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Abstract

Recent methods in stereo matching have continuously
improved the accuracy using deep models. This gain, how-
ever, is attained with a high increase in computation cost,
such that the network may not fit even on a moderate GPU.
This issue raises problems when the model needs to be
deployed on resource-limited devices. For this, we pro-
pose two light models for stereo vision with reduced com-
plexity and without sacrificing accuracy. Depending on
the dimension of cost volume, we design a 2D and a 3D
model with encoder-decoders built from 2D and 3D con-
volutions, respectively. To this end, we leverage 2D Mo-
bileNet blocks and extend them to 3D for stereo vision ap-
plication. Besides, a new cost volume is proposed to boost
the accuracy of the 2D model, making it performing close to
3D networks. Experiments show that the proposed 2D/3D
networks effectively reduce the computational expense
(27%/95% and 72%/38% fewer parameters/operations in
2D and 3D models, respectively) while upholding the accu-
racy. Our code is available at https://github.com/
cogsys-tuebingen/mobilestereonet.

1. Introduction

Stereo matching is one of the techniques for depth per-
ception of a scene, which is established based on the dis-
placement of the matching points in a binocular camera
setup. Given a pair of rectified left/right images, we can
compute depth by redirecting to disparity map estimation.
Depth prediction is used in many real-world applications,
like self-driving cars [15], robotics [26], and object detec-
tion [25]. Compared to other techniques for depth percep-
tion, like LiDAR and Time-of-Flight sensors, passive stereo
vision is more desirable in real-world scenarios because of
inherent problems in other techniques, such as sparsity of
depth data, incompetency in sunlight or reflective/absorbing
surfaces, and limited operating depth range.

*Equal contribution.

Figure 1: Performance vs. computation cost on SceneFlow
test set (Left) and KITTI 2015 validation set (Right): Met-
rics are EPE, number of parameters (×106), and number
of operations (MACs in log scale). For all, the lower is
better. By using a new parameterized cost volume, 2D-
MobileStereoNet shows closer performance to 3D models
with the least MACs. 3D-MobileStereoNet obtains com-
petitive accuracy with the least number of parameters.

A stereo matching algorithm has three main components:
feature extraction, regularization, and disparity selection.
Before deep learning, numerous algorithms proposed dif-
ferent schemes for each step, like local descriptors (Sum
of Absolute Difference or Census Transform [30]) for fea-
ture extraction, Semi-global Matching (SGM) [7] for regu-
larization, and winner-take-all (WTA) for final disparity se-
lection. Nowadays, similar to other computer vision tasks,
stereo matching has also benefited from deep networks. Pri-
marily, the research incorporated deep learning in individ-
ual components of the pipeline, like [31, 17] in matching
costs and [18, 24] in regularization. Later, the research
stirred towards end-to-end frameworks, taking all the fun-
damental components into one network [13, 10, 2, 6].

Accordingly, in end-to-end pipelines, depending on the
dimension of the cost volume built on top of the unary fea-
tures, the subsequent convolutional layers in the regulariza-
tion part (encoder-decoder) can be either 2D convolutions
(for 3D cost volume) [13] or 3D convolutions (for 4D cost
volume) [10]. We dub the former and the latter group as
“2D” and “3D” models, respectively. While the 3D end-to-
end networks introduce highly boosted accuracy in dispar-
ity estimation, they are computationally costly due to more
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complex networks. As such, some of these networks can-
not fit even on a moderate GPU, raising an out-of-memory
(OOM) state. On the other hand, there are many embedded
platforms with memory constraints on which the networks
should fit and execute efficiently.

In order to reduce the complexity of 3D models, some
works reconsider the configuration of the networks. For in-
stance, DeepPruner [4] develops a PatchMatch module to
ignore the cost volume evaluation for most of the disparity
range. In [29], authors establish an aggregation module on
top of a cost volume computed by traditional local descrip-
tors. Thus, skipping the convolutional feature extraction,
the network benefits from a lighter learning paradigm. Also,
it creates a 3D cost to avoid the curse of 3D convolutions.

In this work, we develop two end-to-end stereo matching
networks, which exploit MobileNet-V1 [8] and MobileNet-
V2 [23] blocks to mitigate the computational burden in fa-
vor of real embedded platforms, like FPGAs or mobile de-
vices. Depending on the cost volume dimension, i.e. 3D or
4D, we propose a 2D and a 3D network. Moreover, for the
3D cost volume, a new learning construction module is de-
vised based on interlacing the features from two viewpoints.
Although reducing the computation cost is usually accom-
panied by a degradation in performance, we show that the
proposed architectures are competitive with their state-of-
the-art counterparts (Fig. 1).

Overall, our main contributions are as follows: i) Two
lightweight models (2D/3D) are designed and proposed for
stereo matching using MobileNet blocks without sacrific-
ing accuracy. ii) We raise MobileNet blocks from the origi-
nally proposed 2D convolutions to 3D for the application of
stereo matching. Also, by analyzing their costs, we prove
their merit in reducing the computational load when pro-
cessing 4D data. iii) We introduce a learnable cost volume
module for the 2D model to keep the accuracy comparable
with over-parameterized 3D models. iv) Extensive exper-
iments for analyzing the accuracy/complexity trade-off in
different design choices are conducted. Our findings in the
design choice can be applicable to similar 2D/3D networks
to reduce their complexity.

