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Abstract

Most learning-based methods estimate ego-motion by
utilizing visual sensors, which suffer from dramatic light-
ing variations and textureless scenarios. In this paper, we
incorporate sparse but accurate depth measurements ob-
tained from lidars to overcome the limitation of visual meth-
ods. To this end, we design a self-supervised visual-lidar
odometry (Self-VLO) framework. It takes both monocu-
lar images and sparse depth maps projected from 3D li-
dar points as input, and produces pose and depth estima-
tions in an end-to-end learning manner, without using any
ground truth labels. To effectively fuse two modalities, we
design a two-pathway encoder to extract features from vi-
sual and depth images and fuse the encoded features with
those in decoders at multiple scales by our fusion module.
We also adopt a siamese architecture and design an adap-
tively weighted flip consistency loss to facilitate the self-
supervised learning of our VLO. Experiments on the KITTI
odometry benchmark show that the proposed approach out-
performs all self-supervised visual or lidar odometries. It
also performs better than fully supervised VOs, demonstrat-
ing the power of fusion.

1. Introduction
Ego-motion or pose estimation is a key problem in

simultaneous localization and mapping (SLAM), which
plays an important role in various applications such as
autonomous driving[35], 3D reconstruction [6], and aug-
mented reality [16]. Most traditional methods [29, 35, 50,
37] address this problem by following a feature extraction
and matching pipeline, relying on geometry models for op-
timization. These methods have shown excellent perfor-
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mance, but they depend on hand-crafted modules and lack
the ability of adapting to all challenging scenarios. Re-
cently, learning-based techniques [52, 45, 19, 22, 2] have
attracted more and more research interest. Although these
methods perform inferior to traditional counterparts, they
demonstrate advantages in dealing with tough cases such as
rotation-only motion or tracking lost scenarios.

To date, most learning-based methods use visual sensors.
These methods, also referred to as deep visual odometries
(VOs) [52, 20, 19], take advantage of rich information in
monocular or stereo images, but are sensitive to lighting
conditions. Several works [18, 22, 2] adopt ranging sen-
sors such as lidars for ego-motion estimation. These sensors
can provide accurate depth measurements and are robust to
the change of lighting conditions, but their data are sparse.
Therefore, visual and ranging sensors are highly comple-
mentary so that it is desirable to integrate them to achieve
better performance. In addition, considering that most au-
tonomous vehicles are equipped with both visual and rang-
ing sensors nowadays, the study of visual-lidar odometries
(VLOs) will be of great value for academic research and
industrial applications.

In this work, we propose a learning-based method to
implement a visual-lidar odometry. In order to effectively
fuse visual and lidar information, we first project 3D lidar
points to obtain image-aligned sparse depth maps. Then,
we design a network composed of a two-pathway encoder
to extract features from a monocular image sequence and a
sparse depth map sequence, respectively. The extracted fea-
tures are fused at multiple scales and employed to jointly
predict pose and dense depth values. Considering the dif-
ficulty of obtaining ground-truth labels, we opt to learn
our VLO under self-supervision. To this end, we adopt a
siamese network architecture and design a flip consistency
loss to facilitate the self-supervised learning.

The main contributions of our work are summarized as
follows:

• To the best of our knowledge, this work is the first end-
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to-end learning-based visual-lidar odometry. It inputs
monocular images and sparse depth maps, and outputs
both depth and pose estimations.

• We adopt a siamese network architecture and design
a flip consistency loss to learn our VLO under self-
supervision, without using any ground-truth pose and
depth labels.

• Evaluations on the KITTI odometry benchmark [5]
show that our proposed method outperforms all self-
supervised visual or lidar odometries. It also performs
better than all fully supervised VOs, demonstrating the
power of fusion.

