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Abstract

We address representation learning for large-scale
instance-level image retrieval. Apart from backbone, train-
ing pipelines and loss functions, popular approaches have
focused on different spatial pooling and attention mecha-
nisms, which are at the core of learning a powerful global
image representation. There are different forms of attention
according to the interaction of elements of the feature tensor
(local and global) and the dimensions where it is applied
(spatial and channel). Unfortunately, each study addresses
only one or two forms of attention and applies it to different
problems like classification, detection or retrieval.

We present global-local attention module (GLAM),
which is attached at the end of a backbone network and
incorporates all four forms of attention: local and global,
spatial and channel. We obtain a new feature tensor and, by
spatial pooling, we learn a powerful embedding for image
retrieval. Focusing on global descriptors, we provide em-
pirical evidence of the interaction of all forms of attention
and improve the state of the art on standard benchmarks.

1. Introduction
Instance-level image retrieval is at the core of visual rep-

resentation learning and is connected with many problems
of visual recognition and machine learning, for instance
metric learning [30, 26], few-shot learning [42] and unsu-
pervised learning [8]. Many large-scale open datasets [3,
37, 16, 29, 53], and competitions1 have accelerated progress
in instance-level image retrieval, which has been trans-
formed by deep learning [3].

Many studies on instance-level image retrieval focus
on learning features from convolutional neural networks
(CNN), while others focus on re-ranking, for instance by
graph-based methods [11]. The former can be distinguished
according to feature types: local descriptors, reminiscent of
SIFT [27], where an image is mapped to a few hundred vec-
tors; and global descriptors, where an image is mapped to a

1https://www.kaggle.com/c/landmark-retrieval-2020

single vector. In fact, deep learning has brought global de-
scriptors with astounding performance, while allowing effi-
cient search. Our study belongs to this type.

Studies on global descriptors have focused on spatial
pooling [2, 37]. The need for compact, discriminative rep-
resentations that are resistant to clutter has naturally given
rise to spatial attention methods [24, 28]. Different kinds
of attention have been studied in many areas of computer
vision research. There is also channel attention [20, 9]; lo-
cal attention, applied independently to elements of the rep-
resentation (feature map) [54, 25]; global attention, based
on interaction between elements [52, 9]; and combinations
thereof. Unfortunately, each study has been limited to one or
two kinds of attention only; attention is not always learned;
and applications vary.

It is the objective of our work to perform a compre-
hensive study of all forms of attention above, apply them
to instance-level image retrieval and provide a detailed ac-
count of their interaction and impact on performance. As
shown in Figure 1, we collect contextual information from
images with both local and global attention, giving rise to
two parallel network streams. Importantly, each operates
on both spatial locations and feature channels. Local at-
tention is about individual locations and channels; global is
about interaction between locations and between channels.
The extracted information is separately embedded in local
and global attention feature maps, which are combined in a
global-local attention feature map before pooling.

Our contributions can be summarized as follows:

1. We propose a novel network that consists of both
global and local attention for image retrieval. This is
the first study that employs both mechanisms.

2. Each of the global and local attention mechanisms
comprises both spatial and channel attention.

3. Focusing on global descriptors, we provide empirical
evidence of the interaction of all forms of attention and
improve the state of the art on standard benchmarks.
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Figure 1: Our global-local attention module (GLAM) involves both channel and spatial attention, as well as both local atten-
tion (channels/locations weighted independently, based on contextual information obtained by pooling) and global attention
(based on pairwise interaction between channels/locations). As a result, four attention maps are used: local channel (Al

c),
local spatial (Al

s), global channel (Ag
c ) and global spatial (Ag

s). The input feature map F is weighted into local (Fl) and
global (Fg) attention feature maps, which are fused with F to yield the global-local attention feature map Fgl. The diagram
is abstract: The four attention modules are shown in more detail in Figures 2, 3, 4, 5.

2. Related work

Instance-level image retrieval Studies on instance-level
image retrieval can be roughly, but not exclusively, di-
vided into three types: (1) studies on global descriptors
[3, 16, 24, 53, 2, 37]; (2) studies on local descriptors and
geometry-based re-ranking [29, 45, 40, 53]; (3) re-ranking
by graph-based methods [11, 21, 55]. The first two types
of studies focus on the feature representation, while the last
type focuses on re-ranking extracted features.

