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Abstract

There has been much interest in deploying deep learn-
ing algorithms on low-powered devices, including smart-
phones, drones, and medical sensors. However, full-scale
deep neural networks are often too resource-intensive in
terms of energy and storage. As a result, the bulk part of
the machine learning operation is therefore often carried
out on an edge server, where the data is compressed and
transmitted. However, compressing data (such as images)
leads to transmitting information irrelevant to the super-
vised task. Another popular approach is to split the deep
network between the device and the server while compress-
ing intermediate features. To date, however, such split com-
puting strategies have barely outperformed the aforemen-
tioned naive data compression baselines due to their ineffi-
cient approaches to feature compression. This paper adopts
ideas from knowledge distillation and neural image com-
pression to compress intermediate feature representations
more efficiently. Our supervised compression approach
uses a teacher model and a student model with a stochastic
bottleneck and learnable prior for entropy coding (Entropic
Student). We compare our approach to various neural im-
age and feature compression baselines in three vision tasks
and found that it achieves better supervised rate-distortion
performance while maintaining smaller end-to-end latency.
We furthermore show that the learned feature representa-
tions can be tuned to serve multiple downstream tasks.

1. Introduction
With the abundance of smartphones, autonomous

drones, and other intelligent devices, advanced computing
systems for machine learning applications have become ev-
ermore important [50, 11]. Machine learning models are
frequently deployed on low-powered devices for reasons of
computational efficiency or data privacy [48, 26]. However,
deploying conventional computer vision or NLP models on
such hardware raises a computational challenge, as power-
ful deep neural networks are often too energy-consuming to
be deployed on such weak mobile devices [18].
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Figure 1: Image classification with input compression (top)
vs. our proposed supervised compression for split comput-
ing (bottom). While the former approach fully reconstructs
the image, our approach learns an intermediate compress-
ible representation suitable for the supervised task.

An alternative to carrying out the deep learning model’s
operation on the low-powered device is to send compressed
data to an edge server that takes care of the heavy computa-
tion instead. However, recent neural or classical compres-
sion algorithms are either resource-intensive [51, 17] and/or
optimized for perceptual quality [5, 41], and therefore much
of the information transmitted is redundant for the machine
learning task [14] (see Fig. 1). A better solution is to there-
fore split the neural network [29] into the two sequences
so that some elementary feature transformations are applied
by the first sequence of the model on the weak mobile (lo-
cal) device. Then, intermediate, informative features are
transmitted through a wireless communication channel to
the edge server that processes the bulk part of the computa-
tion (the second sequence of the model) [19, 38].

Traditional split computing approaches transmit inter-
mediate features by either reducing channels in convolution
layers [29] or truncating them to a lower arithmetic preci-
sion [39, 49, 40]. Since the models were not “informed”
about such truncation steps during training oftentimes leads
to substantial performance degradation. This raises the
question of whether learnable end-to-end data compression
pipelines can be designed to both truncate and entropy-code
the involved early-stage features.
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In this paper, we propose such a neural feature compres-
sion approach by drawing on variational inference-based
data compression [6, 51]. Our architecture resembles the
variational information bottleneck objective [2] and relies
on an encoder, a “prior” on the bottleneck state, and a de-
coder that leads to a supervised loss (see Fig. 1). At infer-
ence time, we discretize the encoder’s output and use our
learned prior as a model for entropy coding intermediate
features. The decoder reconstructs the feature vector loss-
lessly from the binary bitstring and carries out the subse-
quent supervised machine learning task. Crucially, we com-
bine this feature compression approach with knowledge dis-
tillation, where a teacher model provides the training data as
well as parts of the trained architecture.1

In more detail, our main contributions are as follows:

• We propose a new training objective for feature com-
pression in split computing that allows us to use a
learned entropy model for bottleneck quantization in
conjunction with knowledge distillation.

• Our approach significantly outperforms seven strong
baselines from the split computing and (neural) image
compression literature in terms of rate-distortion per-
formance (with distortion measuring a supervised er-
ror) and in terms of end-to-end latency.