2. Related Work
2.1. Visual & Lidar Odometry

Visual odometry aims to estimate ego-motion based on
images. Traditional VOs can be classified into feature-
based or direct methods. The former [29, 16, 26] follows
a standard pipeline including feature extraction and match-
ing, motion estimation, and local/global optimization. The
direct methods [28, 13] minimize a photometric error that
takes all pixels into account, assuming that scenes are sta-
tionary and of a Lambertian reflectance. However, these
assumptions are hard to be fully satisfied so that most di-
rect methods perform inferior to their feature-based coun-
terparts.

Recently, deep learning techniques have been firstly ap-
plied to supervised VO [38, 39, 42, 43] that requires ground-
truth pose labels. Considering the hardness of obtaining
ground-truth, more and more works focus on unsupervised
VO. The pioneer work, SfMLearner [52], takes a monocu-
lar video sequence as input to jointly learn depth and pose
networks by minimizing a photometric loss. Following it,
various end-to-end learning methods have been developed.
For instance, UnDeepVO[33], Zhu et al.[53], and Zhan et
al.[49] take stereo sequences as training inputs to address
the scale ambiguity in monocular VO. SAVO [20] and Li et
al. [19] adopt recurrent neural networks (RNNs) to encode
temporal information. Additional predictions such as opti-
cal flow [45], disparity map [53], and motion mask [33, 8]
are also included to address motion or occlusion problem.
In addition, some recent works such as DVSO [27] and
D3VO [44] integrate the end-to-end pose estimation with
traditional global optimization modules to boost VO perfor-
mance further.

Lidar odometry estimates the relative pose between two
3D point cloud frames. Although a lidar provides accu-
rate depth information, the irregular sparsity of point clouds
makes LO a challenging problem. Most previous lidar
odometry works, such as LOAM [50], LeGO-LOAM [37],
and LOL [34], are based on traditional pipelines and achieve

state-of-the-art performance. Recently, deep learning tech-
niques have also been applied to this task. For instance,
L3-Net [22] replaces each module in the traditional pipeline
with a deep neural network in order to learn from data.
DeepVCP [21], DeepLO [2] and LO-Net [18] design var-
ious end-to-end learning frameworks. The former [21]
adopts a 3D convolutional neural network (CNN) for fea-
ture extraction and matching, while the latter two [2, 18]
project point clouds into 2D maps via a cylindrical or spher-
ical projection and use 2D CNNs for processing. Most
learning-based LOs are performed under full supervision,
except DeepLO [2].

Visual-lidar odometry takes advantage of visual and li-
dar information for ego-motion estimation. Up to now, most
of the existing VLOs are based on traditional methods. For
instance, V-LOAM [51] integrates the results of VO and
LO, both of which adopt the feature-based pipelines, to
boost the performance. LIMO [9] provides a feature-based
monocular VO with the scale estimated from lidar data to
achieve ego-motion estimation. Recently, there are several
visual and lidar based methods making use of learning tech-
niques. Yue et al. [46] exploit a deep network to enrich
3D point clouds with the guidance of high-resolution im-
ages. But they employ a traditional point cloud registration
method NDT [25] to estimate pose. Vitor et al. [10] incor-
porates depth supervision into a self-supervised VO to pro-
duce scale-aware pose estimation. But the input of their net-
work only contains visual images. In this work, we propose
a self-supervised visual-lidar odometry. It takes a sequence
of monocular images and sparse depth maps projected from
corresponding 3D lidar points as inputs to learn a depth and
pose estimation network in an end-to-end manner, without
using any ground-truth pose and depth labels.

2.2. Depth Estimation

Depth estimation works can be classified into depth pre-
diction and depth completion categories, according to the
KITTI benchmark [5]. The former [4] estimates depth from
a single color image, while the latter takes a color image and
a sparse depth map as the inputs to produce a dense depth
map. In contrast to learning-based VOs [38, 52, 49] that in-
put an image sequence, most depth estimation works take
a single frame as input. They focus more on the design of
network architectures to encode multi-scale contexts [17],
semantics [3] or surface normals [32] for performance im-
provement. Moreover, most depth estimation methods are
based on supervised learning, requiring ground-truth depth
maps that are extremely hard to obtain. Recently, unsuper-
vised methods have also been developed. For instance, Ma
et al. [24] implements self-supervised depth completion via
also taking a sequence of images and sparse depth maps as
inputs. Their work shares the same inputs with ours, but it
uses a traditional method to estimate ego-motion between



two frames.