Studies on global descriptors focus on spatial pooling
of CNN feature maps into vectors, including MAC [38],
SPoC [2], CroW [24], R-MAC [48, 15, 16], GeM [37],
and NetVLAD [1, 25], as well as learning the representa-
tion [3, 15, 16, 36, 37]. Studies before deep learning dom-
inated image retrieval were mostly based on local descrip-
tors like SIFT [27] and bag-of-words representation [32] or
aggregated descriptors like VLAD [22] or ASMK [46]. Lo-
cal descriptors have been revived in deep learning, e.g. with
DELF [29], DELG [5] and ASMK extensions [45, 47].

We focus on learning a global descriptor in this work, be-
cause it is the most efficient in terms of storage and search.
However, our generic attention mechanism produces a fea-
ture tensor and could be applicable to local descriptors as
well, if global pooling were replaced by local feature detec-
tion. Re-ranking methods are complementary to the repre-
sentation and we do not consider them in this work.

Attention Attention mechanisms have been first proposed
in image classification studies focusing on channel at-

METHOD
LOCAL GLOBAL

LRN RET
Spatial Channel Spatial Channel

SENet [20] X X
ECA-Net [51] X X
GCNet [6] X X
CBAM [54] X X X
GE [19] X X
NL-Net [52] X X
AA-Net [4] X X
SAN [59] X X
N3Net [34] X X
A2-Net [9] X X
GSoP [14] X X

OnA [23] X X
AGeM [17] X X
CroW [24] X X X
CRN [25] X X X
DELF [29] X X X
DELG [5] X X X
Tolias et al. [47] X X X
SOLAR [28] X X X

Ours X X X X X X

Table 1: Related work on attention. LRN: learned; RET: ap-
plied to instance-level image retrieval.

tention [20, 51, 6], spatial attention [19] or both, like
CBAM [54]. In image retrieval, CroW [24] also employs
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Figure 2: Local channel attention.

both spatial and channel attention and can be seen as a pre-
cursor of CBAM, but, like other studies of spatial attention
on retrieval [41, 23, 17], it is not learned. CRN [25] ap-
plies spatial attention for feature reweighting and is learned.
Learned spatial attention mechanisms are common for local
descriptors [29, 5, 47].

We call the above methods local attention, in the sense
that elements of the feature tensor (channels / spatial loca-
tions), are weighted independently, based on contextual in-
formation obtained by pooling or learned. By constrast, by
global attention we refer to mechanisms that model inter-
action between elements of the feature tensor, for example
between channels or between locations.

In image classification, non-local neural network (NL-
Net) [52] is maybe the first global attention mechanism, fol-
lowed by similar studies [4, 59, 34]. It is global spatial at-
tention, allowing interaction between any pair of spatial lo-
cations. Similarly, there are studies of global channel atten-
tion, allowing interaction between channels [9, 14]. Global
attention has focused mostly on image recognition and has
been applied to either spatial or channel attention so far, not
both. In image retrieval, SOLAR [28] is a direct application
of the global spatial attention mechanism of [52].

Table 1 attempts to categorize related work on atten-
tion according to whether attention is local or global, spa-
tial or channel, whether it is learned and whether it is ap-
plied to instance-level image retrieval. We observe that all
methods limit to one or two forms of attention only. Of
those studies that focus on image retrieval, many are not
learned [23, 17, 24], and of those that are, some are de-
signed for local descriptors [29, 47].

By contrast, we provide a comprehensive study of all
forms of attention, global and local, spatial and channel, to
obtain a learned representation in the form of a tensor that
can be used in any way. We spatially pool it into a global
descriptor and we study the relative gain of different forms
of attention in image retrieval.
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Figure 3: Local spatial attention. Convolutional layers in
blue implemented by dilated convolutions with kernel size
3× 3 and dilation factors 1, 3, 5.