• Moreover, we show that a single encoder network can
serve multiple supervised tasks, including classifica-
tion, object detection, and semantic segmentation.

2. Related Work
Neural Image Compression. Neural image compression
methods apply neural networks for nonlinear dimension-
ality reduction and subsequent entropy coding. Early
works [54, 28] leveraged LSTMs to model spatial corre-
lations of the pixels within an image. The first proposed
autoencoder architecture for image compression [52] used
the straight-through estimator [9] for learning a discrete la-
tent representation. The connection of image compression
to probabilistic generative models was drawn by variational
autoencoders (VAEs) [31, 5]. In the subsequent work [6],
two-level VAE architectures involving a scale hyper-prior
are proposed to encode images, which can be further im-
proved by autoregressive structures [41, 42] or by optimiza-
tion at encoding time [56]. Recent work also shows the
potential progressive compression of the VAE structure by
extending the quantization grid [36]. Other works [57, 20]
demonstrate competitive image compression performance
without a pre-defined quantization grid.

Recently, Dubois et al. [17] propose a self-supervised
compression architecture for generic image classification.

1Code and models are available at https://github.com/
yoshitomo-matsubara/supervised-compression

However, their encoder involves 87.8 million parameters
(627 times larger than our encoder in Table 1) due to its
Vision Transformer (ViT [16])-based encoder used in CLIP
model [44] for ImageNet dataset. Thus, it does not satisfy
resource-constrained edge computing systems.

Split Computing. Given that mobile (or local) devices of-
ten have limited resources such as computing power and
battery, we usually transfer sensor data captured by the mo-
bile device and offload heavy computing tasks to an edge
(or cloud) server with more computing resources. Unlike
local computing, which executes the entire model on the
mobile device, edge computing (or full offloading) where
the computation is on the edge server requires quality wire-
less communication between the mobile device and edge
server. Otherwise, the total inference cost, such as the end-
to-end latency, would be higher than local computing due to
the communication delay, which would be critical for real-
time applications. As an intermediate option between local
computing and edge computing, split computing [29] has
been attracting attention from research communities since
edge computing is not always the best option. Specifi-
cally, the communication cost would be a severe problem
for resource-limited edge computing systems [19, 38].

In split computing, a neural model will be split into the
first and second sequences, and the first sequence of the
model is executed on the mobile device. Having received
the output of the first section via wireless communication,
the second sequence of the model completes the inference
on the edge server. A key concept is to reduce computa-
tional load on the mobile device while saving communica-
tion cost (data size) as processing delay on the edge server
is often smaller compared to local processing and commu-
nication delays [40]. For reducing communication cost, re-
cent studies on split computing [19, 38, 49, 40] introduce
bottleneck, whose data size is smaller than input sample, to
vision models. In recent studies, a combination of 1) fewer
channels (channel reduction) in convolution layers and 2)
quantization at bottleneck point is key to design such bot-
tlenecks. While such studies show the effectiveness of their
proposed approach for image classification and object de-
tection tasks, the accuracy of bottleneck-injected models
sharply drops when further compressing the bottleneck size
as we will describe in Section 4.

Knowledge Distillation. It is widely known that deep
neural models are often overparameterized [3, 55], and
knowledge distillation [25] is one of the well-known tech-
niques for model compression [10]. In the paradigm, a large
pretrained model plays a role of teacher for a model to be
trained (called student), and the student model learns from
both hard-targets (e.g., one-hot vectors) and soft-targets
(outputs of the teacher for the given input) during training.
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Interestingly, some uncertainty from the pretrained teacher
model as soft-target is informative to student models. The
models trained with teachers often achieve better prediction
performance than those trained without teachers [3]. As
will be discussed later in this paper, learning compressed
features for a target task such as image classification [51]
would be challenging, specifically in the case that we in-
troduce such bottlenecks to early layers in the model. We
leverage a pretrained model as the teacher, and those with
introduced bottlenecks as students to be trained to improve
rate-distortion performance.