2. Related work
Stereo vision is one of the popular techniques for es-

timating the depth from images. In the last decade, ma-
chine learning and deep learning approaches have well-
progressed in computer vision tasks, including stereo
matching. Deep learning-based methods can be catego-
rized into two groups: methods that focus on transferring
only one or some of the general pipeline components into
a deep learning framework [31, 24, 1], and approaches
that formulate the whole process in an end-to-end scheme
[13, 10, 2, 6, 32]. Most of the end-to-end methods are
developed based on 3D convolutional layers. Although

these architectures achieve a substantial increase in accu-
racy, they require a high amount of memory usage, mak-
ing them impractical for mobile and real-time applications,
such as robotics and autonomous vehicles.

Lighter networks. Lightweight architectures have be-
come an active research domain, ringing the bell that it is
getting impractical to slide through complex networks with-
out considering the load of computations. Generally, con-
volutions entail the most considerable computational load.
Some deep networks for stereo reconstruction have been de-
veloped to achieve less complexity while being competitive
in terms of accuracy with heavy 3D architectures. In [29],
an initial matching cost is constructed based on the tradi-
tional cost computation. After reducing the channel dimen-
sion through 1×1 convolutions, the data is fed into a U-Net
to regress the disparity map. In another work, DeepPruner
[4] mitigates the computational complexity of 3D convolu-
tional layers by calculating the matching cost for a subset
of possible disparity values. Recently, [20] proposed to use
feature-wise and feature-disparity-wise separable convolu-
tions for optimizing the 3D stereo models. On the whole,
according to the results in [29], the 2D architectures can
make a better trade-off between accuracy and speed.

Other works mainly focus on reducing the complexity
of 3D convolutional layers for other 3D vision tasks. Qiu
et al. [19] developed pseudo-convolutions that decouple a
3D convolution into 3D convolutions equivalent to a 2D
convolution and a light 3D convolution, which aggregates
information only across the third domain. The network is
demonstrated on video classification. In [28], authors made
use of 3D depth-wise convolutions for 3D reconstruction.
Recently, [5] proposed progressively forward expanding a
2D tiny network along multiple axes to get fewer parame-
ters for video classification and detection.

Cost volume computation. In a stereo model, measur-
ing the similarity of left/right features is just as important
as feature extraction and regularization. Traditional algo-
rithms utilized simple calculations, like absolute difference,
Hamming distance, or correlation. Similar solutions carried
on to deep learning-based networks. Specifically, correla-
tion is used on top of unary features to compute a 3D cost
volume [3, 12, 13, 31, 9]. Later, Kendall et al. [10] proposed
to concatenate unary features to make a 4D cost, requiring
3D convolutions in the following. After that, this approach
was mainly adapted for 3D models with some modifications
to enhance the accuracy, e.g. variance-based [21], group-
wise correlation [6] and pyramid [27] cost volume.

3. Methodology
As a first step, we reformulate two common light blocks

[8, 23] to raise them from 2D convolutions to 3D for the
application of stereo matching. We also analyze their com-
putation cost w.r.t. the standard 2D/3D convolution coun-
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Figure 2: Left: MobileNet-V1 block and its extension to
3D, Right: MobileNet-V2 block and its extension to 3D.

terparts. The computation cost of a deep network is mea-
sured by the number of operations in MACs (Multiply-
Accumulate) and the number of parameters. While the
number of parameters is fixed for a model, MACs depend
on the input size.

3.1. Light blocks replacing 2D/3D convolutions

As a pioneer work, MobileNet-V1 [8] employs depth-
wise and point-wise convolutions to produce an output with
the same size as the output of a standard convolution, but
with fewer computations. Later, MobileNet-V2 [23] was
introduced, which formulates its block with point-wise,
depth-wise, and once again, point-wise layers. The num-
ber of input and output channels are specific for each layer,
such that the channel dimension is expanded with an ex-
pansion factor (t) within the block. In a non-downsampling
layer, a skip connection is included as well, making it a so-
called Inverted Residual block. In Fig. 2, MobileNet-V1
and MobileNet-V2 blocks (shortened to v1 and v2 hereon,
for simplicity) are shown.

Raising MobileNet blocks to 3D for stereo network.
Originally, v1 and v2 blocks are designed to replace 2D
convolutions and are proved mainly for sparse prediction
tasks, like image classification. Still, many other computer
vision problems require 3D convolutions to operate on 4D
data, e.g. tasks with temporal input besides the spatial data.
Likewise, dense disparity estimation is such a topic, which
explores the space for the 3rd dimension of the scene. This
outlook of using 3D convolutions for stereo matching has
emerged recently, where they are utilized for processing 4D
cost data. Hence, we take v1 and v2 blocks to their 3D
counterparts for stereo vision application and show their ne-
cessity for light stereo vision models.