3. Global-local attention

We design a global-local attention module (GLAM),
which is attached at the end of a backbone network. Figure 1
illustrates its main components. We are given a c × h × w
feature tensor F, where c is the number of channels, and
h×w is the spatial resolution. Local attention collects con-
text from the image and applies pooling to obtain a c×1×1
local channel attention map Al

c and a 1× h×w local spa-
tial attention map Al

s. Global attention allows interaction
between channels, resulting in a c × c global channel at-
tention map Ag

c , and between spatial locations, resulting in
a hw × hw global spatial attention map Ag

s . The feature
maps produced by the two attention streams are combined
with the original one by a learned fusion mechanism into
the global-local attention feature map Fgl before being spa-
tially pooled into a global image descriptor.

3.1. Local attention

We extract an 1D channel and a 2D spatial attention map
to weigh the feature map in the corresponding dimensions.

Local channel attention Following ECA-Net [51], this
attention captures local channel information. As shown in
Figure 2, we are given a c×h×w feature tensor F from our
backbone. We first reduce it to a c× 1× 1 tensor by global
average pooling (GAP). Channel attention is then captured
by a 1D convolution of kernel size k along the channel di-
mension, where k controls the extent of cross-channel inter-
action. This is followed by a sigmoid function, resulting in
the c× 1× 1 local channel attention map Al

c.

Local spatial attention Inspired by the inception mod-
ule [43] and similar to [25], this attention map captures local
spatial information at different scales. As shown in Figure 3,
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Figure 4: Global channel attention.

given the same c × h × w feature tensor F from our back-
bone, we obtain a new tensor F′ with channels reduced to
c′, using a 1× 1 convolution. We then extract local spatial
contextual information using convolutional filters of kernel
size 3× 3, 5× 5, and 7× 7, which are efficiently imple-
mented by 3× 3 dilated convolutions [7, 57] with dilation
parameter 1, 2, and 3 respectively. The resulting features,
along with one obtained by 1× 1 convolution on F′, are
concatenated into a 4c′ × h × w tensor. Finally, we obtain
the 1 × h × w local spatial attention map Al

s by a 1× 1
convolution that reduces the channel dimension to 1.

The middle column of Figure 6 shows heat maps of local
spatial attention, localizing target objects in images.

Local attention feature map We use the local channel
attention map Al

c to weigh F in the channel dimension

Fl
c := F�Al

c + F. (1)

We then use local spatial attention map Al
s to weigh Fl

c

in the spatial dimensions, resulting in the c × h × w local
attention feature map

Fl = Fl
c �Al

s + Fl
c. (2)

Here, A�B denotes an element-wise multiplication of ten-
sors A and B, with broadcasting when one tensor is smaller.
We adopt the choice of applying channel followed by spa-
tial attention from convolutional block attention module
CBAM [54]. However, apart from computing Al

s at differ-
ent scales, both attention maps are obtained from the orig-
inal tensor F rather than sequentially. In addition, both (1)
and (2) include residual connections, while CBAM includes
a single residual connection over both steps.

3.2. Global attention

We extract two matrices capturing global pairwise chan-
nel and spatial interaction to weigh the feature map.

feature map
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Figure 5: Global spatial attention.

Global channel attention We introduce a global channel
attention mechanism that captures global channel interac-
tion. This mechanism is based on the non-local neural net-
work [52], but with the idea of 1D convolution from ECA-
Net [51]. As shown in Figure 4, we are given the c× h×w
feature tensor F from our backbone. We apply GAP and
squeeze spatial dimensions, followed by a 1D convolution
of kernel size k and a sigmoid function, to obtain 1×c query
Qc and key Kc tensors. The value tensor Vc is obtained by
mere reshaping of F to hw×c, without GAP. Next, we form
the outer product of Kc and Qc, followed by softmax over
channels to obtain a c× c global channel attention map

Ag
c = softmax(Kc

>Qc). (3)

Finally, this attention map is multiplied with Vc and the ma-
trix product VcA

g
c is reshaped back to c×h×w to give the

global channel attention feature map Gc. In GSoP [14] and
A2-Net [9], a c× c global channel attention map is obtained
by multiplication of hw × c matrices; (3) is more efficient,
using only an outer product of 1× c vectors.