3. Method
After providing an overview of the setup (Section 3.1)

we describe our distillation and feature compression ap-
proach (Section 3.2) and our procedure to fine-tune the
model to other supervised downstream tasks (Section 3.3).

3.1. Overview

Our goal is to learn a lightweight, communication-
efficient feature extractor for supervised downstream appli-
cations. We thereby transmit intermediate feature activa-
tions between two distinct portions of a neural network. The
first part is deployed on a low-power mobile device, and the
second part on a compute-capable edge server. Intermedi-
ate feature representations are compressed and transmitted
between the mobile device and the edge server using dis-
cretization and subsequent lossless entropy coding.

In order to learn good compressible feature representa-
tions, we combine two ideas: knowledge distillation and
neural data compression via learned entropy coding. First,
we train a large teacher network on a data set of interest to
teach a smaller student model. We assume that the features
that the teacher model learns are helpful for other down-
stream tasks. Then, we train a lightweight student model
to match the teacher model’s intermediate features (Sec-
tion 3.2) with minimal performance loss. Finally, we fine-
tune the student model to different downstream tasks (Sec-
tion 3.3). Note that the training process is done offline.

The teacher network realizes a deterministic mapping
x 7→ h 7→ y, where x are the input data, y are the tar-
gets, and h are some intermediate feature representations of
the teacher network. We assume that the teacher model is
too large to be executed on the mobile device. The main
idea is to replace the teacher model’s mapping x 7→ h with
a student model (i.e., the new targets become the teacher
model’s intermediate feature activations). To facilitate the
data transmission from the mobile device to the edge server,
the student model, Entropic Student, embeds a bottleneck
representation z that allows compression (see details be-
low), and we transmit data as x 7→ z 7→ h 7→ y. We show
that the student model can be fine-tuned to different tasks
while the mobile device’s encoder part remains unchanged.

Figure 2: Proposed graphical model. Black arrows indicate
the compression and decompression process in our student
model. The dashed arrow shows the teacher’s original deter-
ministic mapping. Colored arrows show the discriminative
tail portions shared between student and teacher.

The whole pipeline is visualized in the bottom panel of
Fig. 1. The latent representation z has a “prior” p(z), i.e., a
density model over the latent space z that both sender and
receiver can use for entropy coding after discretizing z. In
the following, we derive the details of the approach.

3.2. Knowledge Distillation

We first focus on the details of the distillation process.
The entropic student model learns the mapping x 7→ h
(Fig. 2, left part) by drawing samples from the teacher
model. The second part of the pipeline h 7→ y (Fig. 2,
right part) will be adapted from the teacher model and will
be fine-tuned to different tasks (see Section 3.3).

Similar to neural image compression [5, 6], we draw on
latent variable models whose latent states allow us to quan-
tize and entropy-code data under a prior probability model.
In contrast to neural image compression, our approach is
supervised. As such, it mathematically resembles the deep
Variational Information Bottleneck [2] (which was designed
for adversarial robustness rather than compression).

Distillation Objective. We assume a stochastic encoder
q(z|x), a decoder p(h|z), and a density model (“prior”)
p(z) in the latent space. Specific choices are detailed below.
Similar to [2], we maximize mutual information between z
and h (making the compressed bottleneck state z as infor-
mative as possible about the supervised target h) while min-
imizing the mutual information between the input x and z
(thus “compressing away” all the irrelevant information that
does not immediately serve the supervised goal).

