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Abstract

Many camera sensors use a dual-pixel (DP) design that
operates as a rudimentary light field providing two sub-
aperture views of a scene in a single capture. The DP sen-
sor was developed to improve how cameras perform auto-
focus. Since the DP sensor’s introduction, researchers have
found additional uses for the DP data, such as depth es-
timation, reflection removal, and defocus deblurring. We
are interested in the latter task of defocus deblurring. In
particular, we propose a single-image deblurring network
that incorporates the two sub-aperture views into a multi-
task framework. Specifically, we show that jointly learning
to predict the two DP views from a single blurry input im-
age improves the network’s ability to learn to deblur the im-
age. Our experiments show this multi-task strategy achieves
+1dB PSNR improvement over state-of-the-art defocus de-
blurring methods. In addition, our multi-task framework al-
lows accurate DP-view synthesis (e.g., ∼ 39dB PSNR) from
the single input image. These high-quality DP views can
be used for other DP-based applications, such as reflection
removal. As part of this effort, we have captured a new
dataset of 7, 059 high-quality images to support our train-
ing for the DP-view synthesis task. Our dataset, code, and
trained models are publicly available at https://gith
ub.com/Abdullah-Abuolaim/multi-task-de
focus-deblurring-dual-pixel-nimat.

1. Introduction and related work

We are interested in reducing the defocus blur present in
captured images. Defocus blur occurs at scene points that
are captured outside a camera’s depth of field (DoF). Reduc-
ing defocus blur is challenging due to the nature of the spa-
tially varying point spread functions (PSFs) that vary with
scene depth [17, 30]. Most of the existing DoF blur reduc-
tion methods [6,12,15,24,28] approach the problem in two
stages: (1) estimate the defocus map of the input and (2)
apply off-the-shelf non-blind deconvolution (e.g., [7, 14])

(a) Blurred input (b) Result of [12] (c) Result of [15]

(d) Our result (e) Our DP views (f) GT DP views

Figure 1: Results from our multi-task framework. (a) Input
image with DoF blur. Deblurring results of [12] and [15] are
shown in (b) and (c), respectively. (d) Our result. (e) Our
reconstructed DP views. (f) Ground-truth DP views. Our
multi-task method has better deblurring results and is able
to produce accurate DP views from a single-image input.
Note: The DP views are animated; click on the image
to start the animation. It is recommended to open this
PDF in Adobe Acrobat Reader to work properly. This
feature is applicable where “animations” appears in the
subsequent figures.

guided by the estimated defocus map. The performance of
these methods is bounded by the DoF map estimation and
the effectiveness of the non-blind deconvolution. Addition-
ally, due to the two-stage approach, these methods have a
long processing time.

Recent work in [2] proposed a DoF deblurring method
that leveraged the availability of dual-pixel (DP) sensor
data. This method trained a deep neural network (DNN)
that uses the DP sensor’s two sub-aperture views as input
to predict a single deblurred image. The effectiveness of
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the method by [2] is attributed to the DNN’s ability to learn
the amount of spatially varying defocus blur from the two
DP views. This idea stems from the way the DP sensors
work. DP sensors were developed as a means to improve
the camera’s autofocus system. The DP design produces
two sub-aperture views of the scene that exhibit differences
in phase that are correlated to the amount of defocus blur as
shown in Fig. 1-f (details in Sec. 2). A camera adjusts the
lens position to minimize phase differences in the two DP
views, resulting in a final in-focus image. Researchers have
been quick to leverage the DP sub-images for tasks beyond
autofocus [3,4], including depth map estimation [8,25,37],
defocus deblurring [5, 16, 23, 32], reflection removal [26],
and synthetic DoF [33].

One notable drawback of using DP data is that most cam-
eras do not provide easy access to the DP sensor’s two sub-
aperture views. Although DP sensors are used by many
cameras, only two cameras currently provide access to DP
images (i.e., Canon 5D DSLR camera [2,25,26] and Google
Pixel series smartphone camera [8, 33, 37]). Even for these
devices accessing the DP data has caveats. For example,
the Canon 5D requires special software to extract the two
views from a saved RAW image. The Google Pixel device
requires a special binary and provides DP data only for the
green channel of the RAW image. These limitations make
the use of DP data at inference time impractical.

In the context of defocus deblurring, training data is re-
quired in the form of paired images—one sharp and one
blurred. Training images are obtained by placing a cam-
era on a tripod and capturing an image using a wide aper-
ture (i.e., blurred image with shallow DoF), followed by a
second image captured using a narrow aperture (i.e., target
sharp image with large DoF). Care must be taken to ensure
that the camera is not moved between aperture adjustments
and that the scene content remains stationary. Such data ac-
quisition is a time-consuming process and does not facilitate
collecting larger datasets—for instance, the recent DP defo-
cus deblurring dataset [2] contains only 500 of such pairs.

