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Abstract

Single-image room layout reconstruction aims to recon-
struct the enclosed 3D structure of a room from a single im-
age. Most previous work relies on the cuboid shape prior.
This paper considers a more general indoor assumption,
i.e., the room layout consists of a single ceiling, a single
floor, and several vertical walls. To this end, we first em-
ploy Convolutional Neural Networks to detect planes and
vertical lines between adjacent walls. Meanwhile, estimat-
ing the 3D parameters for each plane. Then, a simple yet
effective geometric reasoning method is adopted to achieve
room layout reconstruction. Furthermore, we optimize the
3D plane parameters to reconstruct a geometrically consis-
tent room layout between planes and lines. The experimen-
tal results on public datasets validate the effectiveness and
efficiency of our method.

1. Introduction

Room layout estimation aims to reconstruct the enclosed
structure of an indoor scene, consisting of walls, ceiling,
and floor (Figure 1). Estimating a 3D room layout from a
single image plays a vital role in many applications such
as robotics, Virtual Reality (VR), and Augmented Reality
(AR).

In an early learning-based attempt, Hedau et al. [6] as-
sume a simple cuboid model for the room structure (ceiling,
floor, and three walls). Zhang et al. [40] further define 11
types of cuboid-shape layouts to cover most of the possible
situations under typical camera poses. Almost all existing
methods [2, 6, 7, 13, 19, 24, 25, 26, 37, 42] follow these two
cuboid-based definitions [6, 40] of the room layout, thereby
being not flexible enough to handle variations in the real-
world scenario.

*Equal contributions.
†This work was done when Yang Cheng was a student at UESTC.
‡Corresponding author.

Input image 2D room layout

Depth map 3D room model
Figure 1. This paper tackles the room layout reconstruction from a
single RGB image without cuboid-shape prior or Manhattan World
assumption.

Recent approaches [9, 29] attempt to relax these assump-
tions by casting room layout estimation as a plane detec-
tion problem. For example, Planar R-CNN [9] modifies
Faster R-CNN [23] to detects 3D planes and Render-and-
Compare (in short, RaC) [29] builds upon the advanced
plane detection method PlaneRCNN [17]. To correctly infer
room layout with relaxed assumptions, two core challenges
must be addressed properly. One challenge is how to in-
fer the connectivity relations between planes in 3D space.
Planar R-CNN [9] does not reason such relation and only
reconstructs the piece-wise planar surfaces. RaC [29] de-
fines a constrained discrete optimization problem to rea-
son the relations. However, the optimization step is com-
putationally expensive and maybe less robust due to the
hand-crafted heuristics. The other challenge is how to deal
with the occlusions, i.e., two adjacent walls in 2D space
may be physically disconnected in 3D space. Planar R-
CNN [9] directly uses a bounding box to locate the bound-
ary of each plane coarsely. RaC [29] adopts RANSAC algo-
rithm to fit the occlusion line to the points with the largest
depth discrepancy changes in an analysis-by-synthesis fash-
ion. This method requires several iterations, and the hyper-
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parameters of RANSAC algorithm should be carefully cho-
sen.

Hence, to address the above challenges more effectively
and efficiently, we assume that the room layout consists of a
single ceiling, a single floor, and several vertical walls. In-
stead of only relying on 3D plane detection results, we in-
troduce the 2D vertical lines of adjacent walls. This allows
us to fully utilize the geometric relationship between planes
and lines to solve the above challenges. Two adjacent walls
in 2D image space are either physically connected or dis-
connected in 3D space: (i) Two physically connected walls
form a vertical line segment in 2D image space. We can
detect the line segment to adjust the 3D plane parameter es-
timations. (ii) Two physically disconnected walls form an
occlusion line. We can directly detect the occlusion line to
bound the planar surface.