The objective for a given training pair (x,h) provided by
the teacher model is

L(x,h) = −Eqθ(z|x)[log pφ(h|z)︸ ︷︷ ︸
distortion

+β log pφ(z)︸ ︷︷ ︸
rate

]. (1)

Before discussing the rate and distortion terms, we specify
and simplify this loss function further. Above, the decoder
p(h|z) = N (h; gφ(z), I) is chosen as a conditional Gaus-
sian centered around a deterministic prediction gφ(z). Fol-

3



Input Teacher (Pretrained)

1st stage: Student w/ Bottleneck

Input Teacher (Pretrained)

2nd stage: Student w/ Bottleneck

Frozen Frozen

FrozenFrozen

Hard-target:
“Zebra”

Soft-target:

Figure 3: Our two-stage training approach. Left: training the student model (bottom) with targets h and tail architecture
obtained from teacher (top) (Section 3.2). Right: fine-tuning the decoder and tail portion with fixed encoder (Section 3.3).

lowing the neural image compression literature [5, 6], the
encoder is chosen to be a unit-width box function qθ(z|x) =
U(fθ(x)− 1

2 , fθ(x) +
1
2 ) centered around a neural network

prediction fθ(x). Using the reparameterization trick [31],
Eq. 1 can be optimized via stochastic gradient descent 2

L(x,h) = 1
2 ||h− gφ (fθ (x) + ε) ||22︸ ︷︷ ︸

distortion

− β log pφ(fθ(x) + ε)︸ ︷︷ ︸
rate

, ε ∼ Unif(− 1
2 ,

1
2 ). (2)

Once the model is trained, we discretize the latent state
z = bfθ(x)e (where b·e denotes the rounding operation)
to allow for entropy coding under pφ(z). By injecting noise
from a box-shaped distribution of width one, we simulate
the rounding operation during training. The entropy model
or prior pφ(z) is adopted from the neural image compres-
sion literature [6]; it is a learnable prior with tuning pa-
rameters φ. The prior factorizes over all dimensions of z,
allowing for efficient and parallel entropy coding.

Supervised Rate-Distortion Tradeoff. Similar to unsu-
pervised data compression, our approach results in a rate-
distortion tradeoff: the more aggressively we compress the
latent representation z, the more the predictive performance
will deteriorate. In contrast, the more bits we are willing to
invest for compressing z, the more predictive strength our
model will maintain. The goal will be to perform well on
the unavailable tradeoff between rate and distortion.

The first term in Eq. 1 measures the supervised distor-
tion, as it expresses the average prediction error under the
coding procedure of first mapping x to z and then z to h.
In contrast, the second term measures the coding costs as
the cross-entropy between the empirical distribution of zi
and the prior distribution pφ(z) according to information

2For better convergence, we follow [40] and leverage intermediate rep-
resentations from frozen layers besides h as illustrated in Fig. 3 (left).

theory [15]. The tradeoff is determined by the Lagrange
multiplier β.

As a particular instantiation of an information bottleneck
framework [2], Singh et al. [51] proposed a similar loss
function as Eq. 1 to train a classifier with a bottleneck at its
penultimate layer without knowledge distillation. In Sec-
tion 4, we compare against a version of this approach that
is compatible with our architecture and find that the knowl-
edge distillation aspect is crucial to improve performance.

3.3. Fine-tuning for Target Tasks

Equation 1 shows the base approach, describing the
knowledge distillation pipeline with a single h and involv-
ing a single target y. In practice, our goal is to learn a com-
pressed representation z that does not only serve a single
supervised target y, but multiple ones y1, · · · ,yj . In par-
ticular, for a deployed system with a learned compression
module, we would like to be able to fine-tune the part of the
network living on the edge server to multiple tasks without
having to retrain the compression model. As follows, we
show that such multi-task learning is possible.

A learned student model from knowledge distillation
can be depicted as a two-step deterministic mapping z =
bfθ(x)e and ĥ = gφ(z), where ĥ (≈ h) is now a de-
compressed intermediate hidden feature in our final student
model (see Fig. 2). Assuming that pψj (yj |ĥ) denotes the
student model’s output probability distribution with param-
eters ψj , the fine-tuning step amounts to optimizing

ψ∗j = argmin
ψj
−E(x,y)∼D[pψj (yj |gφ(bfθ(x)e))]. (3)

