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Abstract

The quantified measurement of facial expressiveness is
crucial to analyze human affective behavior at scale. Un-
fortunately, methods for expressiveness quantification at the
video frame-level are largely unexplored, unlike the study of
discrete expression. In this work, we propose an algorithm
that quantifies facial expressiveness using a bounded, con-
tinuous expressiveness score using multimodal facial fea-
tures, such as action units (AUs), landmarks, head pose, and
gaze. The proposed algorithm more heavily weights AUs
with high intensities and large temporal changes. The pro-
posed algorithm can compute the expressiveness in terms
of discrete expression, and can be used to perform tasks
including facial behavior tracking and subjectivity quantifi-
cation in context. Our results on benchmark datasets show
the proposed algorithm is effective in terms of capturing
temporal changes and expressiveness, measuring subjective
differences in context, and extracting useful insight.

1. Introduction
Affective data analytics can be a powerful tool to explore

expressions within context to discover underlying patterns
and relationships between expressions and other variables
of interest (e.g., EEG data [28]). It can be especially useful
since there are two opposing theories about emotional ex-
pressions [45], namely the classical view of emotion, and
the theory of constructed emotion. The classical view of
emotion states that emotions are universal among humans,
whereas the theory of constructed emotion states that emo-
tions come from the complex dynamics of humans and con-
text [5]. It has also been shown that expressiveness is sub-
jective and happens at different frequencies and intensities
[51]. Tools for analyzing expressions allow for insight into
affective data and how it relates to each opposing theory.

While expressiveness has been extensively studied in
psychology [1, 15, 20, 43], fewer works appear in affective
computing. With the increase in large-scale emotion-based
datasets [14, 54], the current manual approach to annotat-
ing expressiveness [35] is not scalable. An automated ap-

proach is needed to objectively, and quickly analyze facial
images to facilitate further advances in affective computing,
especially as the need for data grows with deep learning ap-
proaches to expression [50] and emotion [40] recognition.

The difficulties with manual annotation and the im-
portance of emotional expressiveness [12] motivates us to
quantify facial expressiveness within context (i.e. external
stimuli). This can be useful for more objective scientific
studies with affective data, as well as quantitatively evalu-
ating the differences in expressiveness between people. As
more context-aware affect models [31] are developed, a bet-
ter understanding of context can also be useful. Consider-
ing this, we propose to analyze expressiveness as it is re-
lated to the context (i.e., external stimuli are used to elicit
expressions, which occur at different intensities). We inves-
tigate two publicly available datasets, namely DISFA [39]
and BioVid Pain [49] datasets. We find that context in-
fluences expressiveness and there is a subjective difference
in the intensity and frequency of said expressiveness. The
main contributions of this work are detailed below.

1. A quantified approach to the analysis of facial expres-
siveness is proposed (Fig. 1). It is bounded by a lower
and upper limit of expressiveness, which allows us to
more objectively compare different data.

2. Detailed analysis of the relationship between context
and expressiveness is given on two publicly available
datasets. Our results suggest that different context
can impact the overall expressiveness of subjects. A
Granger causality-based hypothesis between facial ex-
pressiveness and temporal context is also tested.

3. The subjective differences in expressiveness are
demonstrated using the proposed, bounded, quantita-
tive approach. We show that given the same context
(i.e. the subjects are introduced to the same external
stimuli), different subjects have different intensity and
frequency of expressiveness.

4. We demonstrate how the proposed algorithm can be
used to analyze, summarize, and interpret human af-
fective behavior exploiting affect videos and relevant
information to augment affective computer vision.
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Figure 1: Workflow of the proposed method. Given affect videos, multimodal facial features are extracted to use as input to
the proposed QFE algorithm. Then, the computed expressiveness score is used along with other modalities such as context to
perform affective behavior analytics to perform varied tasks. These tasks include, but are not limited to, enhancing emotional
signal analysis, affective hypotheses testing, subjective difference analysis, summarizing affect data, and tell engaging stories.