Global spatial attention Since ordinary convolution ap-
plies only a local neighborhood at a time, it cannot capture
global contextual information. Thus, we apply non-local fil-
tering [52], which is a form of self-attention [49] in the spa-
tial dimensions. As shown in Figure 5, we are given the
same c × h × w feature tensor F from our backbone. By
using three 1×1 convolutions, which reduce channels to c′,
and flattening spatial dimensions to hw, we obtain c′ × hw
query Qs, key Ks, and value Vs tensors, where each col-
umn is a feature vector corresponding to a particular spatial
location. We capture pairwise similarities of these vectors
by matrix multiplication of Ks and Qs, followed by soft-
max over locations to obtain a hw × hw global spatial at-
tention map:

Ag
s = softmax(K>s Qs). (4)
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This attention map is multiplied with Vs and the matrix
product VsA

g
s is reshaped back to c′×h×w by expanding

the spatial dimensions. Finally, using a 1× 1 convolution,
which increases channels back to c, we obtain the c×h×w
global spatial attention feature map Gs.

The right column of Figure 6 shows heat maps for global
spatial attention, localizing target objects in images.

Global attention feature map We use the global channel
attention feature map Fc to weigh F element-wise

Fg
c = F�Gc. (5)

We then use global spatial attention feature map Gs to
weigh Fg

c element-wise, resulting in the c × h × w global
attention feature map

Fg = Fg
c �Gs + Fg

c . (6)

Similarly to Fl in (1) and (2), we apply channel attention
first, followed by spatial attention. However, unlike (1),
there is no residual connection in (5). This choice is sup-
ported by early experiments.

3.3. Global-local attention

Feature fusion As shown in Figure 1, we combine the
local and global attention feature maps, Fl and Fg , with
the original feature F. While concatenation and summation
are common operations for feature combination, we use a
weighted average with weights wl, wg , w respectively, ob-
tained by softmax over three learnable scalar parameters, to
obtain a c× h× w global-local attention feature map

Fgl = wlF
l + wgF

l + wF. (7)

EfficientDet [44] has shown that this is the most effective,
among a number of choices, for fusion of features across
different scales.

Pooling We apply GeM [37], a learnable spatial pooling
mechanism, to feature map Fgl (7), followed by a fully-
connected (FC) layer with dropout and batch normalization.
The final embedding is obtained by `2-normalization.

4. Experiments
4.1. Datasets

Training set There are a number of open landmark
datasets commonly used for training in image retrieval stud-
ies, including neural code (NC) [3], neural code clean (NC-
clean) [16], as well as Google Landmarks v1 (GLDv1) [29]
and v2 (GLDv2) [53]. Table 2 shows relevant statistics.
These datasets can be categorized into noisy and clean. The
clean sets were obtained from the original noisy sets for
more effective training [16, 53]. The original noisy datasets
are much larger, but they have high intra-class variability.

(a) input (b) local (c) global

Figure 6: Local and global spatial attention. Left: input
images. Middle: local spatial attention heat maps. Right:
global spatial attention heat maps. Red (blue) means higher
(lower) attention weight.

Each class can include visually dissimilar images such as
exterior and interior views of a building or landmark, in-
cluding floor plans and paintings inside. The clean datasets
focus on views directly relevant to landmark recognition but
have a much smaller number of images.

Evaluation set and metrics We use four common eval-
uation datasets for landmark image retrieval: Oxford5k
(Ox5k) [32], Paris6k (Par6k) [33], as well as Revisited Ox-
ford (ROxford or ROxf) and Paris (RParis or RPar) [35].
ROxford andRParis are used with and without one million
distractors (R1M) [28] and evaluated using the Medium and
Hard protocols [35]. We evaluate using mean Average Pre-
cision (mAP) and mean precision at 10 (mP@10).

4.2. Implementation details

We train on 8 TITAN RTX 2080Ti GPUs. All models are
pre-trained on ImageNet [39] and implemented in PyTorch
[31]. For fair comparisons, we set a training environment
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Figure 7: Examples of our ranking results. In each row, the first image on the left (pink dotted outline) is a query image with a
target object (red crop box), and the following are the top ranking images for the query. Orange solid outline: positive images
for the query; red solid outline: negative.

similar to the those of compared studies [56, 53, 28, 35]. We
employ ResNet101 [18] as a backbone model. The kernel
size k of ECANet in subsection 3.1 is set to 3. The param-
eter p of GeM in subsection 3.3 is set to 3 and the dimen-
sion d of final embeddings to 512. We adopt ArcFace [10],
a cosine-softmax based loss, with a margin of 0.3. We use
stochastic gradient descent with initial learning rate 10−3,
momentum 0.9 and weight decay 10−5.