The pair (yj , ψj) refers to the target label and the param-
eters of each downstream task. The formula illustrates the
Maximum Likelihood Estimation (MLE) method to opti-
mize the parameter ψj for task j. Note that we optimize the
discriminative model after the compression model is frozen,
so θ is fixed in this training stage, and φ can either be fixed
or trainable. We elucidate the hybrid model in Fig. 2.
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For fine-tuning the student model with the frozen en-
coder, we leverage a teacher model again. For image clas-
sification, we apply a standard knowledge distillation tech-
nique [25] to achieve better model accuracy by distilling
the knowledge in the teacher model into our student model.
Specifically, we fine-tune the student model by minimiz-
ing a weighted sum of two losses: 1) cross-entropy loss be-
tween the student model’s class probability distribution and
one-hot vector (hard-target), and 2) Kullback-Leibler diver-
gence between softened class probability distributions from
both the student and teacher models.

Similarly, having frozen the encoder, we can fine-tune
different models for different downstream tasks reusing the
trained entropic student model (classifier) as their back-
bone, which will be demonstrated in Section 4.4.

4. Experiments
Using torchdistill [37], we designed different experi-

ments and studied various models based on both principles
of split-computing (partial offloading) and edge computing
(full offloading). We used ResNet-50 [24] as a base model,
which, besides image classification, is also widely used as
a backbone for different vision tasks such as object detec-
tion [23, 33] and semantic segmentation [13]. In all ex-
periments, we empirically show that our approach leads to
better supervised rate-distortion performance.

4.1. Baselines

In this study, we use seven baseline methods categorized
into either input compression or feature compression.

Input compression (IC). A conventional implementation
of the edge computing paradigm is to transmit the com-
pressed image directly to the edge server, where all the
tasks are then executed. We consider five baselines referring
to this “input compression” scenario: JPEG, WebP [21],
BPG [8], and two neural image compression methods (fac-
torized prior and mean-scale hyperprior) [6, 41] based on
CompressAI [7]. The latter approach is currently consid-
ered state of the art in image compression models (with-
out autoregressive structure) [41, 42, 56]. We evaluate each
model’s performance in terms of the rate-distortion curve by
setting different quality values for JPEG, WebP, and BPG
and Lagrange multiplier β for neural image compression.

Feature compression (FC). Split computing base-
lines [39, 49] correspond to reducing the bottleneck data
size with channel reduction and bottleneck quantization re-
ferred to as CR+BQ (quantizes 32-bit floating-point to 8-bit
integer) [27]. Matsubara et al. [40, 39] report that bottle-
neck quantization did not lead to significant accuracy loss.
To control the rate-distortion tradeoff, we design bottle-
necks with a different number of output channels in a con-
volution layer to control the bottleneck data size, train the

bottleneck-injected models and quantize the bottleneck af-
ter the training session.

Our final baseline in this paper is an end-to-end ap-
proach towards learning compressible features for a single
task similar to Singh et al. [51] (for brevity, we will cite
their reference). Their originally proposed approach fo-
cuses only on classification and introduces the compressible
bottleneck to the penultimate layer. In the considered set-
ting, such design leads to an overwhelming workload for the
mobile/local device: for example, in terms of model param-
eters, about 92% of the ResNet-50 [24] parameters would
be deployed on the weaker, mobile device. To make this
approach compatible with our setting, we apply their ap-
proach to our architecture; that is, we directly train our en-
tropic student model without a teacher model. We find that
compared to [51], having a stochastic bottleneck at an ear-
lier layer (due to limited capacity of mobile devices) leads
to a model that is much harder to optimize (see Section 4.3).

4.2. Implementation of Our Entropic Student

Vision models in recent years reuse pretrained im-
age classification models as their backbones e.g., ResNet-
50 [24] as a backbone of RetinaNet [33] and Faster R-
CNN [45] for object detection tasks. These models of-
ten use intermediate hidden features extracted from mul-
tiple layers in the backbone as the input to subsequent
task-specific modules such as feature pyramid network
(FPN) [32]. Thus, using an architecture with a bottleneck
introduced at late layers [51] for tasks other than image clas-
sification may require transferring and compressing multi-
ple hidden features to an edge server, which will result in
high communication costs.