To this end, we first train Convolutional Neural Net-
works (CNNs) to detect planes and vertical lines in the input
RGB image. Meanwhile, we also estimate the 3D parame-
ters (i.e., surface normal and offset) for each plane. Then,
we explore the underlying geometric relationship between
planes and lines to achieve room layout reconstruction.
Specifically, we first calculate the intersection line of two
adjacent walls and project it into 2D image space with the
known camera intrinsic matrix. Depending on whether the
projected intersection line lies between two adjacent walls
or not, we classify the geometric relationship of these two
walls as physically connected or disconnected in 3D space.
Furthermore, if two adjacent walls are physically connected
in 3D space, their projected intersection line should align
with the corresponding detected line. Thus, we use the de-
tected line as the geometric cues to optimize the 3D plane
parameters, which enables our method to reconstruct a ge-
ometrically consistent 3D room layout. Otherwise, if two
adjacent walls are not physically connected and the occlu-
sion occurs, we directly use the corresponding detected line
to separate them accurately.

In summary, our contributions are as follows: (i) We
present a simple yet effective framework for 3D room lay-
out reconstruction from a single RGB image. (ii) We pro-
pose to jointly detect 3D planes and vertical lines, and use
vertical lines as complementary cues to assist the layout re-
construction. (iii) Experimental results on two challenging
datasets, namely Structured3D dataset [43] and NYUv2 303
dataset [27, 37], validate the effectiveness and efficiency of
our method.

2. Related Work
Room layout estimation. In the literature, most existing
methods tackle this problem with strict assumptions. Lee
et al. [14] propose “Indoor World” model by combining
the Manhattan World assumption and single-floor single-
ceiling assumption. They could recover the 3D model by

geometric reasoning on the configuration of edges. Hedau
et al. [6] propose to model the room by a parametric box
(cuboid). They generate layout hypotheses by sampling
rays from the detected vanishing points and then select the
best layout hypothesis. The following methods [25, 26, 37]
follow this paradigm and improve this method.

Inspired by the recent success of CNN on semantic
segmentation, several approaches train CNNs to classify
pixels into boundaries [19, 24, 42], surfaces [2], or cor-
ners [13]. Recently, several approaches [9, 29, 38] tackle
the room layout estimation beyond the cuboid shape as-
sumption. Howard-Jenkins et al. [9] leverage advanced
detection methods [23] to detect each plane instance and
then reconstruct the layout from multiple posed images by
a voting scheme. Built upon PlaneRCNN [17], Stekovic
et al. [29] formulate the layout reconstruction as constrained
discrete optimization. However, this method requires sev-
eral seconds to process a single frame, which is very time-
consuming. Zhang et al. [38] propose to regress the plane
parameters and then utilize mean-shift clustering to get the
plane segmentation. However, this method does not take the
occlusion into account. All these methods merely consider
plane cues to achieve reconstruction. In contrast, we jointly
consider planes and lines, and show how the geometric rela-
tionship between them can assist the layout reconstruction.

Due to the limited field-of-view of the standard cam-
era, another line of work [31, 34, 39, 46] proposes to ex-
ploit more contextual information from the panoramic im-
ages. For example, Zou et al. [46] predict the corner maps
and boundary maps directly. Sun et al. [31] propose to
encode the layout as three 1D vectors, including ceiling-
wall boundary, wall-wall boundary, and floor-wall bound-
ary. Yang et al. [34] predict the floorplan probability in the
ceiling view and floor view converted from the panorama.

Single-view planar reconstruction. Single-view piece-
wise planar reconstruction [8] aims to use multiple planes
to represent the scene. Most existing work [1, 3, 20, 36]
proposes to analyze the 2D geometric cues to recover 3D
information, such as line segments, vanishing points. In
contrast, recent CNN-based methods [17, 18, 33, 35] have
been proposed to tackle this problem in a top-down manner
and achieve promising results. Compared to this problem,
the room layout estimation is much more challenging due
to strong occlusions by the foreground objects.