2.3. Consistency Regularization

Consistency regularization aims to improve a model’s
performance via enforcing the consistency between two
output predictions. For instance, some stereo matching [48]
and depth estimation [30, 7, 23] works take a stereo pair
as inputs and place a left-right consistency on their corre-
sponding outputs. Optical flow [54] takes consecutive im-
ages as inputs and impose a forward-backward consistency.
Recently, the consistency between the outputs of an orig-
inal image and its transformed (e.g. rescaled, rotated, or
flipped) version has been exploited to construct supervision
for various self-supervised learning tasks in image classi-
fication [1, 11], object detection [14], semantic segmenta-
tion [40], etc. In this work, we adopt the flip consistency
and design an adaptively weighted consistency loss specifi-
cally for self-supervised visual-lidar odometry.

3. The Proposed Method
In this section, we first present the network architecture

designed for our visual-lidar odometry. Then we introduce
the proposed losses to achieve the self-supervised learning.

3.1. Network Architecture

Visual-lidar fusion: When designing the network archi-
tecture, the first problem we need to address is how to fuse
visual and lidar modalities. Inspired by recent depth com-
pletion works [32, 36], we adopt an encoder-decoder fusion
scheme and design the network as shown in Figure 1. First,
in contrast to deep LOs [2, 18] that take a cylindrical or
spherical projection, we project each 3D point cloud into its
aligned image frame and obtain a 2D sparse depth map. Al-
though this projection manner leaves out the 3D points that
are not in the camera’s field of view, it facilitates the fusion
of color and depth information.

We refer to our visual-lidar odometry network as
VLONet. It has a two-pathway encoder. Each takes ei-
ther an image sequence or a depth map sequence as in-
put. The features extracted in each pathway are fused by
a point-wise addition for the prediction of relative pose be-
tween two consecutive frames. In addition, the depth and
visual features are also fused together with decoder features
via a feature fusion module at each scale, as shown in Fig-
ure 1, to predict a dense depth map. In contrast to most
deep VOs [52, 33, 49] that construct two separate networks
for depth and pose prediction, our depth and pose estima-
tion share the same encoder, which can not only reduce the
computational cost but also extract more powerful features.

A siamese architecture for the self-supervised learn-
ing: Inspired by recent unsupervised learning works [1,
11, 14, 40], we adopt a siamese architecture for our self-
supervised VLO. More specifically, the architecture con-

sists of two siamese VLONets, as shown in Figure 2. One
network takes original image and depth sequences as in-
put, and the other takes the horizontally flipped images and
depth maps as input. These two networks share the same
structure and parameters. Based on this architecture, we can
impose a consistency regularization to facilitate our self-
supervised learning. This siamese architecture is used for
training, while only one VLONet is needed for test.

3.2. Depth and Pose Prediction Losses

We first introduce the losses for the prediction of depth
and pose in a single VLONet. As no ground-truth labels
are available, we adopt a view synthesis loss Lvs, together
with a depth fidelity loss Ldf and a depth smoothness loss
Lds for supervision. Therefore, the entire loss of a single
VLONet is defined by

Lvlo = λvsLvs + λdfLdf + λdsLds, (1)

in which λvs, λdf , and λds are scaling factors to balance
the terms. For the purpose of self-containedness, we briefly
introduce each term as follows.