To improve the efficiency of split computing compared
to that of edge computing, we introduce the bottleneck as
early in the model as possible to reduce the computational
workload at the mobile device. We replace the first lay-
ers of our pretrained teacher model with the new mod-
ules for encoding and decoding transforms as illustrated
in Fig. 3. The student model, entropic student, consists
of the new modules and the remaining layers copied from
its teacher model for initialization. Similar to neural im-
age compression models [6, 41], we use convolution layers
and simplified generalized divisive normalization (GDN)
[4] layers to design an encoder fθ, and design a decoder
gφ with convolution and inverse version of simplified GDN
(IGDN) layers. Importantly, the designed encoder should
be lightweight, e.g., with fewer model parameters as it will
be deployed and executed on a low-powered mobile device.
We will discuss the deployment cost in Section 4.6.

Different from bottleneck designs in the prior studies on
split computing [40, 39], we control the trade-off between
bottleneck data size and model accuracy with the β value in
the rate-distortion loss function (See Eq. 2).
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4.3. Image Classification

We first discuss the rate-distortion performance of our
and baseline models using a large-scale image classifi-
cation dataset. Specifically, we use ImageNet (ILSVRC
2012) [46], that consists of 1.28 million training and 50,000
validation samples. As is standard, we train the models on
the training split and report the top-1 accuracy on the valida-
tion split. Using ResNet-50 [24] pre-trained on ImageNet as
a teacher model, we replace all the layers before its second
residual block with our encoder and decoder to compose our
entropic student model. The introduced encoder-decoder
modules are trained to approximate h in Eq. 2, which is the
output of the corresponding residual block in the teacher
model (original ResNet-50) in the first stage, and then we
fine-tune the student model as described in Section 3. We
provide more details of training configurations (e.g., hyper-
parameters) in the supplementary material.

Figure 4 presents supervised rate-distortion curves of
ResNet-50 with various compression approaches, where the
x-axis shows the average data size, and the y-axis the super-
vised performance. We note that the input tensor shape for
ResNet-50 as an image classifier is 3 × 224 × 224. For
image compression, the result shows the considered neural
compression models, factorized prior [6] and mean-scale
hyperprior [41], consistently outperform JPEG and WebP
compression in terms of rate-distortion curves in the image
classification task. A popular approach used in split com-
puting studies, the combination of channel reduction and
bottleneck quantization (CR+BQ) [40], seems slightly bet-
ter than JPEG compression but not as accurate as those with
the neural image compression models.

Among all the configurations in the figure, our model
trained by the two-stage method performs the best. We also
trained our model without teacher model, which in essence
corresponds to [51]. The resulting RD curve is significantly
worse, which we attribute to two possible effects: first, it
is widely acknowledged that knowledge distillation gener-
ally finds solutions that generalize better. Second, having a
stochastic bottleneck at an earlier layer may make it difficult
for the end-to-end training approach to optimize.

4.4. Object Detection and Semantic Segmentation

As suggested by He et al. [22], image classifiers pre-
trained on the ImageNet dataset [46] speed up the conver-
gence of training on downstream tasks. Reusing the pro-
posed model pre-trained on the ImageNet dataset, we fur-
ther discuss the rate-distortion performance on two down-
stream tasks: object detection and semantic segmentation.
Specifically, we train RetinaNet [33] and DeepLabv3 [13],
using our models pre-trained on the ImageNet dataset in the
previous section as their backbone. RetinaNet is a one-stage
object detection model that enables faster inference than
two-stage detectors such as Mask R-CNN [23]. DeepLabv3

Figure 4: Rate-distortion (accuracy) curves of ResNet-50 as
base model for ImageNet (ILSVRC 2012).

Figure 5: Rate-distortion (BBox mAP) curves of RetinaNet
with ResNet-50 and FPN as base backbone for COCO 2017.

Figure 6: Rate-distortion (Seg mIoU) curves of DeepLabv3
with ResNet-50 as base backbone for COCO 2017.

is a semantic segmentation model that leverages Atrous
Spatial Pyramid Pooling (ASPP) [12].