For this, just as in 2D convolutions, we commit the
depth-wise and point-wise convolutions in the channel (fea-
ture) dimension in 3D convolutions. To be more precise, to
raise the convolutions from 2D to 3D, the input data is ex-
tended from C×H×W to C×D×H×W , where H and
W indicate the input height and width, respectively; D is
the new third dimension, and C is the number of channels.
In our formulation for stereo matching, the 4D data of cost

Operator
Operations – MACs
((D×)H ×W×)

Example for
Reduction Factor

Std. Conv. k × k × Cin × Cout -

2D v1 Block
(k × k × Cin)+
(Cin × Cout)

7.9x

v2 Block
(Cin × t× Cin)

(k × k × t× Cin)+
(t× Cin × Cout)

2.7x

Std. Conv. k × k × k × Cin × Cout -

3D v1 Block
(k × k × k × Cin)+

(Cin × Cout)
18.9x

v2 Block
(Cin × t× Cin)

(k × k × k × t× Cin)+
(t× Cin × Cout)

7.0x

Table 1: Computation cost of the standard convolutions vs.
MobileNet-V1 (v1) and MobileNet-V2 (v2) blocks in 2D
and 3D counterparts. In MACs, (D×) belongs to 3D types.
We have ignored the computation cost of batch normaliza-
tion, ReLU and residual connection of v2. Example for re-
duction factor (w.r.t. the standard convolution counterparts)
is computed for k = 3, Cin = 32, Cout = 64, and t = 2.

volume [10, 27, 6] is likewise of size C × D × H × W ,
where D is the predefined disparity range for building the
cost volume. Accordingly, we raise kernels from 2D to 3D,
considering the same size for the added dimension, i.e. if the
2D kernel is 3×3, the 3D kernel is 3×3×3. Therefore, tak-
ing v1 and v2 blocks to 3D is straightforward by applying
depth-wise and point-wise convolutions in the channel di-
mension. Figure 2 displays the new v1 and v2 blocks raised
to 3D.

In Tab. 1, we compute the cost of the standard 2D/3D
convolutions and 2D/3D v1 and v2 blocks. Comparing to
standard convolution counterparts, there is a reduction fac-
tor in computation cost that depends on the kernel size k,
channels (Cin and Cout) and expansion factor (t) in v2
blocks. The example in the last column shows that v1
blocks are lighter than v2 in both 2D and 3D versions, as
expected. Moreover, exploiting v1 and v2 blocks in 3D type
is more desirable as they show the capability for further re-
duction in operations compared to standard counterparts.

Additionally, we examine the impact of the expansion
factor of v2 blocks in Fig. 3. We consider the common
cases in an hourglass module (e.g. in [2, 6]) for evaluation,
i.e. Cin = Cout = {32, 64, 128} with k = 3. We see that
by increasing t, the reduction factor decreases until a point
where the block becomes heavier than a standard convolu-
tion counterpart. Also, the 2D block is more sensitive to t,
such that the cost is increased beyond the convolution af-
ter t = 5. Here, once again, we can verify the merit of
MobileNet architectures in our reformulation for 3D convo-
lutional layers of 3D networks.

3.2. Proposed models

Here, we describe two end-to-end baselines (2D and 3D)
and design MobileStereoNets in reliance on these two mod-
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Figure 3: Reduction factor of 2D/3D v2 blocks with vary-
ing expansion factor (t) w.r.t. standard convolution counter-
parts. The right hand numbers indicate the channel numbers
(Cin = Cout and k = 3).

Figure 4: Top (2D Baseline): After feature extraction, data
is reduced to 32 channels. A 3D cost volume, (dmax/4) ×
(H/4) × (W/4), is generated using the proposed interlac-
ing cost volume construction and it is processed by 2D
convolutions. Bottom (3D Baseline): A 4D cost volume,
40× (dmax/4)× (H/4)× (W/4), is computed using Gwc40
[6] and it is processed with 3D convolutions.

els and 2D/3D v1 and v2. Following the common pipeline
in recent work, we first feed the rectified left/right images
to the feature extraction backbone and obtain the unary fea-
tures. The backbone is shared for the left and right images.
The results are passed into a cost volume construction mod-
ule to merge the data from two viewpoints. Finally, an
encoder-decoder (hourglass) is applied on top of the cost
volume to estimate the disparity map.

3D baseline. For this case, we adopt GwcNet-g [6] with
only one hourglass (Fig. 4) as it is performing superior to
other similar designs, e.g. GCNet [10], PSMNet [2], and
GA-Net [32]. This baseline utilizes a ResNet-like backbone
and an encoder-decoder with 3D convolutions. Namely, a
4D cost volume is constructed by group-wise correlation of
unary features, requiring 3D convolutions afterward. The
encoder-decoder consists of an hourglass [2, 6] outputting
a downsampled disparity map, which after upsampling is
compared against the ground-truth with a smooth-L1 loss
function. For the detailed architecture, we refer the reader
to the appendix.