We adopt the batch sampling of Yokoo et al. [56] where
mini-batch samples with similar aspect ratios are resized to
a particular size. Here, we use a batch size of 64. For image
augmentation, we apply scaling, random cropping, and var-
ied illumination. At inference, we apply a multi-resolution
representation [16] to query and database images.

Our method is denoted as GLAM (global-local atten-
tion module). Using the backbone model alone is referred
to as baseline. It is compatible with recent models based
on ResNet101-GeM trained with ArcFace [53, 28]. Adding
our local attention (subsection 3.1) to the baseline model is
denoted +local, while adding our global attention (subsec-
tion 3.2) is denoted +global. Since we focus on representa-
tion learning, we do not consider post-processing methods
like geometry-based re-ranking [29, 40, 53] or graph-based
re-ranking [11, 21, 55].

4.3. Benchmarking

Noisy vs. clean training sets We begin by training our
best model (baseline+local+global) on all training sets of
Table 2, except NC-noisy because some images are cur-
rently unavailable. As shown in Table 3, even though

TRAIN SET #IMAGES #CLASSES

NC-noisy 213,678 672
NC-clean 27,965 581
SfM-120k 117,369 713
GLDv1-noisy 1,225,029 14, 951
GLDv2-noisy 4,132,914 203,094
GLDv2-clean 1,580,470 81,313

Table 2: Statistics of different training sets.

METHOD TRAIN SET DIM OXF5K PAR6K
RMEDIUM RHARD

ROxfRParROxfRPar

GeM-Siamese [37, 35] SfM-120k 2048 87.8 92.7 64.7 77.2 38.5 56.3
SOLAR [28] GLDv1-noisy 2048 – – 69.9 81.6 47.9 64.5
GLDv2 [53] GLDv2-clean 2048 – – 74.2 84.9 51.6 70.3

GLAM (Ours) NC-clean 512 77.8 85.8 51.6 68.1 20.9 44.7
GLDv1-noisy 512 92.8 95.0 73.7 83.5 49.8 69.4
GLDv2-noisy 512 93.3 95.3 75.7 86.0 53.1 73.8
GLDv2-clean 512 94.2 95.6 78.6 88.5 60.2 76.8

Table 3: mAP comparison of our best model (base-
line+local+global) trained on different training sets against
[53, 28]. All models use ResNet101-GeM. Red: best results.
Blue: GLAM higher than SOLAR [28] on GLDv1-noisy.

GLDv2-noisy has 2.6 times more images than GLDv2-
clean, the latter is superior by a large margin. This shows
that, in training, a cleaner dataset can be more important
than a larger one. By contrast, NC-clean has the worst
performance despite being clean, aparently because it is

6



METHOD TRAIN SET DIM
BASE MEDIUM HARD

Ox5k Par6k ROxf +R1M RPar +R1M ROxf +R1M RPar +R1M
mAP mAP mAP mP mAP mP mAP mP mAP mP mAP mP mAP mP mAP mP mAP mP