Line segment and wireframe detection. Line segment de-
tection is a classical problem in computer vision. Conven-
tional approaches to this problem involve grouping the low-
level features in the image domain [30] or global accumula-
tion in the Hough domain [5]. Recently, [16] trains deep
networks with the Hough transformation priors to tackle
this problem. Another line of work [10, 41, 45] proposes
wireframe detection, i.e., jointly detecting straight line seg-
ments and how these lines connect to each other. In contrast,
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Figure 2. Pipeline. The network first takes a single RGB image as input and predicts planes and vertical lines. Meanwhile, we also estimate
the 3D plane parameters for each plane. Then, a simple yet effective geometric reasoning method is adopted to reconstruct a geometrically
consistent 3D room layout.

we only focus on a particular type of line segment, i.e., the
vertical lines between adjacent wall planes.

3. Our Method
Our goal is to reconstruct the 3D room layout from a

single RGB image. We first detect planes P = {p1, p2, . . .}
and vertical lines L = {l1, l2, . . .}. Meanwhile, we estimate
the 3D parameters of the planes. Then, a simple yet effec-
tive geometric reasoning method is employed to reconstruct
a geometrically consistent 3D room layout. Figure 2 shows
the overall pipeline of our method.

3.1. Plane and Line Detection

Given an input RGB image I ∈ RH×W×3, we first adopt
HRNet-W32 [32] as our backbone to extract the visual fea-
tures:

F = BACKBONE(I), (1)

where F ∈ RĤ×Ŵ×C . The resolution of the feature map
is 4 times less than that of the input image, i.e., H =
4Ĥ,W = 4Ŵ .

Then, we use different CNN-based heads to detect the
planes, vertical lines between adjacent walls and regress 3D
parameters of planes, respectively.

Planes. Following CenterNet [44], we represent each 2D
plane pi using a bounding box including its center position
ci = (xi, yi) and size si = (wi, hi).

We use three branches to predict a plane center like-
lihood map C ∈ RĤ×Ŵ×3, a center offset map Op ∈
RĤ×Ŵ×2, and a plane size map S ∈ RĤ×Ŵ×2. Each
channel of the center likelihood mapC represents semantic

different categories, i.e., wall, floor, and ceiling. The corre-
sponding ground truths are:

C(u) = exp
(
−‖u− bcc‖2/(2δp2)

)
, (2)

Op(u) =

{
c− u, u = bcc,
0, otherwise,

(3)

S(u) =

{
s, u = bcc,
0, otherwise,

(4)

where u = (ux, uy) is the pixel coordinate on the out-
put map and δp is an object size-adaptive standard devia-
tion [12].

We use the focal loss [15] to supervise the plane center
likelihood map. For other maps, we use the standard L1

loss and only calculate at the plane center locations.
Lines. For a 2D vertical line lj between two adjacent walls,
we represent it by its angle θj of the line inclination and
points Tj lying on the line:

Tj = {ti = (ti,x, ti,y) | ti,y ∈ [ymin, ymax],

ti,y ∈ N, ti,x ∈ R}, (5)

where ymin and ymax represent the upper and lower bounds
along the y-axis in the output map, respectively.

We adopt another three branches to predict a line likeli-
hood map L ∈ RĤ×Ŵ , an offset mapOl ∈ RĤ×Ŵ , and an
orientation mapΘ ∈ RĤ×Ŵ :

L(u) =

{
exp

(
−‖u− btic‖2/(2δl

2
)
)
, uy = ti,y,

0, otherwise,
(6)
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(a) (b) (c) (d)
Figure 3. Layout Reconstruction. (a) The input image. (b) Planes and lines candidates: planes (i.e., p1, p2, p3, pfloor, and pceiling) and lines
(i.e., the intersection line l1 (solid yellow line), the occlusion line l2 (solid red line)). The yellow dotted line is formed by the intersection of
predicted p1 and p2. The red dotted line is formed by the intersection of predicted p2 and p3. R1,2 and R2,3 in the white shading represent
the potential intersection line region of p1 and p2, p2 and p3, respectively. (c) 2D layout segmentation before optimization. (d) 2D layout
segmentation after optimization.