2D baseline. In order to develop a much lighter stereo
network, we modify the 3D baseline such that it uses an

encoder-decoder with 2D convolutions (Fig. 4). This ap-
proach contrasts with the recent trend, where 3D convolu-
tions are deployed to add a feature dimension for disparity
via a 4D cost volume. With a ResNet-like backbone similar
to the 3D baseline, an input image with resolution H ×W
is turned into a feature of size 320 × (H/4) × (W/4). We
add further processing by four successive point-wise con-
volutions to reduce the number of channels and attain a
size of 32 × (H/4) × (W/4). In order to aggregate two
unary features to form a cost volume, which indicates a
similarity measurement in the left/right images across the
disparity dimension, we propose a new Interlacing Cost
Volume. Note that we need a 3D cost volume to retain
the encoder-decoder with 2D convolutions. Ignoring the
feature dimension for disparity, 3D cost volume is of size
(dmax/4)× (H/4)× (W/4), where dmax is the maximum
disparity level. Finally, the 3D cost volume is taken into the
encoder-decoder module after passing through two convo-
lutions as a pre-hourglass module.

Interlacing cost volume construction. Traditionally, a
cost volume for stereo matching is computed for compar-
ing the descriptors of binocular images across the disparity
dimension, mainly as 3D data as following:

C3D(d, x, y) = G(fL(x, y), fR(x− d, y)), (1)

where (x, y) and d are the spatial location and the disparity
value within a range of (0, dmax), respectively. fR(x−d, y)
is the traversed right feature for a specific disparity level.
G(., .) indicates a similarity measurement function that was
conventionally chosen as correlation or Hamming distance.
With the advent of deep learning in stereo vision, as the
unary features raised into 3D data, i.e. f(x, y)→ f(., x, y),
DispNetC [13] proposed to use a correlation layer (dot
product) to merge these data by fL(., x, y) � fR(., x −
d, y). Later, [10] introduced a cost volume as 4D data,
C4D(d, ., x, y), by concatenating the unary features.

These 3D or 4D cost volumes are obtained in an unpa-
rameterized module of the network. Thus, we propose a
subnetwork, named Interlacing Cost Volume Construction
with the motivations as following: i) In order to achieve a
better aggregation of the two unary features, we propose a
parameterized subnetwork to learn the aggregation. ii) By
interlacing the left/right unary features, the corresponding
features maps are distilled by a kernel. iii) we aim to re-
tain the encoder-decoder with only 2D convolutions (and
not 3D, which is the case in recent work), as this can con-
tribute to significant reduction of operations.

Namely, given the left and traversed right unary features,
each of size C ×H ×W , we first interlace them across the
channel dimension to form a data with double-sized chan-
nels, 2C ×H ×W (Fig. 5). After unsqueezing the output
and raising it to 4D data (1 × 2C × H × W ), a 3D con-
volutional layer is applied such that the 3D kernels cover a
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Figure 5: Left: Interlacing cost volume construction at a particular disparity from the left (red) and right (blue) unary features.
The kernels of the first layer take a group of non-overlapping interlaced features (here, four channels from each unary feature,
Interlaced4). Right: Processing the data with more convolutional layers to yield the aggregated feature for that disparity
level. The numbers above and below the arrows indicate the kernel size and the stride, respectively.

specific number of left/right feature pairs. That is , a ker-
nel of size 2i × 3 × 3 covers i channel from each of the
unary features. By increasing the i, the kernel covers more
features and thus, integrates more information. The two fol-
lowing layers (Fig. 5) are also 3D convolution with double
and same number of kernels’ of the first layer. In general,
the kernels are of size m× 3× 3 with strides as m× 1× 1,
showing that they are covering non-overlapping channels.
Finally, we convert the data to a single channel and pass
through one 2D convolutional layer. Note that similar to
other methods for cost volume, the spatial resolution is un-
changed. We can write the general formula for a certain
disparity level as Eg. 2. In Sec. 4, we show that the inclu-
sion of learnable weights in stereo network contributes to
better aggregation of the left/right features.

C3D(d, x, y) = Interlace{fL(., x, y), fR(., x− d, y)} (2)

MobileStereoNets. In our baselines, the feature extrac-
tion and channel reduction are essentially processed with
2D convolutions. On the other hand, the hourglass em-
ploys 2D or 3D convolutions depending on the constructed
cost volume. In order to obtain lighter networks, we re-
place these components with 2D and 3D counterparts of v1
and v2 blocks. There are different design choices when ex-
ploiting these blocks in individual modules of the networks.
Thus, extensive experiments are conducted to answer the
following questions: i) Can we replace different modules
in the 2D/3D baselines with 2D/3D v1 and v2 to achieve
lighter stereo networks and keep the error rates low? ii) If
so, which modules should be replaced with them for a bet-
ter compromise? iii) Which block type performs better in
terms of accuracy and computational load?

Our experiments (cf. Sec. 4) lead to our MobileStere-
oNets by modifying the baselines as follows:
• First Convolutions: Each of the three initial 3 × 3 con-

volutions are replaced with one v2. Using an expansion
factor of t = 3 provides a favorable trade-off between the
performance and computational complexity.

• Feature Extraction: We retained the original layer ar-
chitecture and block structure, consisting of two 3 × 3

convolutions and a residual connection between each
block. Substituting these convolutions with v1 keeps per-
formance competitive while reducing the computational
complexity significantly.

• Channel Reduction: In the 2D baseline, we keep this
module, i.e. four 1×1 convolutions, unchanged with stan-
dard convolutions as replacing them with lighter blocks
deteriorates the performance.