SPoC-V16 [2, 35] [O] 512 53.1∗ – 38.0 54.6 17.1 33.3 59.8 93.0 30.3 83.0 11.4 20.9 0.9 2.9 32.4 69.7 7.6 30.6
SPoC-R101 [35] [O] 2048 – – 39.8 61.0 21.5 40.4 69.2 96.7 41.6 92.0 12.4 23.8 2.8 5.6 44.7 78.0 15.3 54.4
CroW-V16 [24, 35] [O] 512 70.8 79.7 41.4 58.8 22.5 40.5 62.9 94.4 34.1 87.1 13.9 25.7 3.0 6.6 36.9 77.9 10.3 45.1
CroW-R101 [35] [O] 2048 – – 42.4 61.9 21.2 39.4 70.4 97.1 42.7 92.9 13.3 27.7 3.3 9.3 47.2 83.6 16.3 61.6
MAC-V16-Siamese [36, 35] [O] 512 80.0 82.9 37.8 57.8 21.8 39.7 59.2 93.3 33.6 87.1 14.6 27.0 7.4 11.9 35.9 78.4 13.2 54.7
MAC-R101-Siamese [35] [O] 2048 – – 41.7 65.0 24.2 43.7 66.2 96.4 40.8 93.0 18.0 32.9 5.7 14.4 44.1 86.3 18.2 67.7
RMAC-V16-Siamese [36, 35] [O] 512 80.1 85.0 42.5 62.8 21.7 40.3 66.2 95.4 39.9 88.9 12.0 26.1 1.7 5.8 40.9 77.1 14.8 54.0
RMAC-R101-Siamese [35] [O] 2048 – – 49.8 68.9 29.2 48.9 74.0 97.7 49.3 93.7 18.5 32.2 4.5 13.0 52.1 87.1 21.3 67.4
RMAC-R101-Triplet [16, 35] NC-clean 2048 86.1 94.5 60.9 78.1 39.3 62.1 78.9 96.9 54.8 93.9 32.4 50.0 12.5 24.9 59.4 86.1 28.0 70.0
GeM-R101-Siamese [37, 35] SfM-120k 2048 87.8 92.7 64.7 84.7 45.2 71.7 77.2 98.1 52.3 95.3 38.5 53.0 19.9 34.9 56.3 89.1 24.7 73.3
AGeM-R101-Siamese [17] SfM-120k 2048 – – 67.0 – – – 78.1 – – – 40.7 – – – 57.3 – – –
SOLAR-GeM-R101-Triplet/SOS [28] GLDv1-noisy 2048 – – 69.9 86.7 53.5 76.7 81.6 97.1 59.2 94.9 47.9 63.0 29.9 48.9 64.5 93.0 33.4 81.6
DELG-GeM-R101-ArcFace [5] GLDv1-noisy 2048 – – 73.2 – 54.8 – 82.4 – 61.8 – 51.2 – 30.3 – 64.7 – 35.5 –
GeM-R101-ArcFace [53] GLDv2-clean 2048 – – 74.2 – – – 84.9 – – – 51.6 – – – 70.3 – – –

GLAM-GeM-R101-ArcFace baseline GLDv2-clean 512 91.9 94.5 72.8 86.7 58.1 78.2 84.2 95.9 63.9 93.3 49.9 62.1 31.6 49.7 69.7 88.4 37.7 73.7
+local GLDv2-clean 512 91.2 95.4 73.7 86.2 60.5 77.4 86.5 95.6 68.0 93.9 52.6 65.3 36.1 55.6 73.7 89.3 44.7 79.1
+global GLDv2-clean 512 92.3 95.3 77.2 87.0 63.8 79.3 86.7 95.4 67.8 93.7 57.4 69.6 38.7 57.9 75.0 89.4 45.0 77.0
+global+local GLDv2-clean 512 94.2 95.6 78.6 88.2 68.0 82.4 88.5 97.0 73.5 94.9 60.2 72.9 43.5 62.1 76.8 93.4 53.1 84.0

Table 4: mAP comparison of our GLAM against SOTA methods based on global descriptors without re-ranking. V16:
VGG16; R101: ResNet101. [O]: Off-the-shelf (pre-trained on ImageNet). ∗: dimension d = 256 [2]. mP: mP@10. Red:
best results. Black bold: best previous methods. Blue: GLAM higher than previous methods. Weyand et al. [53] is the only
model other than ours trained on GLDv2-clean, while [28] is trained on GLDv1-noisy and compared in Table 3.

too small. To achieve best possible performance, we use
GLDv2-clean as a training set in the remaining experiments.

Comparisons on same training set It is common to com-
pare methods regardless of training sets as more become
available, e.g., [35, 28]. Since GLDv2-clean is relatively
new, Weyand et al. [53], which introduced the dataset, is the
only study that has trained the same backbone with the same
settings (ResNet101-GeM with ArcFace) on GLDv2-clean.
Our baseline is lower than [53], because our dimensinality is
512, while other models based on ResNet101 use 2048. Yet,
Table 3 shows that our best model trained on GLDv2-clean
outperforms [53] by a large margin. But the most impor-
tant comparison is with SOLAR [28], also based on self-
attention, which has trained ResNet101-GeM on GLDv1-
noisy. On this training set, our best model clearly outper-
forms [28] despite lower dimensionality.

