point cloud data, leveraging
Convolutional Neural Networks (CNN).

In general, CNN-related methods for 3D point clouds
can be divided mainly into two categories [7]. The
first one is conversion-based, which converts the 3D
data to some intermediate representations, for example,

Figure 1. A birdeyes view of our Dense-Resolution Network.

MVCNN [34] projects 3D shapes into multi-view 2D im-
ages, and VoxNet [23] transfers point clouds as volumetric
grids. The other one is point-based such as PointNet [28],
which directly processes points. The point-based approach
has become popular due to the introduction of the multi-
layer perceptrons (MLPs) operation in [28]. The subsequent
algorithms [39, 35] adopted MLPs to learn the local features
of point clouds using graph context and kernel points.

In order to recognize fine-grained patterns for complex
objects or scenes, it is necessary to capture the local spa-
tial context of point clouds. To represent local areas for
point clouds, Qi et al. [29] and Liu et al. [19] apply the Ball
Query algorithm [27] to group local points, while Wang et
al. [39] uses k-nearest neighbors (knn) to build point neigh-
borhoods. However, when using these methods, the perfor-
mance is strongly affected by the areas of their pre-defined
neighborhoods, i.e. the searching radius of a Ball Query, or
the k of knn. If the area is too small, it cannot cover suf-
ficient local patterns; if too large, the overlap may involve
redundancies. DPC [6] proposes an idea of dilated point
convolution to increase the size of the receptive field with-
out additional computational cost. Unlike previous works,
we attempt to adaptively define such a local area for each
point w.r.t. the density distribution around it, by which the
point neighborhood would be more reasonable though re-
quiring less manual intervention and parameter tuning.

Unlike 2D images whose pixels are well-organized in lo-
cal neighborhoods, learning the feature representations of
scattered, unordered, and irregular 3D point clouds are al-
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Figure 2. Dense-resolution network architecture. For the FR branch (in green), we learn the full-resolution point cloud features through
a series of Error-minimizing modules (denoted as E-M, see Section 3.2) involving the Adaptive Dilated Point Grouping method (denoted
as ADPG, see Section 3.1). For the MR branch (in blue), point features of different resolutions are investigated in a down/up-sampling
manner with skip connections (dotted lines). DS and US represent our down-sampling and up-sampling processes (more details are in
Section 4.1 and the supplementary material), respectively. By merging the feature maps (denoted as M, see Eq. 4) of the two branches, we
manage point cloud classification and segmentation tasks using fully-connected (FC) layers. C stands for concatenating along channels.

ways challenging. Although one can construct local areas
based on the spatial distances between points, the process
may accumulate biases from different scales of embedding
space and further affect the performance. In addition to fea-
ture encoding, an effective mechanism is also required to
guide the procedure to learn local features.

Previously, the idea of error feedback has been applied in
2D human pose estimation [4] and image Super-Resolution
(SR) [8, 20], in order to regulate the network by compensat-
ing the estimated error. To leverage the properties of both
error-feedback and CNN training mechanism, unlike the
complex error-correcting structures in [15, 30], we propose
an error-minimizing module with lower complexity but bet-
ter performance. Meanwhile, we present a new network ar-
chitecture, named Dense-Resolution Network (DRNet), for
basic 3D point cloud classification and segmentation tasks.
By merging feature maps of a Full-Resolution (FR) branch
that investigates the full size of the point cloud and a Multi-
Resolution (MR) branch that explores different resolutions
of the point cloud in a novel fusion method, we can obtain
more information for a comprehensive analysis. The main
contributions are:

• We propose a novel point grouping method to find
neighbors for each point adaptively, considering the
density distribution of the neighbors.

• We design an error-minimizing module leveraging the
idea of error feedback mechanism to learn the local
features of point clouds.

• We introduce a new network to comprehensively rep-

resent point clouds from different resolutions.

• We conduct thorough experiments to validate the prop-
erties and abilities of our proposals. Our results
demonstrate that our approach outperforms state-of-
the-art methods on three point cloud benchmarks.

2. Related Work

Local points grouping. Contrary to the pioneer Point-
Net [28] that relied on global features, subsequent work
captured more local features in detail. PointNet++ [29]
firstly applied Ball Query, an algorithm for collecting pos-
sible neighbors of a particular point through a ball-like
searching space centering at a point, to group local neigh-
bors. Similarly, local features learning methods such as
[39, 6, 30] use another simple algorithm knn gathering near-
est neighbors based on a distance metric.