The aforementioned drawbacks of accessing DP data at
inference time and the challenges in capturing blurry/sharp
paired data for training serve as the impetus for our pro-
posed multi-task learning framework. In particular, our
method focuses on conventional single-image input. And,
while we cannot remove the need for blurred/sharp training
data entirely, we demonstrate that the performance of defo-
cus deblurring is improved by incorporating the joint train-
ing of predicting the DP views. The training of the DP-view
reconstruction task requires only the capture of unpaired DP
images in an unrestricted manner with minimal effort. Be-
cause we only need access to DP information at training
time, inference time becomes much more practical.

Traditional sensor vs. DP sensor
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Figure 2: DP sensor image formation via DoF circle of con-
fusion (CoC) formation. (a) Traditional sensor vs. DP sen-
sor. (b) and (c) are the CoC formation on the 2D imaging
sensor of two scene points, P1 and P2. On the two DP
views, the half-CoC flips direction if the scene point is in
front or back of the focal plane. (d) shows the subtracted
DP views in the front/back focus cases, where the +/− sign
reveals the front/back focus ambiguity.

Contributions We introduce a multi-task DNN frame-
work to jointly learn single-image defocus deblurring and
DP-based view prediction as shown in Fig. 1. We show
that training a DNN to both deblur the image and predict
the two sub-aperture DP views improves deblurring results
by up to +1dB PSNR over existing state-of-the-art meth-
ods. To facilitate this effort, we have captured an unpaired
dataset with varying DoF blur consisting of 2, 353 high-
quality full-frame images using a DP camera. This gives
a total of 7, 059 images—2, 353 conventional images and
their corresponding two sub-aperture DP views. We also in-
troduce novel loss functions based on DP image formation
to help the network avoid ambiguity that arises in DP data.
Extensive experiments show our results outperform existing
single-image DoF deblurring both quantitatively and qual-
itatively. While our main goal is defocus deblurring, we
conclude by showing how our DNN model has the added
advantage of being able to produce high-quality DP views
that can be used for tasks such as reflection removal and
multi-view synthesis.

2. Dual-pixel image formation

We start with a brief overview of DP sensors. A DP sen-
sor uses two photodiodes at each pixel location with a mi-
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Figure 3: An overview of the proposed multi-task learning framework. We adopt a single-encoder multi-decoder DNN. Our
multi-task DP network (MDP) takes a single input image (Ic) and outputs three images—namely, left (Il) and right (Ir) DP
views, and a deblurred (sharp) version (Is). MDP has two stages of weight sharing between the three decoders (i.e., Decl,
Decr, and Decs): early at the encoder (Encl) latent space X and middle at the box highlighted in orange. Our MDP is
trained in two steps, where the Decs is frozen in the first step and resumed in the next based on the intended task.

crolens placed on the top of each pixel site, as shown in
Fig. 2-a. As previously mentioned, this design was devel-
oped to improve camera autofocus by functioning as a sim-
ple two-sample light field camera. The two-sample light
field provides two sub-aperture views of the scene and, de-
pending on the sensor’s orientation, the views can be re-
ferred to as left/right or top/down pairs; we follow the con-
vention of prior papers [2, 25, 26] and refer to them as the
left/right pair, denoted as Il and Ir. The light rays coming
from scene points that are within the camera’s DoF exhibit
little to no difference in phase between the views. On the
other hand, light rays coming from scene points outside the
camera’s DoF exhibit a noticeable defocus disparity in the
left-right views. The amount of defocus disparity is corre-
lated to the amount of defocus blur.

Unlike traditional stereo, the difference between the
DP views can be modeled as the latent sharp image be-
ing blurred in two different directions using a half-circle
PSF [25]. This is illustrated in the resultant circle of confu-
sion (CoC) of Fig. 2-c. On real DP sensors, the ideal case
of a half-circle CoC is only an approximation due to con-
straints of the sensor’s construction and lens array. These
constraints allow a part of the light ray bundle to leak into
the other-half dual pixels (see half CoC of left/right views
in Fig. 2-c). We can describe the DP image formation as
follows. Let Is be a latent sharp image patch and Hl and
Hr are the left/right PSFs; then the DP Il and Ir can be

represented as:

Il = Is ∗Hl, Ir = Is ∗Hr, (1)

Hr = Hf
l , (2)

where ∗ denotes the convolution operation and Hf
l is the

flipped Hl. The two views Il and Ir are combined to pro-
duce the final image provided by the camera Ic as follows:

Ic = Il + Ir. (3)

Another interesting property of the DP PSFs is that the
orientation of the “half CoC” of each left/right view reveals
if the scene point is in front or back of the focal plane, as
shown in the subtracted views of the two scene points, P1

and P2 in Fig. 2-d. These DP properties are useful cues
that will be considered when formulating the DP-based loss
functions in Sec. 3.2.