View synthesis loss, which is extensively used in un-
supervised VOs [52, 33], measures the difference be-
tween a target image and an image synthesized from a
source image. Assuming that each sequence contains
2N + 1 frames, we denote the input image sequence by
{It−N , · · · , It−1, It, It+1, · · · , It+N} and the depth map
sequence by {Dt−N , · · · , Dt−1, Dt, Dt+1, · · · , Dt+N}.
The frame It andDt are the target views and the rest are the
source views denoted by Is andDs, s ∈ {t−N, · · · , t+N},
s 6= t. The VLONet predicts a dense depth map D̂t and a
relative pose P̂t→s = [t̂x, t̂y, t̂z, r̂x, r̂y, r̂z] for each target
and source pair. Here, [t̂x, t̂y, t̂z] is a 3D translational vec-
tor and [r̂x, r̂y, r̂z] is a 3D Euler angle, from which we can
construct a 4× 4 transformation matrix T̂t→s.

Given a pixel pt in the target image It, we can get its cor-
responding pixel ps in a source image Is by the following
transform:

ps = KT̂t→sD̂t(pt)K
−1pt, (2)

where

K =

 fx 0 cx
0 fy cy
0 0 1

 (3)

is a camera intrinsic matrix provided in training. Further, by
taking the differentiable bilinear sampling mechanism [52],
we warp the source image into the target frame to get the
synthesized image Ĩs→t, in which Ĩs→t(pt) = Is(〈ps〉).

Then, a view synthesis loss is designed to measure the
difference between It and Ĩs→t. To this end, we combine a
L1 error with a SSIM [47] and define the loss as follows:

Lvs =
∑
s

(1−αs)‖It−Ĩs→t‖1+αs(1−SSIM(It, Ĩs→t)),

(4)



Figure 1. The network architecture of our visual-lidar odometry, referred to as VLONet. It follows an encoder-decoder structure and
consists of three major components: a two-pathway encoder, a pose estimator and a depth prediction decoder.

Figure 2. An overview of our Self-VLO. It consists of two VLONets that share the same structures and parameters with each other.
One VLONet takes original sequences as input and the other inputs horizontally flipped sequences. Each network is supervised with
corresponding depth and pose prediction losses. There is also a flip consistency loss imposed to constrain the outputs of two VLONets.

where αs is a scalar to balance the two terms. According to
Equation (2), we know that this loss provides a supervision
for both depth and pose estimations.

Depth fidelity loss is to ensure the predicted dense depth
map have the same values with the input sparse depth map
at these valid pixels. Therefore, this loss is defined by

Lds = ‖M(Dt)� (Dt − D̂t)‖1, (5)

in which M(Dt) = 1(Dt > 0) indicates the valid pixels in
the sparse map. Note that the supervision of depth comes
from the inputs and no extra ground-truth depth labels are
required. Therefore, our method is self-supervised.

Depth smoothness loss is imposed to improve the qual-
ity of the predicted dense depth map. Considering the cor-
relation between color and depth images, we introduce an
image-guided loss to smooth depth while keep sharp on ob-

ject boundaries. This loss is defined by

Lsm =
∑

p exp (−|∇xIt(p)|) |∇xD̂t(p)| (6)

+exp (−|∇yIt(p)|) |∇yD̂t(p)|, (7)

where∇x, ∇y denote the gradients.

3.3. The Flip Consistency Loss

By taking advantage of the siamese architecture, we also
impose a consistency regularization to facilitate our self-
supervised training. It is based on the following assump-
tion [40]: if there is an affine transformation A(·) on the in-
put, the corresponding output is inclined to be equivariant.
That is, G(A(I,D)) = A(G(I,D)), where G(·) denotes
our VLONet function mapping the input to the output. In
this work, we only take the horizontal flip into account for
simplicity. Therefore, we first derive the relation between



two outputs and then design a flip consistency loss to regu-
larize the two outputs.