Although Ball Query and knn grouping are intuitive,
sometimes the size of the neighborhood (i.e. the receptive
field of the point) is limited due to the range of searching
(i.e. the radius of query ball, or the value of k). Meanwhile,
merely increasing the searching range may involve substan-
tial computational cost. To solve this problem, DPC [6]
extended regular knn to dilated-knn, which gathers local
points over a dilated neighborhood obtained by computing
the k · d nearest neighbors (d is the dilation factor [46]) and
preserving only every d-th nearest point. Moreover, recent
works [29, 19, 44] group neighbors through query balls in
different scales (e.g., multi-scale grouping) to capture infor-
mation from various sizes of the local area.
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However, the existing methods have some issues in com-
mon. On the one hand, the performance of grouping meth-
ods highly relies on pre-defined settings. For example,
DGCNN [39] provided the results under different k condi-
tions, DPC [6] compared the effects of d values, and Point-
Net++ [29] discussed the influence of the query ball radius.
On the other hand, the grouping methods act on all points
without considering each point or object’s distinct condi-
tion. As far as we are concerned, it is necessary to find an
intelligent point-level adaptive grouping method.

Error feedback structure. Previously in 2D computer
vision, Carreira et al. [4] proposed a framework called
Iterative Error Feedback (IEF), which minimized the er-
ror loss between current and desired outputs in the back-
propagation procedure. In contrast to [4], the methods
in [8, 20] complimented the output with a back-projection
unit in the forward procedure. For 3D point clouds, PU-
GAN [15] leveraged a similar idea for point cloud gener-
ation, while [30] presented a structure with specially de-
signed paths for prominent features learning.

Basically, current IEF structures for point clouds are re-
dundant and implicit. Considering the complexity of 3D
data, a concise and explicit IEF module is needed. More im-
portantly, an IEF module is expected to serve two purposes
in the network: first, to make the actual output approach
the desired point clouds representations; second, to help the
grouping process form the adaptive point neighborhoods.

Network architecture for point cloud learning. To realize
different computer vision tasks using deep learning, many
network architectures have been introduced: VGG [33],
ResNet [9], etc. Besides, some works tried different im-
age resolutions for more clues; for example, the fully con-
volutional network [21] keeps the full size of an image, de-
convolution network [26] steps into lower resolutions, and
HRNet [38] shares the features among different resolutions.

As for 3D point clouds, two popular architectures are 1)
PointNet++[29], which downsamples the point clouds using
Farthest Point Sampling (FPS) and upsamples using Fea-
ture Propagation (FP), and 2) a fully convolutional network,
which learns point-wise features from multiple embedding
space scales, for example, DGCNN [39] dynamically up-
dates the crafted point graph around each point. Differ-
ent from the above mentioned methods, our approach ex-
ploits more clues through dense connections between var-
ious resolutions of the point clouds. Furthermore, we in-
vestigate the characteristics of multi-resolutional features,
and then develop a better merging behavior for the feature
maps. In general, our DRNet adaptively encodes the local
context from more resolutions of point clouds, by which
fine-grained output representations benefit point cloud clas-
sification and segmentation tasks.

Algorithm 1: The forward pass pipeline of
Adaptive Dilated Point Grouping

input: feature map PN×c = [p1
T , p2

T , ... , pN
T ]

in c-dimensional space.
parameters: the number of neighbors k, and an
empirical maximum dilation factor dmax.

output: the matrix IN×k, indices of the selected k
neighbors for the point cloud.

for each point cloud do
search for the (k · dmax) candidate neighbors
based on PN×c, get the candidate metric values
EN×(k·dmax) and the indices IN×(k·dmax);

learn the dilation factors DN based on the
metrics EN×(k·dmax), where: di ∈ Z,
di ∈ [1, dmax], DN = [d1, ... , di, ... , dN ]T ;

group the indices IN×k of the k neighbors from
IN×(k·dmax) based on DN ;

end for

3. Approach
CNN-based learning of 3D data has become more in-

tuitive due to the introduction of multi-layer perceptrons
(MLPs) [28] that directly process point clouds. Primarily,
an MLP,M(·), is described as a composite operation of 1-
by-1 convolution with a possible batch normalization [11]
(BN) and an activation (e.g., ReLU) on the feature map.