3. Multi-task learning framework
Multi-task learning has been successfully used for vari-

ous computer vision tasks [9,19,35]. In this work, we adopt
a multi-task framework in order to leverage the strong con-
nection between defocus deblurring and DP-view synthe-
sis as they require encoding information regarding the de-
focus blur present at each pixel in the input image. Towards
this goal, we propose a single-encoder multi-decoder DNN
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that takes a single input image and decomposes it into DP
left/right views along with the deblurred version. Fig. 3 pro-
vides an overview of our proposed framework.

3.1. Network architecture

We adopt a symmetric single-encoder multi-decoder
DNN architecture with skip connections between the cor-
responding feature maps [20, 27] (see Fig. 3). We refer to
our DNN model as the multi-task DP network (MDP). The
three decoder branches have an early-stage weight sharing
at the end of the encoder part. We add middle-stage weight
sharing as indicated in the orange box of Fig. 3. Each block
in the middle-stage sharing receives two skip connections
from the corresponding feature maps from the other two
decoders. This type of multi-decoder stitching—that guar-
antees weight sharing at multiple stages—provides multiple
communication layers that can further assist the multi-task
joint training. We avoid adding late-stage weight sharing
as the sharpness of the deblurred image can be affected by
the half-PSF blur present in feature maps of the synthesized
DP views at these later stages. The proposed model has a
sufficiently large receptive field that is able to cover larger
spatially varying defocus PSFs. An ablation study is pro-
vided in the supplementary material that validates the multi-
decoder stitching design.

With the proposed architecture, the encoder Enc task is
to map the input image into a latent space X as follows:

X = Enc(Ic). (4)

This latent space can be viewed as a defocus estimation
space in which both tasks share a common goal that re-
quires a notion of the PSF size at each pixel in the input
image. This latent space representation X is then passed
to the three decoders—namely, left and right DP-view de-
coders (Decl and Decr) and the defocus deblurring (i.e.,
sharp image) decoder (Decs)—in order to produce the out-
put estimations as follows:

I∗l = Decl(X ), I∗r = Decr(X ), I∗s = Decs(X ). (5)

3.2. DP-based loss function

It is important to consider how the DP images are formed
when designing loss functions to ensure the training pro-
cess for the two DP views satisfies DP properties. We have
observed empirically that a traditional mean squared error
(MSE) loss, computed between the ground truth (GT) and
reconstructed DP views, drives the network to a local min-
ima, where the difference between the reconstructed DP
views is estimated as an explicit shift in the image content.
This observation makes the MSE alone not sufficient to cap-
ture the flipping property of DP PSFs (i.e., the PSF reverses
direction if it is in front of the focal plane—see Fig. 2-c).
Therefore, we introduce a novel DP-loss based on Eq. 3 that

imposes a constraint on the DP-view reconstruction process
as follows:

LC =
1

n

∑
n

(Ic − (I∗l + I∗r))
2, (6)

where Ic is the input combined image and I∗l and I∗r are
the estimated DP views. Our LC encourages the network
to optimize for the fundamental DP image formation (i.e.,
Eq. 3).

While LC assists the network to learn that the com-
bined left/right views should sum to the combined image,
the front/back focus flipping direction remains ambiguous
to the network. To address this ambiguity, we introduce a
new view difference loss LD to capture the flipping sign
direction as follows:

LD =
1

n

∑
n

((Il − Ir)− (I∗l − I∗r))
2, (7)

where Il and Ir are the GT DP left and right views, respec-
tively. Fig. 2-d shows the sign difference in the front/back
focus cases when the views are subtracted, which gives a
cue for the network to learn the PSF flipping direction when
penalizing view difference in the loss—namely, LD. Fig. 4
provides a visual analysis of the observations that led to our
two DP loss functions—namely, LC and LD. See Sec. 4.3
for an ablation to demonstrate their effectiveness.