• Pre-hourglass: In the 2D baseline, we replace the two
3 × 3 convolutions in both of the blocks with v2. For
3D-MobileStereoNet, we use our extension of v2 to 3D
instead of 3D convolutions. In both models, we choose
expansion factor as t = 3.

• Hourglass: We employ a stack of three hourglasses for
both 2D and 3D models. While the 3D network uses the
same channel dimension as GwcNet [6] (32), the hour-
glass width is increased to 48 in the 2D model. 2D-
MobileStereoNet uses v2 instead of 2D convolutions. In
3D-MobileStereoNet, we once again swap the 3D convo-
lutions for our extension of v2 to 3D. For both models,
the expansion factor is t = 2.

4. Experimental results and discussion

Here, we first evaluate the performance of the proposed
interlaced cost volume. Then, extensive experiments for
taking the 2D/3D v1 and v2 blocks into the baselines are
elaborated to show the path taken to reach the final archi-
tectures. Finally, we compare our developed networks with
other methods. Note that dmax is 192 in all cases.

In order to analyze different design choices, we use
the SceneFlow “final pass” dataset [13], consisting of
35,454/4,370 training/test samples with 540 × 960 resolu-
tion. This dataset can also help to pretrain the networks
for limited real datasets. The quantitative evaluation for
SceneFlow images is mainly reported with End-Point-Error
(EPE), the mean average disparity error in px. Two more
errors are also reported, i.e. px-3 and D1, which are per-
centages of the outliers with disparity errors larger than 3px
and max(3px, 0.05× ground-truth), respectively.
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Method EPE(px) ↓ D1(%) ↓ px-3(%) ↓
Concatenation 1.86 7.46 8.48
Correlation 1.71 6.80 7.84
Interlaced1 1.70 6.20 7.06
Interlaced2 1.61 6.39 7.31
Interlaced4 1.55 6.15 7.06
Interlaced8 1.64 6.41 7.35
Interlaced16 1.73 6.65 7.58

Table 2: Performance evaluation on SceneFlow test set
for the proposed 3D cost volume: The costs created by
Interlacedi contribute to lower error rates.

4.1. Cost volume construction

To verify the performance of the interlacing cost vol-
ume, we replace the corresponding module in 2D baseline
(Fig. 4) with correlation, which is adopted by 2D networks
[3, 13, 9]. Table 5 shows the evaluation of this baseline
against the model embedded with our interlacing cost vol-
ume. Interlacedi indicates that i channels are taken from
each unary feature, and the kernel of the subsequent layer is
of size 2i× 3× 3. For instance, when i = 4, four channels
from each feature data are combined by 8 × 3 × 3 kernels.
Therefore, cases of i > 1 can be interpreted as group-wise
interlacing. We observe that better similarity measurements
between the left/right features are achieved by introducing
this learnable cost volume construction, resulting in lower
EPE. According to the table, the best case is achieved when
i = 4 (also depicted in Fig. 5), and hence, we consider this
case for further experiments in the 2D baseline.

We also investigate the effect of interlacing against di-
rect concatenation of left/right unary features. According
to the table, the error has increased in this case, showing
that direct concatenation is not efficiently distilling the cor-
responding left/right features, which is essential for stereo
matching.

4.2. Effect of incorporating MobileNet blocks

In this section, we incorporate v1 and v2 blocks (either
2D or 3D, depending on the type of convolutional module)
in various components of the 2D and 3D baselines. In ad-
dition to error metric, we monitor the reduction of compu-
tational complexity to help us choose lighter models. We
analyze replacing the fundamental modules of the network,
i.e. feature extraction and hourglass with lighter blocks. The
results of substituting these modules with v1 and v2 (t = 2)
for 2D and 3D models are tabulated in Tables 3a and 3b.
The best model is selected according to the least EPE ob-
tained in 20 epochs. Also, the input resolution for comput-
ing MACs is 256×512. In these cases, the first convolutions
of feature extraction are kept in standard type.

We can conclude that: i) In both 2D and 3D baselines,
feature extraction is responsible for much of the computa-
tional load. ii) Substituting feature extraction with v1 and
hourglass with v2 yields a better compromise between ac-
curacy and computational complexity. For the 2D baseline,
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FE2D HG2D EPE(px) MACs(G) Params(M )
conv. conv. 1.55 74.42 4.07
conv. v1 1.62 73.97 3.52
v1 conv. 1.66 30.43 1.52
v1 v1 1.59 29.98 0.98

conv. v2 1.63 74.32 3.75
v2 conv. 1.57 35.54 1.81
v2 v2 1.53 35.44 1.49
v1 v2 1.50 30.33 1.21
v2 v1 1.60 35.10 1.26

(a) 2D models: 3D cost volume using Interlaced4 method
FE2D HG3D EPE(px) MACs(G) Params(M )
conv. conv. 0.97 155.2 4.21
conv. v1 0.99 143.66 3.42
v1 conv. 0.98 111.2 1.66
v1 v1 1.03 99.67 0.87

conv. v2 0.97 149.01 3.53
v2 conv. 0.96 116.32 1.94
v2 v2 0.97 110.13 1.27
v1 v2 0.99 105.01 0.98
v2 v1 1.02 104.78 1.15
(b) 3D models: 4D cost volume using Gwc40 method [6]

Table 3: Performance evaluation on SceneFlow test set for
variants of (a) 2D and (b) 3D baselines with 1×HG.

this combination results in the least EPE. We consider this
combination for both 2D and 3D models.