In addition, recent works [39, 6, 44] craft regional pat-
terns to record more local details via a graph around each
point pi ∈ Rc, based on both the absolute position of
the centroid and relative positions of the neighbors in c-
dimensional feature space. Specifically, the crafted graph
(G) of the centroid pi is formulated as: G(pi) = (pi, pj −
pi); where ∀pj ∈ Ni(pi). Usually, the quality of the in-
formation provided by G(pi) highly depends on the neigh-
bors, ∀pj ∈ Ni(pi), that are found by the grouping method.
Hence, we expect a better grouping method for G(pi).

3.1. Adaptive Dilated Point Grouping

The two popular grouping methods i.e. Ball Query and k-
nearest neighbors (knn) (see Section 1) have shortcomings
(as analyzed in Section 2), and to overcome these issues,
here we propose a novel grouping method named Adaptive
Dilated Point Grouping (ADPG), which is shown in Algo-
rithm 1. ADPG aims to generate the indices of neighbors
IN×k for the points, given a feature map PN×c of the point
cloud and consists of the following three main procedures.
Searching. The first step of ADPG is searching candidate
neighbors for the points. In this paper, we introduce a so-
lution capable of addressing common scales of point cloud
data. We define the pairwise Euclidean distances EN×N
in feature space as our metric, which indicates the point
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density distribution to a certain extent. As for a N × c
size feature map P , the pairwise Euclidean distances are:
EN×N = diag(PPT ) · ~1 + ~1T · diag(PPT )

T − 2PPT ,
where ~1 means a 1 × N row vector of ones, and diag(·)
forms a N × 1 column vector whose entries are the N diag-
onal elements of a N ×N square matrix.

According to the calculated distances metric, we can eas-
ily identify the k ·dmax candidate nearest neighbors of each
point. In our implementation, we sort the rows of EN×N in
ascending order, and retain the metric values and indices of
the first k ·dmax elements. Therefore, the elements with the
smallest k · dmax values in each row of EN×N are identi-
fied as candidate neighbors for each point. Meanwhile, the
metric values and indices of the searched candidate neigh-
bors are recorded asEN×(k·dmax) and IN×(k·dmax), respec-
tively. Besides, our implementation is also flexible; that is,
the choices for metrics (e.g., density or geometric similar-
ities) and searching techniques (e.g., FLANN [25] for the
sake of efficiency in large-scale point cloud data) can be
easily integrated as needed.
Learning. In order to construct a dilated neighborhood for
each point adaptively, it is necessary to determine a dilation
factor [46] for each point based on known information of
its candidate neighbors. In practice, we learn the dilation
factors based on EN×(k·dmax) and CNN-related operations.

To be specific, we apply an MLP (M) and a sig-
moid function (σ) to the metric values of candidates
EN×(k·dmax), in order to summarize the information of the
point distribution of local areas. Then, a projection function
J (e.g., linear function) can map the values to the expected
numerical scale. Finally, we take a scale function S (e.g.,
round to assign a dilation factor, DN

1, for each point ac-
cording to the summarized information:

DN = S
(
J
(
σ
(
M(EN×(k·dmax))

)))
. (1)

Grouping. As each point has a corresponding dilation
factor, we pick up every di-th index of candidate indices
IN×(k·dmax) to form the selected k neighbors for each
point. Following a behavior similar to [6], we obtain the
final indices of local point groups IN×k.

3.2. Error-minimizing Module

Following the ADPG method, each point gathers a group
of neighbors with a larger receptive field. As stated, we ap-
ply the crafted graph G, i.e. the absolute position of a cen-
troid and relative positions of the neighbors, to encode the
high-dimensional features over each neighborhood. Further
projected by an MLP (with c′ filters), the information of a
local graph centering at pi, is represented as:

fGi =M
(
G(pi)

)
=M

(
(pi, pj − pi)

)
, (2)

1More implementing details are in the supplementary material.

where ∀pj ∈ ADPG(pi) and fGi ∈ Rc′×k.

Usually, a max-pooling function is applied over the k
neighbors of each crafted local graph to aggregate the lo-
cal context as the centroid’s feature representation. How-
ever, possible bias exists in process: on the one hand, the
local graphs lack geometric regularization from the initial
3D space; and on the other hand, the max-pooled features
only retain prominent outlines while discarding local details
in embedding space. In this case, the Iterative Error Feed-
back (IEF) mechanisms idea helps avoid bias accumulation
during the high-dimensional feature learning process.