For the downstream tasks, we use the COCO 2017
dataset [34] to fine-tune the models. The training and vali-
dation splits in the COCO 2017 dataset have 118,287 and
5,000 annotated images, respectively. As detection per-
formance, we refer to mean average precision (mAP) for
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bounding box (BBox) outputs with different Intersection-
over-Unions (IoU) thresholds from 0.5 and 0.95 on the val-
idation split. For semantic segmentation, we measure the
performance by pixel IoU averaged over 21 classes present
in the PASCAL VOC 2012 dataset. It is worth noting that
following the PyTorch [43] implementations, the input im-
age scales for RetinaNet [33] are defined by the shorter im-
age side and set to 800 in this study which is much larger
than the input image in the previous image classification
task. As for DeepLabv3 [13], we use the resized input im-
ages such that their shorter size is 520. The training setup
and hyperparameters used to fine-tune the models are de-
scribed in the supplementary material.

Similar to the previous experiment for the image classi-
fication task, Figures 5 and 6 show that the combinations of
neural compression models and the pre-trained RetinaNet
and DeepLabv3, which are still strong baselines in object
detection and semantic segmentation tasks. Our model
demonstrates better rate-distortion curves in both tasks. In
the object detection task, our model’s improvements over
RetinaNet with BPG and mean-scale hyperprior are smaller
than those in the image classification and semantic segmen-
tation tasks. However, our model’s encoder to be executed
on a mobile device is approximately 40 times smaller than
the encoder of the mean-scale hyperprior. Our model also
can achieve a much shorter latency to complete the input-to-
prediction pipeline (see Fig. 1) than the baselines we con-
sidered for resource-constrained edge computing systems.
We further discuss these aspects in Sections 4.6 and 4.7.

4.5. Bitrate Allocation of Latent Representations

This section discusses the difference between the repre-
sentations of bottlenecks in neural image compression and
our models. We are interested in which element of the bot-
tlenecks allocates more bits in the latent representation z.
Bottlenecks in neural image compression models will al-
locate many bits to some unique area in an image to pre-
serve all its characteristics in the reconstructed image. On
the other hand, those in our models are trained to mimic the
feature representations in their teacher model, thus expected
to allocate more bits to areas useful for the target task.

Figure 7 shows visualizations of the normalized bitrate
allocations for a few sample images. The 2nd column of the
figure corresponds to the bottleneck in a neural image com-
pression model prioritizing the images’ backgrounds such
as catcher’s zone and glasses. Interestingly, our bottleneck
representation (the 3rd column) seems to eliminate the dif-
ference between the two backgrounds and focuses on ob-
jects in the images such as persons and soccer ball. More-
over, the bottleneck eliminates a digital watermark at the top
left in the first image, which is most likely not critical for the
target task, while the one in the neural compression model
noticeably distinguishes the logo from the background.

(a) Input Images (b) Factorized Prior (c) Entropic Student

Figure 7: Bitrate allocations of latent representations z in
neural image compression and our entropic student models.
Red and blue areas are allocated higher and lower bitrates,
respectively (best viewed in PDF). It appears that the super-
vised approach (right) allocates more bits to the information
relevant to the supervised classification goal.

Table 1: Number of parameters in compression and classi-
fication models loaded on mobile device and edge server.
Local (LC), Edge (EC), and Split computing (SC).

Compression model Scenario Model size (# params)
Factorized Prior [6] EC Mobile: 1.30M Edge: 1.30M+∗

Mean-Scale Hyperprior [41] EC Mobile: 5.53M Edge: 4.49M+∗

Classification model Scenario Model size (# params)
MobileNetV2 [48] LC 3.50M
MobileNetV3 [26] LC 5.48M

ResNet-50 [24] EC 25.6M
ResNet-50 w/ BQ [40] SC Mobile: 0.01M Edge: 27.3M
Our Entropic Student SC Mobile: 0.14M Edge: 26.5M

* Size of classification model for EC should be additionally considered.