Ol(u) =

{
ti,x − ux, u = btic,
0, otherwise,

(7)

Θ(u) =

{
θj , u = btic,
0, otherwise,

(8)

where δl = 5/6. Specifically, the offset along y-axis is
always 0, so we only predict the offset along the x-axis.

We use the focal loss [15] to supervise the line region
likelihood map. For other maps, we use the standard L1

loss and only calculate at the line locations.

3D plane parameters. To reconstruct the 3D room layout,
we further estimate the 3D parameters for each plane. The
3D plane parameters include its surface normal n ∈ S2 and
offset d. For a 3D point q ∈ R3 lying on the plane, we have
nTq+ d = 0. Let v = [n, d], we predict a plane parameter
map V ∈ RĤ×Ŵ×3 at the plane centers:

V (u) =

{
v, u = bcc,
0, otherwise.

(9)

We use the standard smooth L1 loss [4] to supervise
the learning of the plane parameters. Inspired by PlaneRe-
cover [33] and PlaneAE [35], we also use the standard
smoothL1 loss to supervise the depth map inferred by plane
parameters.

Inference. During inference, we extract plane and line can-
didates from the outputs. Following CenterNet [44], we first
find all peaks (xi, yi) in the likelihood map for each seman-
tic category of the planes. The corresponding offset, bound-
ing box size and 3D plane parameter can be obtained:

{oi,x, oi,y} = Op(xi, yi), (10)
{wi, hi} = S(xi, yi), (11)

v = V (xi, yi). (12)

Then, the bounding box of the detected plane is (xi +
oi,x, yi + oi,y, wi, hi).

For lines, we use the normal form of the line, i.e.,
x cos θ+y sin θ−b = 0. Similarly, we first extract the peaks

(xi, yi) in the likelihood map. The corresponding offset and
line inclination can be obtained:

oi,x = Ol(xi, yi), (13)
θ = Θ(xi, yi). (14)

Then, we obtain b = (xi + oi,x) cos θ + yi sin θ.
We use the non-maximum suppression (NMS) to remove

the duplicated candidates. For planes, we use IoU-based
NMS among all categories. For lines, if they intersect in
the image or the maximal distance along x coordinate with
each row is less than a threshold, we discard the one with
the lower confidence.

3.2. 3D Layout Reconstruction

Once we have detected planes, vertical lines, and 3D pa-
rameters of planes, we further perform geometric reasoning
to reconstruct the 3D room layout under the assumption that
the room layout consists of a single ceiling, a single floor,
and several vertical walls. In such an assumption, any two
non-adjacent walls in image space must be physically dis-
connected in 3D space, so we only need to infer the con-
nectivity relations of the adjacent walls. Once we know the
connectivity relations of all walls, we combine the floor and
the ceiling to achieve reconstruction.

Specifically, the detected planes contain several vertical
walls, a ceiling, and a floor. We first order all walls from
the lowest to the highest by the x-coordinates of plane cen-
ters in image space. Next, we calculate the intersection line
of two adjacent walls by their 3D parameters and project it
into image space with the known camera intrinsic matrix.
Then, we classify the geometric relationship in 3D space
of these two walls into two types: physically connected or
disconnected, depending on whether the projected line lies
between two adjacent walls or not. More specifically, we
define a potential intersection line region by the bounding
boxes of the adjacent walls in image space, as shown in Fig-
ure 3(b). Each potential intersection line region has at most
one detected line, and we choose the one with the highest
confidence when there are multiple detected lines. Due to
space limitations, we refer readers to supplementary mate-
rial for more details.
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If two walls are physically connected in 3D space, we
directly calculate the boundary with their 3D parameters.
Furthermore, we expect to construct a geometrically con-
sistent 3D room layout between detected planes and lines.
We optimize the 3D plane parameters to align the calculated
boundary with the detected intersection line. Specifically,
we construct a list of triplets T = {(pi, lj , pk)} by identi-
fying all detected intersection lines lj , and the wall planes
pi, pk on its two sides. Then, we optimize the predicted 3D
plane parameters (n, d) by the following objective function:

min
n,d

∑
(i,j,k)∈T

‖(ni

di
− nk

dk
)TK−1 − tTj ‖

+α‖ni − ñi‖+ β‖di − d̃i‖
+α‖nk − ñk‖+ β‖dk − d̃k‖,

(15)

where tj = [cos θ, sin θ,−b]T is the detected intersection
line parameter in the homogeneous coordinate, K ∈ R3×3

is the known camera intrinsic matrix, ñ and d̃ are the plane
parameters estimated by the neural network, α and β are
balance weights. In our experiment, we set α = 1 and
β = 0.01. The first term enforces the two connected wall
planes to fit the detected line, and the rest keeps the solution
close to the initial estimated plane parameters. We use L-
BFGS optimization method [21] from the SciPy library to
solve this problem. Figures 3(c) and (d) show the qualitative
comparison with or without the proposed layout optimiza-
tion. As expected, the results with optimization preserve the
boundary of the walls very well.

In contrast, if two walls are physically disconnected, and
the occlusion occurs. Instead of fitting the occlusion line to
the points with the largest depth discrepancy changes [29],
we directly use the detected line as the occlusion line to
handle the occlusion problem. Specifically, when a detected
line is located between two disconnected walls, we regard
it as the occlusion line. However, when failing to detect the
occlusion line, we coarsely locate it by the bounding boxes
of wall planes. Then, same as RaC [29], we also introduce
a virtual plane p, i.e., back-projection of the occlusion line,
defined by the camera center and the occlusion line. Since
the virtual plane passes through the camera center, we ob-
tain the offset d = 0. The surface normal n of the virtual
plane can be obtained as:

n =
KT t

‖KT t‖
. (16)

By introducing the virtual plane passing through the oc-
clusion line, all adjacent walls in the image space are phys-
ically connected in the 3D space. Thus, we directly calcu-
late the boundary of adjacent walls with their 3D parame-
ters. Specifically, we calculate the 3D corner q ∈ R3 of the

room layout by solving a system of linear equations:
nT

i q + di = 0,
nT

j q + dj = 0,
nT

k q + dk = 0,
(17)

where i, j are indices of the two adjacent wall planes, and k
represents either a floor or a ceiling plane.

Then, we obtain the 2D corner p by projecting the 3D
point q to the 2D image space:

p ∼Kq. (18)

4. Experiments
In this section, we conduct experiments to evaluate

the performance of the proposed method over two public
benchmarks: Structured3D dataset [43] and NYUv2 303
dataset [27, 37].

4.1. Implementation Details

We implement our network with PyTorch [22]. The
batch size is set to 24. We use color jittering as data aug-
mentation. For Structure3D dataset, we train the model
for 50 epochs. We use Adam optimizer [11] with learning
rate 1× 10−4 and 5× 10−4 weight decay. The learning
rate is decayed by a factor of 10 at 30th and 40th epoch.
For NYUv2 303 dataset, we adopt the model trained on
Structure3D dataset and fine-tune it on the SUN RGB-D
dataset [28] for 50 epochs. Then, we fine-tune the model
on NYUv2 subset for 10 epochs. The learning rate is set
to 1× 10−4. Since NYUv2 303 dataset is a subset of the
SUN RGB-D dataset, we exclude 101 test images from the
training set.

4.2. Results on Structured3D Dataset

Structured3D dataset [43] is a large-scale photo-realistic
synthetic dataset with ground-truth 3D room structure an-
notations. We divide the dataset at the scene level into
train/validation/test, which contain 3000/250/250 scenes
and 68 096/6579/6280 images. The resolution of input im-
age is 640× 384.