Let us assume that the local graph fGi indeed embeds the
full information about the neighborhood, it would be possi-
ble to restore the input pi through a back-projection process
B(·). Practically, we realize the B(·) operation through a
shared 1-by-k convolution followed by BN and ReLU, over
the local graphs. Intuitively, this operation acts to aggre-
gate the nodes based on learned weights of the edges in the
graph, which implicitly simulates a reverse process of craft-
ing the graph. Therefore, the back-projected feature fBi

is
formulated as: fBi

= B(fGi); where fBi
∈ Rc.

Consequently, an error feature fEi is defined as the dif-
ference between the original input pi and back-projected
feature fBi

. In contrast to the methods in [15, 30, 8, 20]
that correct the error by extra computations in the for-
ward pass, we use additional `2 loss to minimize the error,
fEi = fBi

− pi, during the back-propagation pass:

Ler = ||fEi ||2. (3)

The loss in Equation 3 can constrain the feature learning
during training by forcing the back-projected feature fEi to
approach the original input pi inside of the module. Fol-
lowing such a regularization, the error and bias in the out-
put representations can be alleviated, especially during the
early stages of training. Meanwhile, compared with the reg-
ular cross-entropy loss for the whole network, each error-
minimizing module’s loss can provide more clues for the
ADPG in corresponding feature space.

3.3. Dense-Resolution Network Architecture

Although the ADPG method and the error-minimizing
module seem promising for local feature learning of point
clouds, we still need a robust network architecture to lever-
age the potential offered by both. The architecture of our
network is presented in Figure 2.
Full-resolution branch. We adopt the idea of basic fully
convolutional architecture as the full-resolution (FR) branch
of our network. The benefits can be retained based on two
aspects; 1) there remains a consistent number of points in
different scales of embedding space during feature learning
progress; 2) it retains the per-point feature without any con-
fusion caused by the numerical approximation in upsam-
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pling. Therefore, we expect this structure to learn compre-
hensive representations for point-wise features.

Specifically, the FR branch consists of the proposed
error-minimizing modules in a cascaded form, which pro-
gressively learn the feature representation of each point
from its adaptive neighborhood formed by ADPG in differ-
ent scales of embedding space. In order to acquire a global
knowledge about the abstract embedding space, the learned
features from different scales are concatenated and aligned
to form the output FFR of the FR branch.
Multi-resolution branch. Meanwhile, there is a limitation
of FFR: it lacks channel-wise clues about semantic/shape-
related information since the FR branch mainly focuses on
point-wise context. To overcome this issue, we capture
additional features from more resolutions of point clouds.
Therefore, we propose the multi-resolution (MR) branch, a
light-weight down/up-sampling structure, to investigate the
lower resolutions of point clouds. Contrary to competing
methods, the propagated features and skip links are densely
connected to enhance the relations between multiple point
cloud resolutions and feature embedding scales. The output
FMR of the MR branch captures thorough channel-wise in-
formation about the point clouds.
Features merging. To leverage the information gathered
from both FR and MR branches, it is necessary to find a
reasonable merging technique for the two feature maps, i.e.
FFR and FMR. Usually, CNNs combine the feature maps
by concatenation, summation, or multiplication. These reg-
ular operations treat the feature maps equally, without tak-
ing their properties into account. Instead, we prefer merging
the FR and MR outputs in a unique manner.

Given the advantages of FR and MR branches that we
analyzed before, FFR is applied as the basis of per-point
feature representation. In addition, the channel-wise infor-
mation ofFMR is derived to enhanceFFR. Empirically, we
use a max-pooling and an MLP to summarize the knowl-
edge of FMR channels. After a sigmoid activation σ, the
channel-wise enhancement on the per-point context of FFR

can be realized by multiplication. The final output of our
dense-resolution (DR) network follows:

FDR = FFR × σ
(
M
(
max
N

(FMR)
))
. (4)

Loss function. Based on the output feature map (FDR),
the fully-connected (FC) layers regress the confidence
scores for all possible categories. In addition to the basic
cross-entropy loss (Lce), the weighted losses of the error-
minimizing modules are incorporated. For the DRNet with
M error-minimizing modules in its FR branch, by apply-
ing Equation 3 and the hyper-parameter wi as weight, the
overall loss is formulated as:

L = Lce +

M∑
i=1

wi · Leri . (5)

4. Experiments
In this section, our implementation details are provided,

including network parameters, training settings, datasets,
etc. By comparing the experimental results with other state-
of-the-art methods, we analyze performance quantitatively.
Further, we present ablation studies and visualizations to il-
lustrate the properties of our approach.