Recall that the original input sequences are 〈It, Is〉
and 〈Dt, Ds〉, and their outputs are D̂t and P̂t→s =
[t̂x, t̂y, t̂z, r̂x, r̂y, r̂z]. We horizontally flip each image
and depth frame while keep their temporal order un-
changed. The flipped sequences are denoted by

〈
Ift , I

f
s

〉
and

〈
Df

t , D
f
s

〉
, and the corresponding outputs are denoted

by D̂f
t and P̂ f

t→s = [t̂fx, t̂
f
y , t̂

f
z , r̂

f
x , r̂

f
y , r̂

f
z ]. These two

outputs have the following relations:
D̂f

t = flip(D̂t)

P̂ f
t→s = [t̂fx, t̂

f
y , t̂

f
z , r̂

f
x , r̂

f
y , r̂

f
z ]

= [−t̂x, t̂y, t̂z, r̂x,−r̂y,−r̂z]

(8)

where flip(·) denotes the horizontal flip operation. Note
that, when an image is flipped, the intrinsic matrix of the
camera is also changed into the following one

Kf =

 fx 0 W − cx
0 fy cy
0 0 1

 (9)

where W is the image width.
Based on the above-mentioned relations, we place con-

sistency constraints on both depth and pose estimation re-
sults. Therefore, the flip consistency loss is defined as fol-
lows.

Lfc = Ldfc + Lpfc, (10)

in which
Ldfc = ‖flip(D̂t)− D̂f

t ‖1, (11)

and

Lpfc = ‖t̂x + t̂fx + t̂y − t̂fy + t̂z − t̂fz‖1
+ αr‖r̂x − r̂fx + r̂y + r̂fy + r̂z + r̂fz ‖1

(12)

are two losses to constrain the consistency of the depth and
pose estimations, respectively. αr is a scalar to balance the
translational error and the rotational error.

3.4. The Entire Loss

In summary, when training with the siamese network ar-
chitecture, we have two depth and pose estimation losses
Lvlo and Lf

vlo , respectively, for the original and flipped se-
quences, together with a flip consistency loss Lfc to con-
strain the two outputs. Therefore, the entire loss is

L = Lvlo + Lf
vlo + φLfc. (13)

Here,

φ = λfc · exp
(
−Lvs

σ

)
(14)

is an adaptive weight controlled by the view synthesis loss
Lvs to balance the prediction losses and the consistency
loss. λfc and σ are two scalars to ensure the adaptive weight
φ range from 0 to 1.

The reason to employ this adaptive weighting
scheme [41] is because the consistency loss Lfc is
prone to result in a trivial solution with all zeros in depth
and pose values. Involving the consistency loss permaturely
may make the model parameters oscillate with time when
the depth and pose estimates are incorrect, leading to a
slow convergence at the early epochs. Therefore, we use
this adaptive weighting scheme to vary the weight during
training time by letting φ be inversely proportional to the
Lvs. φ is small when Lvs is large and φ will be close to 1
when Lvs goes to 0 as the training converges.

4. Experiments

4.1. Experiment Setting

Dataset and evaluation metrics. We evaluate our self-
supervised visual-lidar odometry and its variants on the
KITTI odometry benchmark [5]. As the common prac-
tice [52, 33, 53], we take sequence 00-08 for training and
test on sequence 09 and 10. To evaluate the pose estimation
results, we compute the average translational error (%) and
rotational error (deg/100m) on all possible sub-sequences
of length (100, 200, · · · , 800) meters, following the official
criteria provided in the KITTI benchmark .

Implementation details. We implement the proposed
model based on the PyTorch [31] framework. In all exper-
iments, the length of each input sequence is 3. Each image
or depth map is resized into 192 × 624, which is half of
the original resolution, to save computational cost. We train
our full model using a single NVIDIA GTX 2080Ti. The
full model takes 50 hours or so for training. It infers both
depth and pose at a rate of 40Hz during test time.

The details of our network, including the operations and
channel size, are marked in Figure 1. In addition, we use
batch normalization [12] and ReLU activation for all convo-
lutional layers except those in the prediction layers. During
training, we use the Adam optimizer [15] with β1 = 0.9,
β2 = 0.999 and mini-batch size of 4 to train the network
for 180K iterations. The initial learning rate starts from
0.0002 and decreases by half for every 70K iterations. We
empirically set the hyper-parameters as follows: λvs = 2.0,
λdf = 0.2, λds = 40.0, αs = 0.85, and αr = 2.0. In the
adaptive weight φ, we set the scaling factors λfc = 2.5 and
σ = 0.2.