2. Related Works
Many works in psychology have studied different types

of expressiveness including personal [51], family [24], and
nonverbal [20]. Ogren and Johnson [42] found that the ex-
pressiveness of the primary caregiver of children strongly
relates to their understanding of emotion. Ludwisowski et
al. [38] investigated the relationship of gender and expres-
siveness, with a specific focus on how it can explain dif-
ferent gender interests. They found females were more ex-
pressive than males, which had a chain effect that impacted
artistic interests. Self-report is generally considered accu-
rate, however, subjects may not be truthful on them [21].
Although psychologists rely on self-report [4], having an
automatic approach to analyze the emotional expressiveness
of a subject would offer a fast, objective alternative.

Over the last few decades, researchers studied affect in
numerous ways such as categorical (happy, sad) and dimen-
sional (valence, arousal) [22]. Normally, data were anno-
tated by subjects (self-report) or an observer. One of the
limitations of the dimensional approach is that it provides
comparatively generic information such as unpleasant to
pleasant, which is often used in sentiment modeling [8].
On the other hand, categorical models use classes such as
happy, surprise, or sad [37]. Also, many studies focus on
the presence or absence of each class, not including the in-
tensity of the expression [33]. That being said, there are
recent works focused on these limitations. For example,
Lin et al. [35, 36], and Lei et al. [32] measured the facial
expressiveness at the video sequence level using human an-
notators. Although these results are encouraging, it does
have the limitation that subjective human ratings need to be
collected, which is time-consuming, and lack of expressive-
ness details. Note that the expressiveness is not uniform
throughout the sequence. As pointed out by Gunes et al.
[23], a single label (annotation) may not capture the com-
plexity of expressions. Hence, we need methods that can
measure expressiveness at granular level in multiple dimen-
sions (expressions are likely to be mixed [11] such as joy,
happy, celebration).

Uddin and Canavan [48] proposed TED to quantify fa-
cial expressiveness. While encouraging, there are some
limitations to this approach that motivate our current work

into quantified facial expressiveness. Their proposed ap-
proach can’t measure dynamic changes (e.g. gaze) properly,
and the quantification is unbounded and biased towards the
number of action units, which makes the comparison of dif-
ferent expression data infeasible. Our proposed algorithm
extends state of the art by removing the need for human
annotations and providing a fast and objective measure of
affective expressiveness that can be used to compare multi-
ple datasets. The proposed approach can be used on various
types of expressiveness including but not limited to mixed,
complex, and simultaneous.

3. Quantified Facial Expressiveness
3.1. Quantified Facial Expressiveness Algorithm

There are two major components of facial expressive-
ness: spatial (static) and temporal (dynamic). Spatial ex-
pressiveness is observed in a static video frame in a given
moment in time. This expressiveness can be captured from
the intensities of facial AUs given that AUs have well-
defined meaning based on the classical view of emotion
[17, 29]. AUs are also associated with individual expres-
siveness, personality, stimuli, and self-report [16]. Here,
we compute a spatial, continuous expressiveness score for a
given frame bounded by a lower and upper limit by

σ =
λ

n[exp(1)− 1]

n∑
i=1

[
exp

( xi

xmax

)
− 1

]
(1)

where xi is a vector containing the intensities of AUs of
interest, n is the length of the vector, and xmax is the max-
imum possible intensity of the AUs. By convention, AUs
are coded in between [0, 5] where 0 indicates absence of the
AU, and 5 indicate maximum activated AU intensity. The
motivation behind Eqn. 1 is to more heavily weight the ac-
tive AUs, while bounding the spatial expressiveness score in
between [0, λ], where λ is a constant multiplier. It is impor-
tant to note that Eqn. 1 can only capture the spatial (static)
expressiveness. Hence, to capture temporal expressiveness,
other essential modalities such as facial landmarks, head
pose, and eye gaze are exploited. These modalities don’t
have intensity as AUs do and are generally represented by
coordinates in 2D, 3D space, or orientation and rotation.
Considering this, we track temporal expressiveness from
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these modalities using the following set of equations. First,
we measure the relative change by computing the velocity
for consecutive frames (Eqn. 2).