We also examine replacing other modules with lighter
blocks to make the network even lighter. Namely, the first
convolutional layers in feature extraction and pre-hourglass
modules are replaced with v2. The reason for choosing v2
instead of v1 is the higher accuracy v2 can maintain after
substituting for standard convolutions. We observed that in
this case, for the 2D baseline, both the complexity and the
error are reduced (tables are available in the appendix). We
also tried replacing other modules with MobileNet blocks,
i.e. the channel reduction module and the convolutions in in-
terlacing cost volume construction in the 2D baseline. How-
ever, since these replacements deteriorate the learning capa-
bility of the network, they are kept unchanged with standard
convolutions.

4.3. Quantitative and qualitative results

The discussed experiments support our design choice for
the final 2D and 3D models, i.e. 2D-MobileStereoNet and
3D-MobileStereoNet. To increase the accuracy, we utilize a
stack of three hourglasses. Also, we found out that higher t
values make the network less accurate and heavier.

SceneFlow dataset. The evaluation of the proposed
models on SceneFlow are presented in Tables 4a and 4b.
Note that 2D-MobileStereoNet has more parameters than
3D-MobileStereoNet due to i) channel reduction module,
ii) parameterized cost volume construction, and iii) wider
hourglass. Nevertheless, with the least operations, it can
be practical on systems with limited computation capac-
ities. Compared to other 2D models, a lower error is
achieved by 2D-MobileStereoNet with 16.6x fewer param-
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Left image/Disparity 2D-MobileStereoNet 3D-MobileStereoNet

Figure 6: Qualitative performance on SceneFlow: Every
two rows correspond to a test sample. In the left-most col-
umn, the samples and the ground-truth disparity maps are
illustrated. The following two columns show the disparity
and error maps (embedded with error values) estimated by
2D-MobileStereoNet and 3D-MobileStereoNet.

Method EPE(px) Params(M ) Red. Params
DispNet-C[9] 1.67 38 17.0x
CRL[16] 1.60 78.77 35.3x
AutoDispNet-C[22] 1.51 37 16.6x
iResNet[11] 1.40 43.11 19.3x
2D-MobileStereoNet 1.14 2.23 -

(a) 2D models

Method EPE(px) MACs(G) Params(M )
Red.

MACs
Red.

Params
GCNet[10] 1.84 718.01 3.18 4.7x 1.8x
PSMNet[2] 0.88 256.66 5.22 1.7x 2.9x
GA-Net-deep[32] 0.84 670.25 6.58 4.4x 3.7x
GA-Net-11[32] 0.93 383.42 4.48 2.5x 2.5x
Gwc40-Cat24-Base[6] 1.12 169.42 4.60 1.1x 2.6x
GwcNet-gc[6] 0.76 260.49 6.82 1.7x 3.9x
GwcNet-g[6] 0.79 246.27 6.43 1.6x 3.6x
DeepPruner-Best[4] 0.86 129.23 7.39 0.8x 4.2x
DeepPruner-Fast[4] 0.97 51.83 7.47 0.3x 4.2x
3D-MobileStereoNet 0.80 153.14 1.77 - -

(b) 3D models
Table 4: Comparison on SceneFlow test set for (a) 2D and
(b) 3D models. “Red.” indicates the reduction factor of our
models compared to other methods.

eters. Moreover, we observe that in 3D-MobileStereoNet,
significantly fewer parameters are achieved, while the per-
formance is competitive with or better than other methods.
Compared to GwcNet-gc with the best EPE metric in the
table, 3D-MobileStereoNet uses 1.7x fewer parameters (in
millions) and 3.9x fewer GigaMACs. Note that although
DeepPruner-Fast [4] obtains the least number of operations,
it is still over-parametrized and this causes issues when fine-
tuning on smaller datasets like KITTI (cf. Table 6). Figure
6 shows the disparity estimation results.

KITTI 2015 dataset. This dataset consists of images

Method EPE(px) D1(%) px-3(%) MACs(G) Params(M )
PSMNet[2] 0.88 2.00 2.10 256.66 5.22
GA-Net-deep[32] 0.63 1.61 1.67 670.25 6.58
GA-Net-11[32] 0.67 1.92 2.01 383.42 4.48
GwcNet-gc[6] 0.63 1.55 1.60 260.49 6.82
GwcNet-g[6] 0.62 1.49 1.53 246.27 6.43
2D-MobileStereoNet 0.79 2.53 2.67 32.2 2.32
3D-MobileStereoNet 0.66 1.59 1.69 153.14 1.77

Table 5: Comparison on KITTI 2015 validation set.
Methods All(%) Noc(%)