Data augmentation. In our network, each input se-
quence is a 3-frame snippet. If we only select consecutive
frames as inputs, then the low-speed snippets may take the
majority while the high-speed snippets take a very small
portion, as shown in Figure 3(a). This imbalanced distri-



Models Inputs DA SA FC Seq.09 Seq.10 Mean
trel rrel trel rrel trel rrel

VLO1 M+L 4.33 1.72 3.30 1.40 3.82 1.56
VLO2 M+L

√
3.42 1.59 4.04 1.40 3.73 1.50

VLO3 M+L
√ √

3.21 1.33 3.56 1.14 3.39 1.24
VLO4 M+L

√ √ √
2.58 1.13 2.67 1.28 2.62 1.21

VO1 M 11.34 3.15 16.70 5.04 14.02 4.10
VO2 M

√
9.83 3.53 14.92 4.43 12.38 3.98

VO3 M
√ √

8.30 2.56 15.90 4.92 12.10 3.74
VO4 M

√ √ √
7.00 2.41 11.74 3.33 9.37 2.87

Table 1. Comparison of the proposed method and its variants. Here, M denotes the input taking only monocular image sequences, M+L is
the input taking both monocular images and depth maps projected from lidar points. DA denotes the data augmentation strategy, SA is the
siamese architecture, and FC is the flip consistency loss. trel is the translational error (%) and rrel is the rotational error (deg/100m). The
best results of VLOs or VOs are marked in bold.

bution makes a model perform poorly at high-speed scenar-
ios. To address this issue, we opt to enlarge the sampling
interval by sampling 3 frames, respectively, at time t − 2,
t, and t + 2 with a probability p = 0.6. By this means,
the speed distribution of two consecutive frames in 3-frame
snippets is more balanced, as shown in Figure 3(b). In ad-
dition, we also observe that extremely low-speed snippets
(e.g. the speed between two frames is slower than 10km/h)
may hurt the performance. The reason is that the geome-
try model of pose estimation degenerates when two frames
are too close to each other. Therefore, we leave out these
snippets during training. Except these, no other data aug-
mentation techniques such as random scaling, cropping or
flipping are adopted.

(a) Without DA (b) With DA

Figure 3. The distributions of the speed between two consecu-
tive frames in 3-frame snippets sampled from the KITTI odom-
etry benchmark (Seq. 00-08). DA refers to the data augmentation
strategy designed in our work.

4.2. Ablation Studies

We first conduct a series of experiments to investigate
the effectiveness of each component proposed in our model.
To this end, we test the following four model variants: 1)
VLO1: the model using only a single VLONet and without
our data augmentation (DA) strategy; 2) VLO2: the model
using one VLONet; 3) VLO3: the model using the siamese
architecture composed of two VLONets but without the flip
consistency loss; 4) VLO4: the full model. All of the latter

three models are trained with DA. In addition, to validate
the effectiveness of visual-lidar fusion, we also investigate
four visual models, denoted by VO1-4, which are respec-
tively corresponding to VLO1-4 but take only monocular
images as input.

Table 1 presents the pose estimation results of all vari-
ants. Note that the VO models take only monocular images
as input that lead to a scale ambiguity problem, we recover
the scales by a post-processing step as done in [52, 33].
When comparing each VLO model with the correspond-
ing VO counterpart, we observe that the fusion of visual
and lidar information improves the pose estimation perfor-
mance dramatically. In addition, all proposed components
including the data augmentation strategy, the siamese archi-
tecture, and the flip consistency loss, gradually boost the
performance in both VLOs and VOs, demonstrating their
effectiveness. Figure 4 presents the trajectories of sequence
09 and 10, produced by four model variants. As shown in
the figure, both VLO1 and VLO4 generate the trajectories
much closer to the ground truth than the VO models, and
the full model VLO4 is the closest.

(a) Seq. 09 (b) Seq. 10

Figure 4. Trajectories of sequence 09 and 10.