∆v =
∆x

∆t
(2)

Where ∆x and ∆t represent the change in correspond-
ing values between two frames, and interval between the
frames, respectively. As we want to more heavily weight the
location where major change happens, and approximate the
information in the neighboring frames, we approximate the
temporal expressiveness for each modality using the Taylor
series approximation of the following exponential function:
ey−1, in our case, y = ∆v 1. Note that e∆v−1 is bounded
by [0, 1.718] when 0 ≤ ∆v ≤ 1, which is useful to get
a lower and upper bounded temporal expressiveness score.
Hence, for a given modality, for each pair of points, we ap-
proximate the temporal expressiveness using Eqn. 3, where
n and m are the length of facial feature vector, and the order
to which the approximation is performed, respectively.

texp =

n∑
j=1

[exp(∆v)− 1] =

n∑
j=1

∞∑
m=1

∆vm

m!
(3)

It is then scaled to [0, 1] (Eqn. 4), in which ∆max = 1 given
the feature vectors are scaled between [0, 1].

δ =
texp

n ∗ [exp(∆max)− 1]
(4)

From Eqns. 1 and 4, spatial expressiveness, σ, and temporal
expressiveness, δ, are in between [0, λ], and [0, 1].
3.1.1 Combining spatial and temporal expressiveness
Approach 1. We hypothesize that σ is the main source of
expressiveness following literature of the classical view of
emotion [16], and δ is the auxiliary source of expressive-
ness. Hence, to obtain the quantified facial expressiveness
(QFE) score (τ ) treating σ as the essential source of expres-
siveness, we combine σ and δ by

τ = σ ∗
[
1 +

1

nmod

nmod∑
k=1

λkδk

]
. (5)

Here, λk represents the weight parameter for a given tempo-
ral modality and nmod represents the number of modalities,
which are needed to compute the weighted mean of the tem-
poral modalities. Hence, τ represents the QFE score for a
given face for a given moment in time. Notice that depend-
ing on the λk, we can have τ bounded in between [0, nbλ],
where nb is a scalar. For instance, from Eqn. 5, if we set
λk = 1, then the QFE score is 0 ≤ τ ≤ 2λ.

Approach 2. σ and δ can be combined using the
weighted combination with an additional adjustment term

1ey − 1 = e∆v − 1 =
∑∞

m=1
∆vm

m!
= ∆v + ∆v2

2!
+ ∆v3

3!
+ . . .

as offset, i.e. τwc = wiσ + wi+1δ + ϵ, where wi and wi+1

are the weights and ϵ is an adjustment term. There could be
scenarios where this formulation could be relevant: i) both
spatial and temporal modalities are equally important; ii)
temporal expressiveness is more crucial than spatial expres-
siveness. For instance, in the case of student engagement,
autism spectrum disorder, or driver behavior studies, eye
gaze could be more relevant than other modalities including
AUs [19, 47]. In these scenarios, τwc maybe more effective
and can be computed putting more weight on the gaze.

Approach 3. Instead of using domain knowledge (ap-
proach 1) or manually weighing the modalities (approach
2), the expressiveness score τ can be estimated using a lin-
ear generative model with Gaussian latent variables [10].
Here, we feed all modalities to the generative model as fac-
tors to compute latent facial expressiveness variable (τfa).

We refer the reader to Fig. 5 for the QFE score distribu-
tion across these 3 approaches.
3.2. Affective Behavior Analytics

The quantification of facial expressiveness is essential as
τ provides detailed information captured from both the spa-
tial and temporal expressiveness. Using τ can help perform
affective science and emotion AI research at scale, given
that it has the potential to enhance data collection and hy-
pothesis testing on large-scale datasets, while incorporating
context. This has the potential to augment affective behav-
ior analytics. To demonstrate use cases of the QFE in emo-
tion research and affective computer vision, in this section,
we describe two important affective computing tasks.

Granger Causality between Temporal Context and
Affective Facial Expressions. In emotion research and af-
fective computer vision, stimuli or context are used to elicit
facial expressions on subjects. One natural question that
arises is that for a given stimulus, can we measure whether
the stimulus elicited the facial expression? In this work, we
use the QFE score τ and temporal context to test the re-
lationship between stimuli and facial expressions. We for-
mulate the problem as follows: assuming τ and the stim-
ulus are temporal variables, we use the Granger causality
[44] test to evaluate whether stimulus Granger-causes the
expressiveness. We represent this as GC(c) −→ τ where
c, and GC are the stimulus, and Granger causality, respec-
tively. We can say c Granger-causes τ if the historic values
of stimulus c can predict the future value of the τ . If we find
significant evidence of c Granger-causing τ , then we can
conclude that stimulus is able to elicit facial expressiveness.
This along with the proposed τ has the potential to explore
the relationship between context and expressiveness at scale
to augment emotion research, and evaluate users’ responses
to multimedia content. See Sec. 4 for more details.