4.1. Implementation

Network details. The FR branch of our DRNet is a series
of error-minimizing modules extracting features at differ-
ent scales of embedding space: i.e. 64, 128, and 256, as in
Figure 2. Empirically, we adopt k = 20 and dmax = 5
as in [39, 6]. The FR output FFR is an MLP projected
concatenation of the modules’ outputs. For the MR branch,
we apply the widely-used farthest point sampling (FPS) and
feature propagation (FP) [29, 19, 18] for downsampling and
upsampling, respectively. Further, single-layer MLPs are
used for channel alignment together with the mentioned op-
erations. The MR branch starts from the first output of FR
in N size; after that, two lower resolutions: N/4 and N/16,
are investigated through the regular knn and local graph en-
coding as Equation 2. Different from other approaches,
more propagated features and dense skip connections are
employed to enhance the relations between different point
resolutions and feature spaces. Compared with the FR, the
MR branch2 is light-weight due to the fewer scales of em-
bedding space, the limited number of points, and the opera-
tions with fewer learnable weights.

The output FDR is obtained by following Equation 4.
For the classification task, we apply a max-pooling func-
tion and Fully Connected (FC) layers to regress confidence
scores for all possible categories. In terms of the segmen-
tation task, we attach the max-pooled feature to each point
feature of FDR and further predict each point’s semantic
label with FC layers being applied.

For the loss function, empirically, a larger weight is set
for the first error-minimizing module, i.e. w1, since its out-
put affects both branches and constrains the network learn-
ing initially. In contrast, the weights for other modules can
be smaller since they are less critical. Although the addi-
tional loss is involved, cross-entropy loss still contributes
the most to the training2. We implement the project with Py-
Torch and Python; all experiments are conducted on Linux
and GeForce RTX 2080Ti GPUs.3

Training strategy. For classification, Stochastic Gradient
Descent (SGD) [22] with a momentum of 0.9 is adopted
as the optimizer. The learning rate decreases from 0.1 to
0.001 by cosine annealing [22] during the 300 epochs. For

2More information about the implementation is provided in the sup-
plementary material.

3The code and models are available at https://github.com/
ShiQiu0419/DRNet
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overall air bag cap car chair ear guitar knife lamp laptop moto mug pistol rocket skate table
mIoU plane phone bike board

# shapes 16881 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet [28] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
A-SCN [42] 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8
SO-Net [14] 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6

PointNet++ [29] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
PCNN [1] 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

DGCNN [39] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
P2Sequence [17] 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8
SpiderCNN [43] 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
PointASNL [44] 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

RS-CNN [19] 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
Ours 86.4 84.3 85.0 88.3 79.5 91.2 79.3 91.8 89.0 85.2 95.7 72.2 94.2 82.0 60.6 76.8 84.2

Table 1. Part segmentation results (mIoU(%)) on the ShapeNet Part dataset.

Figure 3. Examples from the experimental datasets. The upper row
shows the point clouds labeled as Chair from the three datasets,
while the lower row presents Table. Particularly, ScanObjectNN
dataset contains background points, which are in a lighter color.

segmentation, we exploit Adam [13] optimization for 200
epochs of training. The learning rate begins at 0.001 and
gradually decays with a rate of 0.5 after every 20 epochs.
The batch size for both tasks is 32. Besides, training data is
augmented with random scaling and translation; the overall
loss follows Equation 5. Part segmentation is evaluated with
a ten-votes strategy used by recent approaches [28, 29, 19].
Datasets. We test our approach on two main tasks: point
cloud segmentation and classification. The ShapeNet Part
dataset [45] is used to predict the semantic class (part la-
bel) for each point of the object. In addition, the synthetic
ModelNet40 [41] dataset and the real-world ScanObjectNN
[36] dataset are used to identify the category of the object.
Figure 3 presents some examples from the datasets.