In order to take a close look at how the proposed
models make improvements, Figure 5 also plots the
translational and rotational errors along each axis, aver-
aged on sub-sequences of sequence 09 with a length of
(100, 200, · · · , 800) meters. We see that the fusion of vi-



Figure 5. Translational and rotational errors along each axis, averaged on sub-sequences of sequence 09 with different length. Top row: the
averaged translational errors along X , Y , Z axis, respectively. Bottom row: the averaged rotational errors along pitch, yaw, and roll.

Method Inputs Supervision Seq.09 Seq.10 Mean(09-10)
trel rrel trel rrel trel rrel

Su
pe

rv
is

ed

DeepVO[38] Mono Pose - - 8.11 8.83 8.11 8.83
ESP-VO[39] Mono Pose - - 9.77 10.2 9.77 10.2
GFS-VO[42] Mono Pose - - 6.32 2.33 6.32 2.33
Xue et al.[43] Mono Pose - - 3.94 1.72 3.94 1.72
LO-Net[18] LiDAR Pose 1.37 0.58 1.80 0.93 1.59 0.76

Se
lf

-s
up

er
vi

se
d

SfMLearner[52] Mono - 18.77 3.21 14.33 3.30 16.55 3.26
UnDeepVO[33] Stereo - 7.01 3.61 10.63 4.65 8.82 4.13
Zhu et al.[53] Stereo - 4.66 1.69 6.30 1.59 5.48 1.64
Zhan et al.[49] Stereo - 11.92 3.60 12.62 3.43 12.27 3.52
Gordon et al.[8] Mono - 3.10 - 5.40 - 4.25 -
SAVO [20] Mono - 9.52 3.64 6.45 2.41 7.99 3.03
Li et al. [19] Mono - 5.89 3.34 4.79 0.83 5.34 2.09
DeepLO[2] LiDAR - 4.87 1.95 5.02 1.83 4.95 1.89
Self-VLO Mono+LiDAR - 2.58 1.13 2.67 1.28 2.62 1.21

Table 2. Comparison of the proposed method with state-of-the-art learning based methods. Note that the self-supervised methods are
trained on sequence 00-08. For the supervised methods, [38, 39, 42, 43] are trained on sequence 00, 02, 08 and 09, and [18] is trained on
sequence 00-06.

sual and lidar information, as shown by VLO1 and VLO4
in Figure 5, dramatically improves the performance on tx
(along the lateral direction), tz (along the driving direction),
and ry (yaw), which are the directions dominate a vehicle’s
motion. Besides, the errors of VLO4 are more stable than
the other variants, indicating that the full model is more ro-
bust to the change of driving speed and road scenarios.

4.3. Comparison with State-of-the-arts

In this section, we compare our proposed full model
(named as Self-VLO) with both fully supervised and
unsupervised/self-supervised methods. All previous
learning-based methods either take visual images or lidar
data as input. Therefore, the state-of-the-art fully super-
vised methods include four visual odometries [38, 39, 42,
43] and one lidar odometry [18]. The self-supervised meth-
ods include seven VOs [52, 33, 53, 49, 8, 20, 19] and one
LO [2]. These visual methods may take monocular or stereo
image sequences as input for training, but all of them infer

pose from monocular images during test.
Table 2 summarizes the comparison results. From it we

see that our Self-VLO outperforms all visual based meth-
ods, including both fully supervised and self-supervised
ones, on test sequences 09 and 10. Moreover, Self-VLO
also performs better than the unsupervised LO [2] although
it takes 360o field of view into account. These comparisons
demonstrate the effectiveness of our method.

5. Conclusions

In this paper, we have presented a self-supervised visual-
lidar odometry. It takes advantage of rich visual information
and accurate depth information to improve the performance
of ego-motion estimation. We adopt a siamese architecture
and design an adaptively weighted flip consistency loss to
facilitate the learning of our VLO under self-supervision,
requiring no manual annotations. Experiments on KITTI
validate the effectiveness of our proposed method.
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