Comparison with state of the art Table 4 shows the
performance of four variants of our model, i.e. baseline
with or without local/global attention, and compares them
against state-of-the-art (SOTA) methods based on global de-
scriptors without re-ranking on the complete set of bench-
marks, including distractors. Both local and global atten-
tion bring significant gain over the baseline. The effect
of global is stronger, while the gain of the two is addi-
tive in the combination. The best results are achieved by
the global-local attention network (baseline+global+local).
With this model, we outperform previous best methods
on most benchmarks except mP@10 on RParis (medium)
and RParis+R1M (medium), where we are outperformed
by [37, 35]. These results demonstrate that our approach is
effective for landmark image retrieval. Figure 7 shows some

METHOD OXF5K PAR6K
RMEDIUM RHARD

ROxf RPar ROxf RPar

GLAM baseline 91.9 94.5 72.8 84.2 49.9 69.7
+local-channel 91.3 95.3 72.2 85.8 48.3 73.1
+local-spatial 91.0 95.1 72.1 85.3 48.3 71.9
+local 91.2 95.4 73.7 86.5 52.6 75.0
+global-channel 92.5 94.4 73.3 84.4 49.8 70.1
+global-spatial 92.4 95.1 73.2 86.3 50.0 72.7
+global 92.3 95.3 77.2 86.7 57.4 75.0
+global+local 94.2 95.6 78.6 88.5 60.2 76.8

Table 5: mAP comparison of spatial and channel variants
of our local (+local, subsection 3.1) and global (+global,
subsection 3.1) attention modules to the baseline.

METHOD OXF5K PAR6K
RMEDIUM RHARD

ROxf RPar ROxf RPar

CBAM style 93.8 95.7 75.6 88.4 53.3 76.8
GLAM (Ours) 94.2 95.6 78.6 88.5 60.2 76.8

Table 6: mAP comparison between CBAM style and our
local spatial attention.

examples of our ranking results.

4.4. Ablation study

Our ablation study uses the Google Landmark v2 clean
dataset (GLDv2-clean) [53] for training, which is shown to
be the most effective in Table 3.
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METHOD OXF5K PAR6K
RMEDIUM RHARD

ROxf RPar ROxf RPar

Concatenate 89.5 95.1 73.6 86.5 54.0 73.7
Sum (Ours) 94.2 95.6 78.6 88.5 60.2 76.8

Table 7: mAP comparison between weighted concatenation
and weighted average for feature fusion.

METHOD OXF5K PAR6K
RMEDIUM RHARD

ROxf RPar ROxf RPar

Fixed-size 76.1 82.6 55.7 68.4 29.2 47.5
Group-size (Ours) 94.2 95.6 78.6 88.5 60.2 76.8

Table 8: mAP comparison between fixed-size (224 × 224)
and group-size sampling methods.

QUERY DATABASE OXF5K PAR6K
RMEDIUM RHARD

ROxf RPar ROxf RPar

Single Single 93.3 95.2 76.9 87.1 58.6 74.7
Multi Single 93.9 95.4 78.0 87.7 59.0 75.5
Single Multi 93.6 95.6 77.0 87.8 57.1 76.0
Multi Multi 94.2 95.6 78.6 88.5 60.2 76.8

Table 9: mAP comparison of using multiresolution repre-
sentation (Multi) or not (Single) on query or database.

Effect of attention modules We ablate the effect of our
local and global attention networks as well as their com-
bination. Table 5 shows the results, which are more fine-
grained than those of Table 4. In particular, it shows the ef-
fect of the channel and spatial variants of both local and
global attention. We observe that, when used alone, the
channel and spatial variants of local attention are harmful
in most cases. Even the combination, baseline+local, is not
always effective. By contrast, when used alone, the channel
and spatial variants of global attention are mostly beneficial,
especially the latter. Their combination, baseline+global, is
impressive, bringing gain of up to 7.5%. Importantly, the
combination baseline+global+local improves further by up
to another 2.8%. This result shows the necessity of local
attention in the final model.

CBAM vs. our local spatial attention We experiment
with the local spatial attention of CBAM [54]. CBAM ap-
plies average and max-pooling to input features and con-
catenates the two for spatial attention. We apply this vari-
ant to our local spatial attention module for comparison.
For the CBAM style module, we keep the overall design
of our module as shown in Figure 3, but apply average and
max-pooling to each of the four convolutional layer outputs
before concatenation. Table 6 shows that the CBAM style

module is considerably worse than ours on all benchmarks
except Paris6k, where it is only slightly better.