3.3. Dual-pixel datasets

Our new DP dataset We collected a new diverse and
large DP (DLDP) dataset of 2, 353 scenes. These scenes
were captured using a Canon EOS 5D DSLR camera. Each
scene consists of a high-quality combined image (2, 353 im-
ages) with its corresponding DP views (2, 353× 2 images).
All images are captured at full-frame resolution (i.e., 6720 ×
4480 pixels). Our data contains indoor and outdoor scenes
with diverse image content, weather conditions, scene illu-
minations, and day/night scenes. We captured scenes with
different aperture sizes (i.e., f/4, f/5.6, f/10, f/16, and
f/22) in order to cover a wider range of spatially varying
defocus blur (i.e., from all-in-focus to severely blurred im-
ages). We use this DLDP dataset in our multi-task frame-
work to optimize directly for the DP-view synthesis task.

Other DP datasets We use the Canon DP deblurring
dataset [2] (i.e., 350 training paired images) to optimize for
both defocus deblurring and DP-view synthesis. We note
that there is also a DP dataset based on the Google Pixel
camera [8]. We opted to only use the Canon as it matches
our DLDP dataset. Additionally, the Pixel DP data from [8]
is not appropriate to train for colored images as it provides
only the green channels in the raw-Bayer frame for the DP
views.
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(a) Without LC loss term (b) With LC loss term (c) Ground truth

(d) Without LD loss term (e) With LD loss term (f) Ground truth

Figure 4: An analysis and visual comparison to reflect the effectiveness of our proposed LC and LD DP-based loss terms. (b)
shows that training with LC helps the network to capture the flipping kernel (yellow patch) and accurate colors (red patch)
compared to the one in (a). (e) demonstrates that training with LD can assist the network to learn the flipping direction in
the front (yellow patch) and back focus (red patch), where the views rotate around the focal plane as shown in the GT. Note:
the images are animated; click on the image to start the animation. It is recommended to open this PDF in Adobe
Acrobat Reader to work properly.

3.4. Model training

Our training is divided into two steps. First, training with
image patches from our DLDP dataset is performed to op-
timize only the DP-view synthesis task. During this step
the weights of the deblurring decoder branch (Decs) are
frozen. Once the model converges for the DP-view synthe-
sis branches, the second step unfreezes the weights of Decs
and starts fine-tuning using image patches from the Canon
DP deblurring dataset [2] to optimize jointly for both the
defocus deblurring and DP-view synthesis tasks (see train-
ing steps in Fig. 3). For the first step, we train the network
with the following loss terms:

LST1 = LMSE(l, r) + LC + LD, (8)

where LST1 is the overall first-step loss and LMSE(l, r)
is the typical MSE loss between the GT and estimated DP
views. The second step needs more careful loss setting to
fine-tune the model in a way that guarantees improving per-
formance on both tasks. In the second step, the network is
fine-tuned with the following loss terms:

LST2 = LMSE(s)+λ1LMSE(l, r)+λ2LC +λ3LD (9)

where LST2 is the overall second-step loss and LMSE(s)
is the typical MSE between the output deblurred image and
the GT. The λ terms are added to control the training pro-
cess.

4. Experiments

4.1. Training details

Training data We divide our newly captured DLDP
dataset into 2, 090 and 263 training and testing scenes, re-
spectively. In the first training step, we use the 2, 090 train-
ing scenes. For the second training step, we use the DP
data from [2] following the same data division in [2]—that
is, 350, 74, and 76 training, validation, and testing scenes,
respectively.

Training procedure We extract image patches of size
512 × 512 × 3, where the input is a single patch and the
output is three patches. The convolutional layer weights
are initialized using He’s method [11] and the Adam opti-
mizer [13] is used to train the model. The mini-batch size
in each iteration is set to 8 batches.

For the first training step, the initial learning rate is set
to 3 × 10−4, which is decreased by half every 8 epochs.
The model converges after 60 epochs in the first step. For
the second step, the initial learning rate is set to 6 × 10−4,
which is decreased by half every 8 epochs. The model con-
verges after 80 epochs. The λ terms are set to 0.8, 0.5, and
0.5, respectively, in order to have a balanced loss minimiza-
tion and to guide the network attention towards minimizing
for defocus deblurring in the second step. All the training
details and model setup are implemented using Python with
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Table 1: Quantitative comparisons with single-image defocus deblurring methods. The best results are indicated with bold-
face. Results are on the Canon DP deblurring dataset [2] (test set consists of 37 indoor and 39 outdoor scenes).