Quantifying Subjectivity in Context. Affect is highly
subjective [27, 30, 6] due to factors including, but not lim-
ited to, personality, gender, and culture. To develop auto-
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Figure 2: Sample sequence with computed quantified ex-
pressiveness scores. Top to bottom: frames from the se-
quence, the magnitude of the spatial expressiveness σ, tem-
poral expressiveness: 2D landmarks, headpose orientation,
gaze location and QFE scores: τ, τwc, and τfa. For visual-
ization purposes, temporal expressiveness, and τ, τwc, and
τfa are normalized in between [0, 1]. (Best viewed in color).

mated affect perception models, a sound understanding and
quantitative analysis of subjectivity of facial expressiveness
is required. In this work, we demonstrate how quantified
facial expressiveness can be exploited to quantify the sub-
jective difference among people. To do so, we first compute
the QFE score τ for each subject in a given context, and
then, we perform several statistical measurements to quan-
tify the difference. See Sec. 4 for more details.
4. Experiments and Analysis

As the goal of this work is to quantify facial expres-
siveness in a given moment in time and demonstrate use
cases, we first computed the QFE score using the DISFA
and BioVid pain datasets. Then, we experimented with
two downstream tasks, namely Granger causality analysis
among modalities (e.g. context, QFE score, ground truth),
and subjectivity quantification. These are two important
tasks that are essential in emotion research and applied af-
fective compter vision given the constructed theory on emo-
tion and it’s relationship to context [45, 7] and face as sens-
ing, as well as human subjectivity [27, 30].

Data preparation. To track and extract the facial fea-
tures such as landmarks (LM), headpose (HP), eye gaze (G),
and facial AU intensities, we used OpenFace [2], which
is a publicly available facial behavior analysis tool. Since
LM,HP, and G represent spatial and depth information of
the face and do not have expression intensity in the same

Table 1: Descriptive summary of facial expressiveness
scores τ for given pain level on BioVid pain dataset. Here,
25%P. and 75%P. denote 25th and 75th percentiles. We
can see that with the change in the pain level (PL), τ is not
changing much. Especially PL 1, 2, and 3, which are very
similar in terms of expressiveness. This questions the effi-
cacy of heat as the stimuli to elicit facial pain expressions.
The τ summary also partially explain the failure to pass the
GC test in Table 3. This summary is also aligned with the
findings of Werner et al. [52] as they pointed out the weak
and low facial pain response for PL 1 and 2.

PL Mean SD Min. 25%
P.

Med. 75%
P.

Max.

1 8.2 8.2 0 2.8 5.8 10.8 139.8
2 8.3 8.4 0 2.8 5.8 11.1 144
3 8.6 9.2 0 2.8 5.7 11.4 137.3
4 10.0 10.9 0 3.2 7.0 13.0 146.3

way we have for AUs, we normalized LM,HP, and G in
between [0, 1] using min-max normalization [25].
4.1. Datasets

DISFA dataset [39] is a publicly available spontaneous
facial expression dataset which contains 27 subjects (12 fe-
males, and 15 males) aged in between [18, 50] and ethni-
cally 3 Asian, 1 Black, 21 Caucasian, and 2 Hispanic sub-
jects. The dataset contains frontal face images and action
unit (AU) [16] annotations at frame level, by expert anno-
tators. The dataset contains 27 videos comprising 130, 000
images. A video comprising of 9 segments with different
types of content was used as the stimuli to elicit the ex-
pression. The stimuli video and corresponding frontal face
videos of the subjects are each 242 seconds long.

BioVid pain dataset [49] contains 90 subjects perform-
ing pain and other expressions. The dataset is balanced in
terms of gender. There are three age groups in the dataset
in the age range of [18 − 35], [36 − 50], [51 − 65] years
old. In this work, we used the raw data which is part C in
the data portion and contains 87 subjects. Continuous heat
(temperature) was used as a stimulus to elicit pain expres-
sion, which was self-calibrated by the subjects. The length
of each session is approximately 25 minutes, and in total,
in Part C, is comprised of approximately 3.26 million im-
ages. Aside from the frontal face videos and temperature,
the dataset contains pain labels in between [0, 4], where 0
means no pain, and 4 means maximum pain.