D1bg D1fg D1all D1bg D1fg D1all
MC-CNN[31] 2.89 8.88 3.89 2.48 7.64 3.33
Fast DS-CS[29] 2.83 4.31 3.08 2.53 3.74 2.73
GCNet[10] 2.21 6.16 2.87 2.02 5.58 2.61
DeepPruner-Fast[4] 2.32 3.91 2.59 2.13 3.43 2.35
PSMNet[2] 1.86 4.62 2.32 1.71 4.31 2.14
AutoDispNet-CSS[22] 1.94 3.37 2.18 1.80 2.98 2.00
DeepPruner-Best[4] 1.87 3.56 2.15 1.71 3.18 1.95
GwcNet-g[6] 1.74 3.93 2.11 1.61 3.49 1.92
2D-MobileStereoNet 2.49 4.53 2.83 2.29 3.81 2.54
3D-MobileStereoNet 1.75 3.87 2.10 1.61 3.50 1.92

Table 6: Comparison on KITTI 2015 benchmark. 3D-
MobileStereoNet requires 98% and 72% fewer parame-
ters compared to AutoDispNet-CSS and GwcNet-g, respec-
tively.

of real-world driving scenarios [14], with 376 × 1236 res-
olution. To evaluate our models on this dataset, which has
only ground-truth available for 200 for training samples, we
use a 160/40 training/validation split. We finetune the net-
works that are pretrained on SceneFlow. For a fair com-
parison, we also train and evaluate other methods with the
same data split. As shown in Tab. 5, 2D-MobileStereoNet
attains comparable results to PSMNet, which is a 3D model,
with much less computational load (2.3x/8x fewer parame-
ters/operations). Also, 3D-MobileStereoNet is outperform-
ing PSMNet and GA-Net-11, and is competitive with GA-
Net-deep. Compared to GwcNet-g, 3D-MobileStereoNet is
lighter with 3.6x/1.6x fewer parameters/operations.

Additionally, we submitted the results of our finetuned
models to the KITTI 2015 benchmark. To this end, we fine-
tuned the epoch with the best cross-domain generalizability
from SceneFlow to KITTI 2015. Table 6 shows that 2D-
MobileStereoNet is surpassing GCNet (a 3D model) with
27%/95% fewer parameters/operations. Also, we can ver-
ify that 3D-MobileStereoNet shows superior performance
when compared to GCNet and PSMNet and it is surpass-
ing GwcNet-g (in D1fg and in D1all in all pixels) with
72%/38% fewer parameters/operations.

Figure 7 visualizes the results from KITTI 2015
benchmark. Comparing 2D-MobileStereoNet and 3D-
MobileStereoNet, we observe that 3D-MobileStereoNet
obtains crisp edges due to deploying 3D convolutions
in the encoder-decoder. In other words, in the upsam-
pling/downsampling process in encoder-decoder, 3D con-
volutions can better preserve finer details compared to
an encoder-decoder with 2D convolutions. Nevertheless,
2D-MobileStereoNet achieves visually similar outputs to
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Figure 7: Qualitative performance (disparity images together with error maps) from KITTI 2015 benchmark. Warmer colors
in error maps denote larger values.

Method GA-Net-deep[32] GA-Net-11[32] GwcNet-gc[6] GwcNet-g[6] PSMNet[2] 2D-MobileStereoNet 3D-MobileStereoNet
Memory (MB) 26.4 18.0 27.9 26.3 21.1 10.03 7.99

Table 7: Comparison of model size. Our two proposed methods yield more compact models compared to other works.

3D models while requiring considerably fewer operations
(87% fewer operations compared to GwcNet-g). Also, 3D-
MobileStereoNet visually achieves competitive or better re-
sults compared to other methods.

Model size. We also report the memory requirement of
our models in Table 7. Both of the proposed methods show
smaller memory sizes, which is promising for memory-
constrained chips and their power consumption.
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5. Conclusion
This paper presented lightweight stereo networks to alle-

viate high memory usage on embedded or mobile devices.
Namely, we proposed two models (2D and 3D) with the
primary goal of reducing the cost (in terms of parameters,
operations, and model size) by using MobileNet blocks. To
increase the accuracy of the 2D model, we also designed a
new cost volume to learn the similarity of unary features.
Yielding a favorable accuracy/complexity trade-off, these
MobileStereoNets are promising for deploying end-to-end
stereo networks on edge devices.
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MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

(Appendix)

This appendix provides more details of our work. Here, we have the following sections: A: Detailed baseline architectures,
B: More qualitative results, C: Incorporating light blocks in other modules, D: Implementation details, and E: Analyzing the
complexity.

A. Detailed baseline architectures

The detailed architectures of the 2D and 3D baseline models are displayed in Fig. 1. The numbers in the blocks indicate
the output size of each particular layer/module. The feature extraction step is the same for the two models. The architecture
of hourglass and its intraconnections are also similar, except that in the 2D baseline, the convolutions are all in 2D type, while
there are 3D convolutions in hourglass of the 3D baseline. These two models differ in the cost volume construction and the
channel reduction module as well.

Figure 1: Top: 2D baseline, Bottom: 3D baseline. The numbers in the blocks indicate the output size of each particular
layer/module.
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B. More qualitative results
Figure 2 depicts more qualitative results on SceneFlow dataset. We have also shown qualitative comparison on KITTI

2015 validation set in Fig. 3.