Methods for comparison. We compare our method with
the following two methods: (i) Planar R-CNN [9]: Al-
though Planar R-CNN can reconstruct the piece-wise planar
model from a single image, it does not reason about the ex-
tents of the planar surface, which is vital in the room layout
estimation task. Since the source code of Planar R-CNN is
unavailable, we reimplement it closely following the given
implementation details. (ii) RaC [29]1: We use the plane
detection results by our methods as the input. Additionally,
this method requires plane instance segmentation. To this

1https://github.com/vevenom/RoomLayout3D_RandC
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Input image 2D layout Depth map 3D model 3D model (top-view)
Figure 4. 3D room layout reconstruction results on Structured3D dataset [43]. The ceiling is ignored in the top view of the 3D model. More
reconstruction results can be found in the supplementary material.

Method IoU (%) ↑ PE (%) ↓ EE ↓ RMSE ↓ Runtime (s) ↓

Planar R-CNN [9]† 79.64 7.04 6.58 0.4013 0.11

RaC [29] 76.29 8.07 7.19 0.3465 5.35
Ours (w/o optimization) 79.94 6.40 6.80 0.2827 0.07
Ours 81.40 5.87 5.78 0.2905 0.24

Table 1. Quantitative results on Structured3D dataset [43]. †: our implementation.

end, we further predict the plane parameters for each pixel.
During inference, we compare the pixel-level plane parame-
ters with the instance-level plane parameters to get the plane
instance segmentation. Since the above two methods build
on 3D plane detection results, and the key contribution is the
different post-process steps to reconstruct the room layout
according to the plane detection results, for a fair compari-
son, we use the same plane detection results as our method.

Evaluation metric. Following RaC [29], we adopt four
standard evaluation metrics: (i) IoU: intersection over the
union between the predicted plane layout and the ground
truth, (ii) Pixel Error (PE): pixel-wise error between pre-
dicted 2D plane segmentation and the ground truth, (iii)
Edge Error (EE): the symmetrical Chamfer distance be-
tween predicted layout boundary and the ground truth, (iv)
Root Mean Square Error (RMSE) between the predicted
layout depth map and the ground truth. For the 2D met-
rics (i.e., IoU and PE), we match the predicted plane seg-

mentation to the ground truths. Starting from the largest
ground-truth segmentation, we iteratively find the predicted
segmentation with the highest IoU score. Each ground truth
is only allowed to be matched at most once.

Quantitative evaluation. Table 1 shows the quantitative
results and runtime of all methods. All times are measured
on the same computing platform with an Intel Xeon Gold
6128 @ 3.4GHz (24 cores) and a single NVIDIA TITAN
Xp GPU. As one can see, our proposed method achieves
state-of-the-art performance without optimization. Com-
pared with RaC [29], our method reasons the connectiv-
ity relations between planes and handles with occlusions
through introducing room layout assumption and vertical
line detection, and avoids complex optimization as well as
decreasing the running time from 5.35 s to 0.07 s. Further-
more, when using the proposed layout optimization algo-
rithm to reconstruct a geometrically consistent room lay-
out between planes and lines, our method provides a good
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Input image Planar R-CNN RaC Ours (w/o optimization) Ours Ground truth
Figure 5. Qualitative results on Structured3D dataset [43]. The correspondences are marked in a common color. We highlight the major
differences in the dashed red bounding boxes.

trade-off between accuracy and speed. This clearly demon-
strates the effectiveness of the proposed method.

Qualitative evaluation. Figure 4 shows our 3D room lay-
out reconstruction results for a variety of scenes. The quali-
tative comparisons against existing non-cuboid room layout
estimation methods show in Figure 5. We make the follow-
ing observations: (i) All methods perform well in simple
scenarios (e.g., the first row). (ii) Since we explicitly use de-
tected lines as geometric cues to optimize the room layout,
our results can preserve the boundary of two adjacent walls
well (e.g., the second and third row). (iii) Planar R-CNN
does not reason how the adjacent walls connect and bounds
each plane segmentation by their bounding boxes. As a re-
sult, two adjacent walls may inter-penetrate each other (e.g.,
the third row) or do not touch each other (e.g., the fourth
row). (iv) The carefully designed heuristics of RaC are not
robust in every configuration (e.g., the fifth row). Further-
more, when the number of plane candidates is large, RaC
is very computationally expensive (e.g., about 8 minutes for
the sixth row).