4.2. Quantified Facial Expressiveness
To compute the quantified facial expressiveness (QFE)

score, we computed the spatial expressiveness σ using Eqn.
1. Note that σ can be computed using all available AUs, or
a subset of AUs depending on the context and task. In this
work, we computed the overall spatial (static) expressive-
ness of the human face for a given video frame using AUs:
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Figure 3: Association among candidate temporal facial features. (Best viewed in color and zoomed in).
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Figure 4: Spatial and temporal expressiveness distribution (Best viewed in color and zoomed in).
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Figure 5: QFE score distribution from the 3 approaches.

1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 28, and 45
on both datasets. We also computed spatial expressive-
ness in the context of pain using pain-related AUs [53]:
4, 6, 9, 10, 25 on BioVid. We set λ = 100 to have σ in be-
tween [0, 100]. We then computed the temporal expressive-
ness using landmarks, head pose, and eye gaze using Eqn.
3, where∞ = 20. We found little change with∞ > 20.

Ablation study on frame rate, and temporal modal-
ities (features). This ablation study is performed by sam-
pling data from both DISFA and BioVid pain datasets. We
performed an ablation study on impact of frame rate (FR)
(interval at which we picked two frames to compute the dif-
ference (i.e. ∆x in Eqn. 2)), and facial features used to
capture the temporal expressiveness. More precisely, we
experimented with 2D and 3D landmakrs (LM), orienta-
tion and rotation of headpose (HP), and location and angle
of eye gaze (G), while setting FR to 5, 10, 20, and 40, re-
spectively. We measured the association among the modal-
ities using Spearman rank correlation coefficient (SRCC)
[9], and the obtained results are reported in Fig. 3. We
found that 2D LM, 3D LM, and HP orientation and rota-
tion are moderately positive to strongly correlated. We also
found that gaze location and angle are strongly correlated.
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Figure 6: Example video segments from DISFA showing
subjective differences with same context. Top to bottom:
peak frames from stimulus video, frames from subjects
SN001, SN002, SN003, and QFE scores τ computed for
each subject, respectively. (Best viewed in color).

To keep a balance between modalities and to reduce the re-
dundant computation, we selected 2D LM, HP orientation,
and gaze location to capture the temporal expressiveness in
our algorithm. Fig. 4 depicts the distribution (Estimated us-
ing kernel density estimation (KDE) method) of σ, 2D LM,
HP orientation, and G location setting FR to 5, 10, 20, and
40 in which we can observe that aside from the distribution
of gaze, the shape of distribution did not change much with
the change in FR. Hence, in our downstream tasks, we set
FR to 5 to compute the temporal expressiveness.
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(τpain), and pain level (BioVid). For visualization purposes,
temperature, τpain, and pain level are normalized to [0, 1].
We excluded face images from the visualization following
data usage policy of bioVid pain dataset [49].

The expressiveness score τ is computed using the three
approaches. In approach 1, we computed τ assuming σ
is the major source of expressiveness, and δ as the minor
source of expressiveness; hence, we set λk in Eqn. 5 to
100, 100, and 50 for computing δ using 2D LM (δlm), us-
ing HP orientation (δhp), and using G location (δg), respec-
tively. In approach 2, we computed the weighted combi-
nation of σ, δlm, δhp, and δg in which we set each weight
w = 100, and ϵ = 0. Finally, in approach 3, we used a latent
variable model to estimate the τ feeding all available facial
features. In case of approach 3, we performed Bartlett’s
test to evaluate the factorability of the input facial features,
and Kaiser-Meyer-Olkin (KMO) test to evaluate suitabil-
ity of data for factor analysis on the input features. The
data passed the factorability test with p − value < 0.001,
mean (standard deviation (SD)) KMO = 0.727 ± 0.02,
and p− value < 0.001, mean (SD) KMO = 0.744± 0.02
across four FR settings for DISFA dataset and BioVid pain
dataset, respectively. An example on computed expressive-
ness score is shown in Fig. 2 in which we observe that the
proposed method can capture the facial expressiveness, as
all three approaches were able to measure the overall ex-
pressiveness of the face. In our next set of experiments, we
used the τ computed using approach 1 since we focus on
affective experience/responses for those tasks.