Method Indoor Outdoor Indoor & Outdoor
PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓ NIQE ↓ Time ↓

JNB [28] 26.73 0.828 0.031 21.10 0.608 0.064 23.84 0.715 0.048 5.11 843.1
EBDB [12] 25.77 0.772 0.040 21.25 0.599 0.058 23.45 0.683 0.049 5.42 929.7
DMENet [15] 25.70 0.789 0.036 21.51 0.655 0.061 23.55 0.720 0.049 4.85 613.7
DPDNet (single) [2] 26.54 0.816 0.031 22.25 0.682 0.056 24.34 0.747 0.044 4.06 0.5
Our MDP 28.02 0.841 0.027 22.82 0.690 0.052 25.35 0.763 0.040 3.25 0.5

Table 2: Our single-image defocus deblurring achieves on-
par results compared to DPDNet [2], which requires two DP
images data as input. Results are on the Canon DP deblur-
ring dataset [2].

Method PSNR ↑ SSIM ↑ MAE ↓
DPDNet (real DP views) [2] 25.13 0.786 0.041
DPDNet (our synth. DP views) [2] 24.91 0.758 0.043
Our MDP (single image) 25.35 0.763 0.040

the Keras framework on top of TensorFlow 2 and trained
with NVIDIA TITAN X GPU.

4.2. Single-image deblurring

To evaluate our method, we use the test set of the Canon
DP deblurring dataset [2]. Specifically, this test set [2] in-
cludes 37 indoor and 39 outdoor scenes. We compare our
results against recent methods for single-image defocus de-
blurring [12, 15, 28]. For the sake of completeness, we also
compare our results against the recent DP defocus deblur-
ring method (DPDNet) [2], which requires the availability
of DP data at inference time. As our task is single-image de-
focus deblurring, we provide the results of the DPDNet [2]
using single input images for a fair comparison. The single-
image model of this method was originally trained by the
authors of the paper [2] with the same model size (i.e., num-
ber of weights) used for the DP model. Although our MDP
model has three decoder branches, we adjust the number of
convolutional operations and filter size in some blocks in
order to have an equivalent model size in terms of number
of weights compared to DPDNet [2]. Our proposed MDP
is fully convolutional so that we can test on full-size images
regardless of the patch size used for training.

Quantitative results Table 1 shows the quantitative re-
sults of our method and other single-image defocus de-
blurring methods: the just noticeable defocus blur method
(JNB) [28], the edge-based defocus blur estimation method
(EBDB) [12], the deep defocus map estimation method
(DMENet) [15], and the DPDNet (single) [2]. We use the
common signal processing metrics PSNR, SSIM, and MAE.
We also report the Naturalness Image Quality (NIQE) met-
ric of the output deblurred images with respect to a refer-
ence model derived from the DP GT images. As shown
in Table 1, our method achieves the state-of-the-art results

for all metrics compared to other recent single-image defo-
cus deblurring methods. Furthermore, MDP and DPDNet
(single) have much lower inference time—that is, >1,200×
faster compared to others.

Though motion blur leads to image blur too, as defocus
blur does, the physical formation and consequently the ap-
pearance of the resultant blur are different. This was noted
in [2], and we found a significant degradation on the accu-
racy of methods focused on motion blur [21, 22, 29, 31, 38]
when they are applied to defocus blur; for example, Tao et
al.’s method [31] for motion deblurring achieves an average
PSNR of 20.12dB when it is evaluated on the Canon DP
deblurring test set [2], which is significantly lower than all
other defocus deblurring methods shown in Table 1.

In Table 1, we reported the results of the DP-based
method (i.e., DPDNet) [2] trained on single input. For
the sake of completeness, we also compared our method
against this method when it is fed with real DP data as in-
put. Table 2 shows this comparison. As can be seen, our
method achieves higher PSNR and MAE but lower SSIM
compared to DPDNet [2], while our method is more practi-
cal as it requires only single-input images compared to the
DPDNet [2], which requires accessing the two DP images at
the inference phase. Recall that DPDNet cannot be trained
on our DLDP dataset as it is unpaired and does not have
the corresponding GT all-in-focus image. This point is a
central strength of our approach, as the use of unpaired DP
images enables capturing a much larger dataset for training,
thereby making the learning process more efficient.

Qualitative results Our method achieves better qualita-
tive results when compared with several existing single-
image defocus deblurring methods (as shown in Fig. 1).
We provide additional qualitative comparisons in Fig. 5,
where we compare our results against the results of the
EBDB [12], DMENet [15], and the DPDNet (single) [2]
methods. Fig. 5 shows that our method achieves results that
are arguably visually superior to the other methods. Ad-
ditional results on other cameras are also available in the
supplementary material.