• ShapeNet Part. The dataset has 16,881 object point
clouds in 16 categories, where each point is labeled as
one of 50 parts. As the primary dataset for our exper-
iments, we follow the official data split [5]. We in-
put the 3D coordinates of 2048 points for each point
cloud and feed the object label before FC layers dur-
ing training. In terms of the metric for evaluation, we
adopt Intersection-over-Union (i.e. IoU). The IoU of

method input type #points accuracy
PointNet [28] coords 1k 89.2
A-SCN [42] coords 1k 90.0
PointNet++ [29] coords 1k 90.7
SO-Net [14] coords 2k 90.9
PointCNN [16] coords 1k 92.2
PCNN [1] coords 1k 92.3
SpiderCNN [43] coords+norms 1k 92.4
PointConv [40] coords+norms 1k 92.4
P2Sequence [17] coords 1k 92.6
DensePoint [18] coords 1k 92.8
RS-CNN [19] coords 1k 92.9
DGCNN [39] coords 1k 92.9
KP-Conv [35] coords 7k 92.9
PointASNL [44] coords 1k 92.9
Ours coords 1k 93.1

Table 2. Overall classification accuracy (%) on ModelNet40
dataset. (coords: 3D coordinates, norms: surface normal vec-
tors of the points, k:×210)

the shape is calculated by the mean value of IoUs of
all parts in that shape, and mIoU (i.e. mean IoU) is the
average of IoUs for all testing shapes.

• ModelNet40. It is a popular dataset because of reg-
ular and clean shapes. There are 12,311 meshes in
40 classes, with 9,843 for training and 2,468 for test-
ing. Corresponding point clouds are generated by uni-
formly sampling from the surfaces, translating to the
origin, and scaling within a unit sphere [28]. In our
case, only the 3D coordinates of 1024 points for each
point cloud have been used.

• ScanObjectNN. This real-world object dataset is re-
cently published. Although it has over 15,000 ob-
jects in only 15 categories, it is practically more chal-
lenging due to the background complexity, object par-
tiality, and different deformation variants. We con-
duct the experiment using its most challenging variant,
PB T50 RS, with background points.
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Figure 4. Examples of the part segmentation results. (DGCNN: [39], RS-CNN: [19])

overall acc. avg class acc. bag bin box cabinet chair desk display door shelf table bed pillow sink sofa toilet
# shapes - - 298 794 406 1344 1585 592 678 892 1084 922 564 405 469 1058 325

3DmFV [2] 63.0 58.1 39.8 62.8 15.0 65.1 84.4 36.0 62.3 85.2 60.6 66.7 51.8 61.9 46.7 72.4 61.2
PointNet [28] 68.2 63.4 36.1 69.8 10.5 62.6 89.0 50.0 73.0 93.8 72.6 67.8 61.8 67.6 64.2 76.7 55.3

SpiderCNN [43] 73.7 69.8 43.4 75.9 12.8 74.2 89.0 65.3 74.5 91.4 78.0 65.9 69.1 80.0 65.8 90.5 70.6
PointNet++ [29] 77.9 75.4 49.4 84.4 31.6 77.4 91.3 74.0 79.4 85.2 72.6 72.6 75.5 81.0 80.8 90.5 85.9

DGCNN [39] 78.1 73.6 49.4 82.4 33.1 83.9 91.8 63.3 77.0 89.0 79.3 77.4 64.5 77.1 75.0 91.4 69.4
PointCNN [16] 78.5 75.1 57.8 82.9 33.1 83.6 92.6 65.3 78.4 84.8 84.2 67.4 80.0 80.0 72.5 91.9 71.8

Ours 80.3 78.0 66.3 81.9 49.6 76.3 91.0 65.3 92.2 91.4 83.8 71.5 79.1 75.2 75.8 91.9 78.8

Table 3. Classification results (%) on ScanObjectNN dataset.

4.2. Results

Segmentation. Table 1 shows the results of related works
reported in overall mIoU, which is the most critical evalua-
tion metric on the ShapeNet Part dataset. On the whole, our
network achieves 86.4% and outperforms other state-of-the-
art algorithms based on similar experimental settings. For
evaluations inside each class, we surpass others in five out
of 16 categories. Especially in categories with a large num-
ber of samples, e.g., airplane, chair, or table, we perform
even better (two out of these three classes) than others. In
Figure 4, we provide some samples of our part segmentation
results comparing with DGCNN [39] and RS-CNN [19].
Classification. Table 2 presents the overall accuracy of the
classification on the synthetic object dataset: ModelNet40.
Specifically, we achieve 93.1% for overall classification ac-
curacy and exceed other state-of-the-art results with similar
input. Essentially, our method performs better than others
using more input points or features.