Evaluation via human annotators: To measure the cor-
rectness of the QFE algorithm, we collected ratings from
three annotators (2 males, 1 female), that were given in-
structions on rating before-hand. We used a questionnaire
with three questions. Q1: ’Did the algorithm capture the
expressivity? (response: yes/no)’; Q2: Rate the expres-
siveness score computed by the algorithm in between [1, 5],
where 1 = poor, 2 = weak, 3 = marginal, 4 = very good,
5 = excellent. We also asked the raters to provide their
confidence on assessment (Q3), in between [0, 100], (uncer-
tain to certain). We collected ratings for DISFA and BioVid
datasets. In the case of DISFA, the entire sequence (242
seconds) was rated. In the case of BioVid, we selected 200
random sample (5 seconds long) sequences so that we can
observe how QFE performed for both short and long se-
quences. The obtained rating summary is highlighted in

Table 2: QFE Algorithm evaluation via human annotators.

Datasets Q1 Q2 Confidence

DISFA 1.0 4.6± 0.46 96.7 ± 4.1
BioVid 0.995 ± 0.07 4.58 ± 0.58 96.4 ± 4.1
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Figure 8: Percentage of subjects that responded, in terms of
facial expressivity, to each stimulus in DISFA. Here, human
annotators observed both stimuli video and QFE scores in
parallel to identify whether a given stimulus video segment
caused facial expressiveness on subject.
Table 2. It can also be seen in Fig. 8 that most subjects
responded to the stimuli, however, some subjects did not
responded to ’surprise’, ’disgust’, and ’fear’. Finally, even
though most subjects responded to stimuli, the level and du-
ration of responsiveness (facial expressiveness τ ) was vari-
able and diverse as demonstrated in Sec. 4.3.2. These re-
sults are encouraging, as they show that QFE algorithm cap-
tured the expressiveness since the average assessments for
both datasets falling in between ’very good’ and ’excellent’.

Qualitative comparison with related work. Note that
previous works mostly focused on sequence level expres-
siveness and relied on subjective opinions from annotators
and/or coders. In contrast, this work measures the expres-
siveness at video frame level using domain knowledge from
affective computing. Also, to the best of our knowledge,
there are no public visual affect datasets that were anno-
tated at the video frame level for expressiveness. Consid-
ering this, a quantitative comparison with previous works
is infeasible. Here, however, we discuss a qualitative com-
parison of the work from Uddin and Canavan [48], which
also computed an expressiveness score at video frame level.
While this work is similar to ours, there are some differ-
ences including no bounds, the results are skewed towards
the total number of AUs, and it lacks the ability to com-
pare among different categories of expressions (e.g. happy,
pain). The proposed algorithm addresses these limitations
by providing an unbiased (toward # of AUs) lower and up-
per bounded expressiveness score. This is essential for a
measurement scale, so we can perceive the relative impor-
tance of the expressiveness of a given frame.

4.3. Affective Behavior Analytics
4.3.1 Granger causality between context and ground

truth, and between context and QFE score
We hypothesize that context will elicit facial expression
since during data collection, in the BioVid pain dataset,
temperature was used to elicit pain experience. We formu-
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Table 3: Percentage (%) of video segments for which temperature Granger-caused ground-truth pain level (PL), and facial
pain expressiveness (τpain). We set the significance level α to 0.05. PVSP = percentage of video segment passed.

Lag GC (temperature) −→ PL GC (temperature) −→ τpain

Time
(sec.)