4.3. Ablation study

As explained in Sec. 3, our method is a multi-task frame-
work that is suitable not only for reducing defocus blur but
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(a) Input
PSNR: 20.68 PSNR: 23.86 PSNR: 24.63 PSNR: 22.97 

(b) EBDB [12]
PSNR: 20.68 PSNR: 24.06 PSNR: 23.93 PSNR:  22.64

(c) DMENet [15]
PSNR: 21.35 PSNR: 24.74 PSNR: 25.47 PSNR: 24.69

(d) DPDNet (single) [2]
PSNR: 22.73 PSNR: 25.32 PSNR:  26.78 PSNR: 25.22

(e) Ours

(f) Ground truth

Figure 5: Qualitative comparisons with other single-image defocus deblurring methods on the test set of the Canon DP
dataset [2]. We compare our results with the following single-image defocus deblurring methods: EBDB [12], DMENet [15],
and DPDNet (single) [2]. Note that DPDNet was originally introduced to use DP images as input, but the authors in [2] also
provided the same model trained on a single image, denoted as DPDNet (single). Our method produces the best quantitative
and arguably qualitative results.
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Figure 6: Our novel NIMAT effect. Aesthetically pleasing image motion produced by our multi-view synthesis. The first two
input images were taken from the Canon DP deblurring dataset [2], while the others are from Flickr. Note: the images are
animated; click on the image to start the animation. It is recommended to open this PDF in Adobe Acrobat Reader to
work properly.

Table 3: Ablation study to demonstrate the effectiveness of
our DP-based loss terms and multi-task training. Results are
on the Canon DP deblurring dataset [2]. Note that the LC

and LD are not applicable (N/A) to the single task defocus
deblurring as it does not predict the DP views.

Method Defocus deblurring DP-pixel synthesis
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Single-task w/o LC and LD 24.34 0.747 37.05 0.953
Single-task w/ LC and LD N/A N/A 38.23 0.962
Multi-task w/o LC and LD 24.81 0.750 38.01 0.957
Multi-task w/ LC and LD 25.35 0.763 39.17 0.973

Table 4: Reflection removal quantitative results on the
dataset proposed in [26]. When using our synthetic DP
views, the dual-pixel reflection removal (DPRR) method
[26] achieves on-par results compared with using real DP
views, which makes the DPRR method applicable with the
absence of real DP data.

Single-image Non-single-image
Method PSNR Method PSNR
ZN18 [36] 15.57 LB13 [18] 16.12
YG18 [34] 16.49 GC14 [10] 16.02
DPRR [26] (ours) 19.32 DPRR [26] (real DP) 19.45

also for predicting DP views of the input single image. Our
multi-task framework allows our method to improve the re-
sults of each task, as they are inherently correlated. Intu-
itively, we can re-design our framework by training a single
model for each task separately. Table 3 shows the results
of training a single model (with approximately the same ca-
pacity of our multi-task framework) on each task separately.
Table 3 also shows the results of training both single and
multi-task frameworks with and without our DP-based loss
functions introduced in Sec. 3.2. As shown, our multi-task
framework with our introduced loss functions achieves the
best results. Supplementary material provides an additional
ablation study on our design of the multi-task architecture.

Input image Reflection layer 
(real DP)

Background layer
(real DP)

Reflection layer 
(our synth. DP)

Background layer
(our synth. DP)

Ground truth

PSNR: 16.27 PSNR: 20.26

PSNR: 20.04

Figure 7: Our synthetic DP views can be used as input for
DP-based reflection removal of [26], and are able to produce
results on par with those using real DP data.

4.4. DP-view synthesis and application

An interesting side effect of our multi-task network is
the ability to perform view synthesis. For instance, we can
generate an aesthetically realistic image motion by synthe-
sizing a multi-view version of a given single image. As
discussed in Sec. 2, the DP two sub-aperture views of the
scene depend on the sensor’s orientation and, in this paper,
our DLDP dataset contains left/right DP pairs, and conse-
quently our network synthesizes the horizontal DP dispar-
ity. We can synthesize additional views with different “DP
disparity” by rotating the input image before feeding it to
our network by a 45◦ clockwise step three times (i.e., 45◦,
90◦, 135◦). This allows us to produce a smooth image mo-
tion from the reconstructed eight views as shown in Fig. 6.
We refer to this DP-based view synthesis and image motion
as new image motion attribute (NIMAT) effect. See sup-
plementary material for additional examples of our novel
NIMAT effect. Additionally, we provided another applica-
tion of our NIMAT effect in [1]. Specifically, we introduced
a modification on the blur synthesis procedure in the smart-
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phones’ portrait mode to produce a bokeh photo along with
our new NIMAT effect.