Left image/Disparity 2D-MobileStereoNet 3D-MobileStereoNet
Figure 2: Qualitative performance on SceneFlow: Every two rows correspond to a test sample. In the left-most column, the
samples and the ground-truth disparity maps are illustrated. The following two columns show the disparity and error maps
(embedded with error values) estimated by 2D-MobileStereoNet and 3D-MobileStereoNet. Warmer colors in error maps
denote higher errors.
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Left image

Ground-truth

PSMNet [2]

GA-Net-11 [32]

GA-Net-deep [32]

GwcNet-g [6]

2D-MobileStereoNet

3D-MobileStereoNet

Figure 3: Qualitative performance on KITTI 2015 validation set: From top to bottom, the left image, the ground-truth
disparity map and the estimated disparity maps by PSMNet [2], GA-Net-11 [32], GA-Net-deep [32], GwcNet-g [6], 2D-
MobileStereoNet and 3D-MobileStereoNet are illustrated. For a fair comparison, we trained all the models with a 160/40
split of KITTI 2015 training test. Warmer colors in error maps denote higher errors.

From Fig. 3, once again, we can verify that 2D-MobileStereoNet shows close performance to 3D models with the least
number of operations. Also, 3D-MobileStereoNet obtains competitive or better accuracy with the least number of parameters
among other methods.

C. Incorporating light blocks in other modules

As mentioned in the paper, in order to further reduce the complexity, the first convolutions in the feature extraction and
the pre-hourglass convolutions (cf. Fig. 1) are replaced with MobileNet-V2 (v2). The experimental results are reported in
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Tables 1 and 2. Note that the first convolutions are of the 2D type for both 2D and 3D baselines; however, the pre-hourglass
comes in 2D or 3D convolutions depending on the baseline. We can observe that in 2D-MobileStereoNet, when the two
modules are replaced with MobileNet-V2 (v2), the network obtains the least EPE. In 3D-MobileStereoNet, this combination
yields slightly higher EPE. However, due to the nice reduction in the computation cost, we consider the same design choice
for the 3D network. It is noteworthy that we have examined MobileNet-V1 (v1) for these modules as well. However, as it
deteriorates the performance, we ignore v1 for these modules, albeit it shows much decrease in the cost.

first-conv2D pre-HG2D EPE(px) ↓ MACs(G) ↓ Params(M ) ↓
conv. conv. 1.50 30.33 1.21
conv. v2 1.41 30.0 1.16
v2 conv. 1.54 29.75 1.20
v2 v2 1.40 29.42 1.15

Table 1: Performance evaluation for the selected variant of 2D baseline (FE2D:v1, HG2D:v2) from Tab. 3a of the paper, when
replacing other components with v2 block (t = 2).

first-conv2D pre-HG3D EPE(px) ↓ MACs(G) ↓ Params(M ) ↓
conv. conv. 0.99 105.01 0.98
conv. v2 1.01 69.44 0.89
v2 conv. 0.99 104.44 0.97
v2 v2 1.01 68.86 0.88

Table 2: Performance evaluation for the selected variant of 3D baseline (FE2D:v1, HG3D:v2) from Tab. 3b of the paper, when
replacing other components with v2 block (t = 2).

D. Implementation details
We used PyTorch for implementation and conducting experiments. All the trainings are executed on 4×NVIDIA GeForce

GTX 1080 Ti. We adapt the Adam optimizer with β1 = 0.9 and β2 = 0.999. On the SceneFlow dataset, the networks are
trained for 20 epochs, starting with a learning rate of 0.001. The learning rate is halved after epoch 10, 12, 14, and 16. The
best model is selected based on the least EPE value. In the experiments on the KITTI 2015 validation set, we finetune the
best SceneFlow model for 400 epochs, reducing the initial learning rate 0.001 by a factor of 10 after 200 epochs. To submit
the results to the KITTI 2015 benchmark, we finetune starting from a SceneFlow checkpoint showing the best generalization
performance from the SceneFlow to the KITTI 2015 images. For the 3D-MobileStereoNet, we used a batch size of 4, and for
2D-MobileStereoNet, the batch size is 8.

E. Analyzing the complexity
Table 3 shows the computation cost of the main modules, i.e. feature extraction and encoder-decoder, in baselines (with

standard convolutions) and in MobileStereoNets. Note that feature extraction is the same in 2D and 3D models. We see our
design choice for feature extraction is significantly reducing the complexity both in operation (from 52.07 to 7.84 GigaMACs)
and in parameters (from 7.84 to only 0.39 million). We also observe that the cost of the encoder-decoder modules, either in
2D or 3D, is reduced in lighter networks in both number of operations and parameters. Evidently, the major bottleneck for
the 3D models is the encoder-decoder with 3D convolutions.

Baselines MobileStereoNets
MACs(G) Params(M ) MACs(G) Params(M )

Feature Extraction 52.07 2.95 7.84 0.39
Encoder-decoder2D in 2D-MobileStereoNet 4.38 2.61 3.92 1.64
Encoder-decoder3D in 3D-MobileStereoNet 167.51 3.45 128.73 1.34

Table 3: Analyzing the computation cost in terms of MACs and number of parameters for the main modules.
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