# of
frames

PVSP
LR

test χ2

PVSP
params
F test

PVSP
SSR
χ2

PVSP
SSR F
test F

ALL PVSP
LR

test χ2

PVSP
params
F test

PVSP
SSR
χ2

PVSP
SSR F
test F

ALL

1 5 50.8 47.8 52.8 47.8 47.8 11.0 10.0 11.0 10.0 10.0
2 10 87.7 82.8 89.3 82.8 82.8 16.0 14.0 17.0 14.0 14.0
5 25 100.0 100.0 100.0 100.0 100.0 33.0 21.0 39.0 21.0 21.0
7 35 100.0 100.0 100.0 100.0 100.0 46.0 23.0 57.0 23.0 23.0
10 50 100.0 99.4 100.0 99.4 99.4 67.0 15.0 80.0 15.0 15.0

late this as a Granger causality (GC) test in which we use
the temperature to test whether temperature Granger-causes
facial expressiveness (τ ). We also tested the hypothesis
that temperature Granger-causes the ground truth pain level.
Note that temperature, pain level (PL), and QFE score τ for
pain expression are modeled as temporal variables (Fig. 7).

Data preparation. To test the hypotheses, we ex-
tracted one-minute-long video segments from the BioVid
pain dataset, resulting in 1740 video segments from 87 sub-
jects. Then, we computed the QFE score for pain expres-
sion (τpain) using the AUs that are associated with the pain
expression (AUs: 4, 6, 9, 10, 25) [53]. For each temporal
variable, to make the variable stationary, we computed the
difference between the consecutive values, and then, we
performed an Augmented Dickey-Fuller (AD-Fuller) test
[55] to check whether the temporal variables are station-
ary or not, and found that all three variables passed the
test. Then, we performed: GC(temperature) −→ PL
(i.e. temperature Granger-causes ground truth pain level);
GC(temperature) −→ τpain (i.e. temperature Granger-
causes facial pain expressiveness). We also performed an
ablation study on the temporal history of the temperature us-
ing a lag ranged in between [1, 10] seconds with an interval
of 1 second. For fair evaluation, we performed four differ-
ent statistical tests: likelihood-ratio (LR) χ2 test, residual
sum of squares (SSR) based χ2 test, parameters (params)
F test, and SSR based F test. We reported the percentage
of video segments that passed each test, separately and the
percentage of segments that passed all four tests (ALL). It
is important to note that we set the significance level α to
0.05.

Table 3 highlights the percentages of the video segments
that passed the tests. We can infer from Table 3 that in case
of ALL, temperature Granger-caused the ground truth pain
level (PL) in between [47%, 100%] of the video segments,
while temperature Granger-caused the facial expressiveness
in between [10%, 23%] of the video segments. A lag of tem-
perature in between [5, 10] seconds was useful to predict the
pain level and facial pain experience, which indicates ap-
plying heat for a longer time may induce a painful expres-

sion. As the temperature was self-calibrated by subjects for
their own pain tolerance level, the strong predictive power
of temperature towards PL is reasonable.

Per our hypothesis, we should observe high facial pain
expressiveness when the temperature is high, however,
based on the summary of τpain in Table 1 and the high-
lighted results in Table 3, we did not observe that in the
collected affect. In Fig. 7, we can see there is a strong re-
lationship between pain level and temperature. However,
even though we expect to observe facial pain expression
with a change of temperature, we rarely observed that in this
sequence. Considering this, analyzing expression on this
dataset may not be reliable as it will give less insight into
the pain level. Our results suggest that analyzing tempera-
ture could be a better solution towards perceiving pain (i.e.
context is needed). Alternatively, this could be explained
by inappropriate affect [26], where the subject’s expression
does not match the scenario. In our experiments, this would
mean the subjects felt pain due to the temperature, however,
they did not show a painful facial expression which can be
validated by the construction theory of emotion [6].
4.3.2 Subjective Difference Analysis
We also conducted experiments to quantify subjectivity in
terms of expression in context using DISFA. An example
subjective difference is shown in Fig. 6 from which we
can observe that SN002 is more expressive than SN001, and
SN003 is more expressive than SN002. The subject-specific
distribution of the natural logarithm of the computed over-
all expressiveness score τ on DISFA is shown in Fig. 9.
Based on the individual expressiveness distribution, we can
say that people are quite different in terms of expressing
themselves even though the context was the same.