As discussed in Sec. 1, DP data has been used for differ-
ent computer vision tasks. Here we show using our synthe-
sized DP views can be leveraged for a DP-based method in
the absence of real DP data. We validate this idea of using
our reconstructed DP views as a proxy to DP data on the re-
flection removal and defocus deblurring tasks. Specifically,
we processed input real DP data and our generated DP data
using the DP-based reflection removal (DPRR) [26] and de-
focus deblurring (DPDNet) [2] methods. As shown in Fig.
7, utilizing our synthetic DP views produces approximately
the same high-quality result as using DPRR [26] on real DP
data. This allows us to achieve better reflection removal
results, while still requiring only a single input image, com-
pared to other methods for reflection removal, as shown in
Table 4. As for DPDNet, Table 2 shows that DPDNet tested
with our generated DP views has on-par results compared
to the one tested with real DP views.

5. Conclusion
We have demonstrated that a DNN trained for the pur-

pose of single-image defocus deblurring can be improved
by incorporating the additional task of synthesizing the two
DP views associated with the input image. One benefit of
this approach is that capturing data for the DP view synthe-
sis task is easy to perform and requires no special capture
setup. This is contrasted with a conventional approach that
requires careful capture of sharp/blurred image pairs for the
deblurring task. This multi-task strategy is able to improve
deblurring results by close to 1dB in terms of PSNR. As an
added benefit, we introduced the novel NIMAT effect and
showed that our DNN is able to perform realistic view syn-
thesis that can be used for tasks such as reflection removal.
Our DLDP dataset, code, and trained models are publicly
available at https://github.com/Abdullah-Ab
uolaim/multi-task-defocus-deblurring-d
ual-pixel-nimat.

Acknowledgments A big thanks to David Ampofo for his
amazing photography skills in collecting the images for our
new DLDP dataset.
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Supplemental Material

This supplementary material provides an ablation study
(Sec. S1) to show the effectiveness of the multi-decoder
stitching at the middle stage vs. other options (i.e., late-
stage and no stitching) of the proposed multi-task dual-pixel
network (MDP). Additional qualitative results are also pro-
vided as follows:

• Fig. S1 provides a qualitative comparison with other
single-image defocus deblurring methods tested on the
Canon DP dataset [2]. These methods are: the just
noticeable defocus blur method (JNB) [28], the edge-
based defocus blur estimation method (EBDB) [12],
the deep defocus map estimation method (DMENet)
[15], and the DPDNet (single) [2].

• Fig. S2 demonstrates qualitatively the deblurring gen-
eralization ability of our proposed MDP. In this ex-
periment, MDP is trained only on the Canon data, but
tested on images from other cameras.

• Figs. S3, S4, S5, and S6 show examples from our
newly captured DLDP dataset along with results of
high-quality reconstructed DP views and image mo-
tion of the synthesized eight views. The eight views
are generated based on the description in Sec. 4.4 of
the main paper, and visualized as image motion by al-
ternating through eight views (i.e., NIMAT effect).

• Fig. S7 shows qualitatively how our proposed MDP is
able to generalize for other cameras. In this experi-
ment, we synthesize eight views from a single-input
image captured by other cameras. The eight views are
generated based on the description in Sec. 4.4 of the
main paper, and visualized as image motion by alter-
nating the eight views (i.e., NIMAT effect).

S1. Ablation study of multi-decoder stitching

In this section, we investigate the utility of having multi-
ple weight sharing stages by introducing a variation of MDP
network with different multi-decoder stitching options: (1)
no stitching that makes the latent space X the only weight
sharing stage, (2) late-stage stitching at the last block, and
(3) the original proposed MDP with middle-stage stitching.
We report the results of MDP variations in Table S1. The
training procedure followed is the same as for all MDP vari-
ations as described in Sec. 4.1 of the main paper.

The results in Table S1 show that middle-stage stitching
achieves the best results as it allows weight sharing at multi-
ple stages compared with the no stitching variation. On the

Table S1: This table reports results on an ablation study per-
formed to examine the effectiveness of the multi-decoder
stitching design for defocus deblurring. Three variations
of our proposed MDP based on three different stitching
options: (1) no stitching, (2) late-stage stitching and (3)
middle-stage stitching. Results reported are on the Canon
DP deblurring dataset [2].

MDP variation PSNR ↑ SSIM ↑ MAE ↓
MDP (no stitching) 25.03 0.757 0.042
MDP (late-stage stitching) 25.16 0.759 0.041
MDP (middle-stage stitching) 25.35 0.763 0.040

other hand, there is a noticeable drop in the deblurring per-
formance when late-stage stitching is applied as the sharp-
ness of the deblurring decoder (i.e., Decs) is affected by
the half-PSF blur present in feature maps of the synthesized
DP views (i.e., Decl and Decr) at this later stage.