Table 3 presents our results on the ScanObjectNN
dataset, which contains practical scans of real-world objects
as Figure 3 indicates. To be concrete, both overall accuracy

80.3% and average class accuracy 78.0% of our approach
are significantly higher than all results on its official leader-
board [10]. Typically, we lead in four (bag, box, display,
and sofa) out of the 15 categories. The inference time of
our basic classification model running on a single GeForce
RTX 2080Ti GPU is about 19.2ms.

4.3. Ablation Studies

Visualization of learned dilation factors. Figure 5 illus-
trates the effects of our ADPG method, where the color of
the points corresponds to the learned dilation factor. Intu-
itively, the advantages of ADPG can be observed from two
aspects: Firstly, for each point cloud, ADPG tends to assign
larger dilation factors to points that have relatively sparse
local point distributions (e.g., on corners/boundaries/edges)
because they need larger neighborhoods for more compre-
hensive local feature learning. Secondly, within the cas-
caded structure, ADPG regulates the points’ dilation factors
in deep layers and turns out to have smaller dilation fac-
tors in dense local distribution (e.g., on flat surfaces/central
areas), most probably to constrain the neighborhoods and
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Figure 5. Learned dilation factors by the ADPG method. For each point cloud, ADPG assigns larger dilation factors for the points in sparse
areas. As the network goes deeper, ADPG regulates the dilation factors of the points. (First-row: the learned dilation factors in a shallow
layer of our network. Second-row: in a deep layer.)

model Network ADPG E-M module overall mIoU
0 FR - - 85.2
1 FR - X 85.4
2 FR X X 85.6
3 MR - - 84.9
4 MR X X 85.3
5 DR X X 86.0

Table 4. Ablation study about the effects of different network com-
ponents on ShapeNet Part (%). (FR: Full-Resolution branch
only, MR: Multi-Resolution branch only, DR: Dense-Resolution
Network, ADPG: Adaptive Dilated Point Grouping method, E-M
module: Error-minimizing module for local points.)

avoid outliers. Unlike regular knn/Ball Query/dilated-knn,
which defines a limited and fixed neighborhood for all
points in all layers, our ADPG works adaptively and rea-
sonably as expected.
Effects of components. We conduct an ablation study
about the effects of the network components: the architec-
ture, grouping method, and the error-minimizing module.
We run tests on the ShapeNet Part dataset under the same
settings, and Table 4 presents the results. Comparing model
1&2 to model 0 and model 4 to model 3, we observe that
the error-minimizing module with ADPG applied can sig-
nificantly improve the part segmentation’s network perfor-
mance. Although the multi-resolution branch is not able to
learn the features as comprehensively as a full-resolution
branch does, we can take advantage of both by combining
them as a dense-resolution network (model 5).
Merging the feature maps. Both FR and MR have prop-
erties as mentioned, so we need to find an effective way to
unify the benefits. We test simple ways of merging the fea-
tures of FFR and FMR, i.e. concatenating them in channel-
wise, adding and multiplying them in element-wise. Com-
paring the results of model 2&3&4 to model 0 in Table 5,

model Network Fmer overall mIoU
0 FR FFR 85.6
1 MR FMR 85.3
2 DR Concat(FFR,FMR) 85.7
3 DR FFR + FMR 85.6
4 DR FFR �FMR 85.6
5 DR FDR 86.0

Table 5. Ablation study about the different forms of merged fea-
ture Fmer on ShapeNet Part (%). (FR: Full-Resolution branch
only, MR: Multi-Resolution branch only, DR: Dense-Resolution
Network, FFR: the output of FR, FMR: the output of MR, �:
element-wise multiplication, FDR: merging as in Equation 4.)

we observe that the simple ways of merging may not im-
prove performance. In contrast, channel-wise enhancing of
theFFR usingFMR (model 5) can improve a bit because of
the reasons explained in Section 3.3. With ten-votes testing,
the overall mIoU can boost to 86.4%.

5. Conclusion

In this work, we propose a Dense-Resolution Network
for point cloud analysis, which leverages information from
different resolutions of the point clouds. Specifically, the
Adaptive Dilated Point Grouping method is introduced to
realize a flexible point grouping based on the density dis-
tribution. Moreover, an error-minimizing module and cor-
responding loss are presented to capture local informa-
tion and guide the training network. We conduct exper-
iments and provide ablation studies on both point cloud
segmentation and classification benchmarks. The experi-
mental results outperform competing state-of-the-art meth-
ods on ShapeNet Part, ModelNet40, and ScanObjectNN
datasets. The quantitative reports and qualitative visualiza-
tions demonstrate the advantages of our approach.
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Supplementary Material

A. Overview
In this supplementary material, we present more contents

of our paper Dense-Resolution Network for Point Cloud
Classification and Segmentation. To be specific, we provide
the implementation of the Adaptive Dilated Point Group-
ing (ADPG) method and loss function for the experiments.
Besides, we show the details of our Multi-resolution (MR)
branch. By comparing the relevant model parameters with
others on ModelNet40 dataset, we discuss the complexity of
our network.