We measured subjective differences using four met-
rics: mean absolute-relative percentage error (MARPE),
dynamic time warping (DTW) distance [41], SRCC, and
concordence correlation coefficient (CCC) [34]. MARPE
is defined as MARPE = 1

nf

∑nf

i=1

∣∣∣x−y
x

∣∣∣ ∗ 100, where
x and y are QFE scores computed from two subjects, and
nf is the number of frames. We computed MARPE, DTW
distance, SRCC, and CCC across all subjects for all com-
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Figure 9: Facial expressiveness distribution across subjects.
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Figure 11: Heatmap representation of the quantified sub-
jective differences by cross-referencing subjects in DISFA
dataset. Here, higher MARPE, higher DTW distance, lower
SRCC, lower CCC indicate higher subjective difference.

binations. Then, using the KDE [46] method, we esti-
mated the distribution of the quantified subjectivity for each
metric (Fig. 10). We also computed the mean and stan-
dard deviation (SD) of each metric, and obtained MARPE
= 122.4%±130%, DTW distance = 93.13±35.24, SRCC
= 0.43 ± 0.22, and CCC = 0.35 ± 0.2. Here, high SD in-
dicates high subject variability in terms of expressiveness.

In Fig. 11, a cross-reference among subjects in terms of
MARPE, DTW distance, SRCC, and CCC is shown. From
the MARPE, we can infer that some subjects were more
expressive than others, with a high margin. From SRCC
and CCC, we can say that some subjects had high similar-
ity of expressiveness compared to the others. Notice that
CCC score is comparatively lower which can be explained,
in part, as CCC looks for consistency in addition to the sim-
ilarity in temporal sequences. It is important to evaluate
these different metrics, as they conveyed different infor-
mation (see Fig. 11). Based on our observation, subjects
were not only different in terms of expressiveness but there
were also differences in terms of lag and delay. To be pre-
cise, some subjects begin their expressions earlier, and had a
longer duration, while others did not. For example, subject
SN001, in DISFA (Fig. 6), was noticeably different from
the rest of the subjects. When frame IDs were in between
[1000, 1100], subject SN002 was likely to be surprised and
shocked while subject SN003 was likely to be confused, and
subject SN001 was likely to be neutral in terms of expres-
sions. Hence, we measured statistical significance along
with the SRCC, and we found that SN001 was correlated
with negative to random chance to subjects SN006, SN023,
SN021, SN007, SN009, SN010, SN011, SN024, SN012,
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Figure 12: Simulating influence of noise and anomaly
incorporated from automated feature extraction models.
(SD = standard deviation).

SN025, SN026, SN027, SN028, SN030, and SN031. In ad-
dition, SN029 was significantly different from the SN005
and SN016. The rest of the subjects (25) showed moder-
ately positive to strong similarity (p− value < 0.05), indi-
cating that context (stimuli) was effective at inducing affec-
tive facial expressions (Figs. 8 and 10c). To the best of our
knowledge, this is the first work to show these findings. We
encourage the use of them as a baseline for the quantifica-
tion of subjectivity of facial expressions in DISFA.
5. Discussion, Limitations and Future Work

An interesting direction, of this work, is the incorpora-
tion of dimensional models of expressions (e.g., valence,
arousal) [3, 11]. This could give us a better view of the ex-
pressiveness. Along with this, while OpenFace was used
for feature extraction, the proposed approach is not lim-
ited to this, as other methods can be used such as AFAR
[18]. An investigation into which automated tool is best
could be beneficial to the field, as automated prediction of
features could introduce noise and anomalies into QFE. To
evaluate this, we also simulated the influence of the pres-
ence of noise and anomalies on δ and σ. More formally,
Dns = D ∗ (1 + ns);ns ←− random(0, 0.05); where D
is the original data, and ns is the noise generated from nor-
mal distribution, and Dns is generated noisy data (original
+ noise). To simulate anomalies, D0.02a = D0.02 ∗a; a←−
random(0, 2); we made only 2% of the sample anomalous,
and replaced those 2% original samples with D0.02a to get
anomalous data (original + anomaly) Da. As can be seen in
Fig. 12, noise and anomalies negatively influence the QFE
scores. A possible way to mitigate this limitation is pre-
processing the extracted features before computing QFE.
For instance, in case of σ, the influence of outliers can be
reduced using the fact that 0 <= AUintensities <= 5. To
handle noise and outliers, we can leverage the confidence
of the feature extraction models to deal with poorly ex-
tracted features. For instance, OpenFace outputs face de-
tection probabilities, which can be used to pre-process data
and mitigate noise and anomalies. Along with this, anomaly
detection techniques can be used [13].
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