10



(a) Input

PSNR: 20.92 PSNR: 22.25 PSNR: 22.97 

PSNR: 24.52 
(b) EBDB [12]

PSNR: 21.29 PSNR: 22.12 PSNR: 22.64 

PSNR: 24.43 
(c) DMENet [15]

PSNR: 22.49 PSNR: 22.88 PSNR: 25.22

PSNR: 26.14 
(d) DPDNet (single) [2]

PSNR: 22.53 PSNR: 23.80 

PSNR: 26.67 

PSNR: 26.57

(e) Ours

(f) Ground truth

Figure S1: Additional qualitative comparisons with other single-image defocus deblurring methods on the test set of the
Canon DP dataset [2]. We compare our results with the following single-image defocus deblurring methods: EBDB [12],
DMENet [15], and DPDNet (single) [2]. Note that DPDNet was originally introduced to use DP images as input, but the
authors in [2] also provided the same model trained on a single image, denoted as DPDNet (single). Our method produces
the best quantitative and arguably best qualitative results.
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(a) Input (b) EBDB [12] (c) DPDNet (single) [2] (d) Ours

Figure S2: Qualitative comparison with single-image defocus deblurring methods on other camera devices (top: Samsung S6,
bottom: Flickr image [erasmusa CC BY-NC 2]. We compare our results with the following single-image defocus deblurring
methods: EBDB [12] and DPDNet (single) [2]. Note that DPDNet was originally introduced to use DP images as input,
but the authors in [2] also provided the same model trained on a single image, denoted as DPDNet (single). Our method
generalizes well for unseen cameras during the training stage and produces arguably best qualitative results compared with
other methods.
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(a) Input (b) Our generated NIMAT effect

(c) Our DP views (d) GT DP views

Figure S3: An example from our DLDP dataset. (a) Input combined image Ic. (b) Our novel NIMAT effect generated using
the proposed MDP. (c) Animated results of our synthesized DP views. (d) Animated ground truth DP views. Our MDP is
able to generate high-quality eight/DP views. Note: (b), (c), and (d) are animated figures; click on the figure to start the
animation. It is recommended to open this PDF in Adobe Acrobat Reader to work properly.
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(a) Input (b) Our generated NIMAT effect

(c) Our DP views (d) GT DP views

Figure S4: Additional example from our DLDP dataset. (a) Input combined image Ic. (b) Our novel NIMAT effect generated
using the proposed MDP. (c) Animated results of our synthesized DP views. (d) Animated ground truth DP views. Our MDP
is able to generate high-quality eight/DP views. Note: (b), (c), and (d) are animated figures; click on the figure to start
the animation. It is recommended to open this PDF in Adobe Acrobat Reader to work properly.
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(a) Input (b) Our generated NIMAT effect

(c) Our DP views (d) GT DP views

Figure S5: Additional example from our DLDP dataset. (a) Input combined image Ic. (b) Our novel NIMAT effect generated
using the proposed MDP. (c) Animated results of our synthesized DP views. (d) Animated ground truth DP views. Our MDP
is able to generate high-quality eight/DP views. Note: (b), (c), and (d) are animated figures; click on the figure to start
the animation. It is recommended to open this PDF in Adobe Acrobat Reader to work properly.
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(a) Input (b) Our generated NIMAT effect

(c) Our DP views (d) GT DP views

Figure S6: Additional example from our DLDP dataset. (a) Input combined image Ic. (b) Our novel NIMAT effect generated
using the proposed MDP. (c) Animated results of our synthesized DP views. (d) Animated ground truth DP views. Our MDP
is able to generate high-quality eight/DP views. Note: (b), (c), and (d) are animated figures; click on the figure to start
the animation. It is recommended to open this PDF in Adobe Acrobat Reader to work properly.
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Figure S7: Our novel NIMAT effect. Multi-view synthesis results of our proposed MDP applied to other cameras than the
Canon 5D DSLR camera (used for training). These results are synthesized from a single input image captured by new camera
devices, in which they do not have the ground truth DP views. Our MDP produces high-quality eight views that can be used
to create an aesthetically pleasing NIMAT effect. Furthermore, these results demonstrate a good generalization ability of our
MDP as it can provide high-quality views from images that are captured by unseen camera device during the training stage.
Note: these images are animated; click on the image to start the animation. It is recommended to open this PDF in
Adobe Acrobat Reader to work properly.
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