B. Implementation
In the main paper, we introduce the pipeline for the

ADPG method and the design of loss function for training.
In this section, we provide more practical details in our ex-
periments.

B.1. ADPG Learning Process

In practice, dmax is an empirical parameter which may
vary between the data scales or networks. In our experi-
ments, we set dmax = 5 for ShapeNet Part, ModelNet40
and ScanObjectNN datasets, since they share the similar
scales of point clouds.

Assume that we already have the indices IN×(k·dmax)

and metricsEN×(k·dmax) for k·dmax candidates, the crucial
step of ADPG is to learn a certain dilation factor for each
point based on the known information. In Section 3.1 of the
paper, we present the general description for this process:

DN = S
(
J
(
σ
(
M(EN×(k·dmax))

)))
Specifically, we apply a two-layer Multi-Layer-

Perceptron (MLP M): Conv

{
(k·dmax/2),1

}
[1,1] first, then

activate corresponding negative values using a logistic
function: y = 1/(1+ e−x). Since the values are in between
0 and 1, J can further enlarge the variance by projecting
them to another interval. Here we expect the values to
be in [0.5, 5.5], thus a simple linear projection function
y = 5 · x + 0.5 serves as J . Finally, we adopt round
function as S to scale the continuous values in [0.5, 5.5],
by which an integer in {1, 2, 3, 4, 5} can be assigned as the
dilation factor for each point. To summarize, the dilation
factors learning in our implementation follows:

DN =

5 ·
1

1 + e

Conv

{
(k·dmax/2),1

}
[1,1]

(EN×(k·dmax))

 + 0.5



method model size (MB) time (ms) overall acc. (%)
PointNet [28] 40 16.6 89.2
PointNet++ [29] 12 163.2 90.7
PCNN [1] 94 117.0 92.3
DGCNN [39] 21 27.2 92.9
Ours 70 19.2? 93.1

Table 6. Complexity of classification network on ModelNet40.
(∗running on GeForce GTX 2080Ti)

B.2. Loss Function

As discussed in the Section 3.3, the total loss for training
is the sum of cross-entropy loss Lce and weighted error-
minimizing module losses:

∑
wi · Leri . In practice, we

apply 4 error-minimizing modules in the Full-resolution
(FR) branch of our network, adopting the similar layers
and feature dimensions as in [39]. In terms of our exper-
iments on the ShapeNet Part, ModelNet40 and ScanOb-
jectNN datasets, we empirically set a larger weight for the
first error-minimizing module (w1 = 0.1) since its output
affects the both branches and constrains the network learn-
ing at the beginning. In contrast, the weights for other mod-
ules’ losses can be smaller (w2 = w3 = w4 = 0.01).
Although the additional losses are incorporated, the cross-
entropy loss still contributes the most to the training. The
overall loss L in our practice is formulated as:

L = Lce+0.1 · Ler1+0.01 · Ler2+0.01 · Ler3+0.01 · Ler4 .

C. Multi-resolution Branch
As shown in Figure 6, the MR branch is implemented

with light-weight operations such as single-layer MLPs, and
only investigates 2 more resolutions of the point cloud using
basic Local Graph Encoding as Equation 2 in the main pa-
per. For upsampling and downsampling operations, they are
implemented based on CUDA without learnable weights.
Besides, we use the dense connections and concatenations
to enhance the relations between the feature maps of differ-
ent resolutions.

D. Model Complexity
In addition, we adopt the network complexity data pro-

vided in [39] for a fair comparison. As Table 6 shows, our
model size is relatively large due to the parameters and op-
erations needed. However, the inference time of our method
running on a single GeForce GTX 2080Ti GPU is only 19.2
ms, which indicates the ability of our model in forward pro-
cedure thanks to the algorithm optimization and relevant
CUDA implementation.
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Figure 6. The input of the MR branch is the output of the first error-minimizing module in the FR branch, while the output of the MR
branch merges with the output of the FR branch following the behavior as Equation 4 in the main paper.
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