Concatenation vs. sum for feature fusion We use a
softmax-based weighted average of local and global atten-
tion feature maps with the original feature map (7). Here,
we compare this weighted average with weighted concate-
nation, where concatenation replaces the sum operation
in (7). As shown in Table 7, the weighted average outper-
forms the weighted concatenation.

Fixed-size vs. group-size sampling Numerous studies
have proposed methods for constructing batches according
to image size for efficient training. For instance, Gordo et
al. [16], DELF [29], and Yokoo et al. [56] employed dif-
ferent image sizes per batch for training instead of a single
fixed size. We adopt the method of Yokoo et al., which con-
structs a batch with images of similar aspect ratio, so that
the images can be resized to a size with an aspect ratio that
is similar to their own. We call this method group-size sam-
pling. Table 8 compares fixed-size (224× 224) with group-
size sampling. We observe that maintaining aspect ratios by
using dynamic input sizes is much more effective.

Multi-resolution We use the multi-resolution representa-
tion [16] for the final feature of an image at inference time.
This method: (1) resizes an image into multiple scales; (2)
extracts features from the resized images; and (3) averages
the features to obtain the final feature of the image. The
method is applied to both query and database images to en-
hance ranking results, especially for small target objects.
Table 9 compares the four cases of applying this method or
not to query or database images.

5. Conclusion
We have introduced a novel approach that extracts global

and local contextual information using attention mecha-
nisms for instance-level image retrieval. It is manifested as
a network architecture consisting of global and local atten-
tion components, each operating on both spatial and chan-
nel dimensions. This constitutes a comprehensive study and
empirical evaluation of all four forms of attention that have
previously been studied only in isolation. Our findings indi-
cate that the gain (or loss) brought by one form of attention
alone strongly depends on the presence of the others, with
the maximum gain appearing when all forms are present.
The output is a modified feature tensor that can be used in
any way, for instance with local feature detection instead of
spatial pooling for image retrieval.

With the advent of vision transformers [12, 58] and their
recent application to image retrieval [13], attention is ex-
pected to play a more and more significant role in vi-
sion. According to our classification, transformers perform
global spatial attention alone. It is of great interest to in-
vestigate the role of the other forms of attention, where our
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approach may yield a basic building block of such archi-
tectures. One may even envision an extension to language
models, where transformers originate from [50].
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Class weighted convolutional features for visual instance
search. In BMVC, 2017. 2, 3

[24] Yannis Kalantidis, Clayton Mellina, and Simon Osindero.
Crossdimensional weighting for aggregated deep convolu-
tional features. In ECCV, 2016. 1, 2, 3, 7

[25] Hyo Jin Kim, Enrique Dunn, and Jan-Michael Frahm.
Learned Contextual Feature Reweighting for Image Geo-
Localization. In CVPR, 2017. 1, 2, 3

[26] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.
Proxy anchor loss for deep metric learning. In CVPR, 2020.
1

[27] David G. Lowe. Distinctive image features from scale-
invariant keypoints. In IJCV, 2004. 1, 2

[28] Tony Ng, Vassileios Balntas, Yurun Tian, and Krystian
Mikolajczyk. SOLAR: Second-Order Loss and Attention for
Image Retrieval. In ECCV, 2020. 1, 2, 3, 5, 6, 7

[29] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand,
and Bohyung Han. Large Scale Image Retrieval with Atten-
tive Deep Local Features. In ICCV, 2017. 1, 2, 3, 5, 6, 8

[30] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In CVPR, 2016. 1

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An im-
perative style, high-performance deep learning. In NeurIPS,
2019. 5

[32] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and
Andrew Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In CVPR, 2007. 2, 5

[33] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and
Andrew Zisserman. Lost in quantization:Improving particu-
lar object retrieval in large scale image databases. In CVPR,
2008. 5

9
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image retrieval learns from BoW: Unsupervised fine-tuning
with hard examples. In ECCV, 2016. 2, 7
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[40] Oriane Siméoni, Yannis Avrithis, and Ondrej Chum. Local
features and visual words emerge in activations. In CVPR,
2019. 2, 6
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