Figure 6 shows our detection results of planes and ver-
tical lines between adjacent walls. Thanks to the advent
of powerful detection technology, we can accurately detect
planes and lines. Meanwhile, we only consider the lines
that locate in the potential intersection line region, which
reduces the false positives, such as texture lines.

Input image Plane detections Line detections
Figure 6. Plane detections and vertical lines detections between
adjacent walls on Structured3D dataset [43]. The lines with red
cross are filtered by the potential intersection line region.
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Input image Ours Ground truth
Figure 7. Qualitative results on NYU 303 dataset [37]. The corre-
spondences are marked in a common color.

Method PE (%) ↓
Schwing et al. [26] 13.66
Zhang et al. [37] 13.94
RoomNet [13]† 12.31
PlaneNet [18] 12.64
Hirzer et al. [7] 8.49

Planar R-CNN [9] 12.19
RaC [29] 13.00
Ours (w/o optimization) 11.25
Ours 10.61

Table 2. Quantitative results on NYUv2 303 dataset [37]. †: The
results are reported by [7].

4.3. Results on NYUv2 303 Dataset

We further evaluate the performance of our approach
on a real but much smaller dataset, i.e., NYUv2 303
dataset [37], which contains 303 images from NYUv2
dataset [27]. The resolution of input image is 640 × 480.
Note that the dataset only provides cuboid-based layout an-
notation (hence evaluation on this dataset may favor cuboid-
based methods).

Quantitative evaluation. Table 2 shows the quantita-
tive comparisons against both cuboid-based and non-cuboid
methods on the NYUv2 303 dataset. To validate our ap-
proach, we follow two recent non-cuboid methods [9, 29]
and use the Hungarian algorithm to match detected planes to
the ground truths. As one can see, our methods outperform
all non-cuboid layout methods and almost all cuboid-based

Input image Ours Ground truth
Figure 8. Failure Cases. The correspondences are marked in a
common color.

methods (with the exception of Hirzer et al. [7]). Neverthe-
less, such cuboid-based methods cannot be applied to the
more extensive and flexible Structured3D dataset.

Qualitative evaluation. Figure 7 shows room layout esti-
mation results on the NYU 303 dataset. The first two ex-
amples show that our approach can predict cuboid-shape
layout even without such an assumption. The last two ex-
amples demonstrate that our method can predict the more
refined correct layouts than the ground truth (cuboids).

4.4. Failure Cases

We show some failure cases of our method in Figure 8.
In the first example, our method mistakenly detects the fore-
ground furniture as the wall. A possible reason is that most
of the wall is occluded by the foreground furniture. In
the second example, our approach fails to detect the floor,
which leads to an inaccurate wall-floor boundary. In the
third example, the ceiling-wall and floor-wall boundaries of
the light pink plane are not precisely localized due to the
inaccurate 3D parameter estimations of the small plane.

5. Conclusion
This paper proposes a simple yet effective 3D room lay-

out reconstruction approach assuming that the room layout
consists of a single ceiling, a single floor, and several verti-
cal walls. Specifically, we first employ CNNs to detect 3D
planes and vertical lines. Then, we adopt a geometric rea-
soning method to achieve the room layout reconstruction.
Finally, to reconstruct a geometrically consistent layout, we
optimize the 3D parameters of the planes to align detected
lines. The proposed method achieves state-of-the-art perfor-
mance on the largest non-cuboid room layout benchmark.
In the future, we will consider introducing more geometric
cues, such as wall-ceiling/wall-floor intersection lines, and
relax the assumption to handle multi-tiered ceilings/floors.

Acknowledgements. We would like to thank Zihan Zhou
and Weixin Luo for valuable comments on this paper.
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