4.6. Deployment Cost on Mobile Devices

In Sections 4.3 and 4.4, we discussed the trade-off be-
tween transferred data size and model accuracy with the vi-
sualization of rate-distortion curves. While improving the
rate-distortion curves is essential for resource-constrained
edge computing systems, it is also important to reduce the
computational burden allocated to the mobile device that
often have more severe constraints on computing and en-
ergy resources compared to edge servers. We investigate
then the cost of deploying image classification models on
constrained mobile devices.

Table 1 summarizes numbers of parameters used to rep-
resent models deployed on the mobile devices and edge
servers under different scenarios. For example, in the edge
computing (EC) scenario, the input data compressed by the
compressor of an input compression model is sent to the
edge server. The decompressor will reconstruct the input
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data to complete the inference task with a full classifica-
tion model. Thus, only the compressor in the input com-
pression model is accounted for in the computation cost
on the mobile device. In Section 4, the two input com-
pression models, factorized prior [6] and mean-scale hyper-
prior [41], are strong baseline approaches, and mean-scale
hyperprior outperforms the factorized prior in terms of rate-
distortion curve. However, its model size is comparable to
or more expensive than popular lightweight models such as
MobileNetV2 [48] and MobileNetV3 [26]. For this reason,
this strategy is not advantageous unless the model deployed
on the edge server can offer much higher accuracy than the
lightweight models on the mobile device.

In contrast, split computing (SC) models, including our
entropic student model, perform in-network feature com-
pression while extracting features from the target task’s in-
put sample. As shown in Table 1, the encoder of our model
is much smaller (about 10 – 40 times smaller than) com-
pared to those of the input compression models and the
lightweight classifiers. Moreover, the encoder in our stu-
dent model can be shared with RetinaNet and DeepLabv3
for different tasks. When a mobile device has multiple tasks
such as image classification, object detection, and semantic
segmentation, the single encoder is on memory and exe-
cuted for an input sample. We note that ResNet-50 models
with channel reduction and bottleneck quantization [40] and
those for compressive feature [51] in their studies require a
non-shareable encoder for different tasks. With their ap-
proaches, there are three individual encoders on the mem-
ory of the more constrained mobile device, which leads to
approximately 3 times larger deployment cost.

4.7. End-to-End Prediction Latency Evaluation

To compare the prediction latency with the different ap-
proaches, we deploy the encoders on two different mobile
devices: Raspberry Pi 4 (RPI4) and NVIDIA Jetson TX2
(JTX2). As an edge server (ES), we use a desktop com-
puter with an NVIDIA GeForce RTX 2080 Ti, assuming
the use of LoRa [47] for low-power communications (max-
imum data rate is 37.5 Kbps). For all the considered ap-
proaches, we use the data points with about 74% accuracy
in Fig. 4, and the end-to-end latency is the sum of 1) execu-
tion time to encode an input image on RPI4/JTX2, 2) delay
to transfer the encoded data from RPI4/JTX2 to ES, and 3)
execution time to decode the compressed data and complete
inference on ES.

Table 2 shows that our approach reduces the end-to-end
prediction latency by 47 – 62% compared to the baselines.
The encoding time and communication delay are dominant
in the end-to-end latency while the execution time on ES is
negligible. For both the experimental configurations (RPI4
−→ ES and JTX2 −→ ES), the breakdowns of the end-to-
end latency are illustrated in the supplementary material.

Table 2: End-to-end latency to complete input-to-prediction
pipeline for resource-constrained edge computing systems
illustrated in Fig. 1, using RPI4/JTX2, LoRa and ES. The
breakdowns are available in the supplementary material.

Approach RPI4 −→ ES JTX2 −→ ES
JPEG + ResNet-50 2.35 sec 2.34 sec
WebP + ResNet-50 1.83 sec 1.84 sec
BPG + ResNet-50 2.46 sec 2.41 sec

Factorized Prior + ResNet-50 2.43 sec 2.22 sec
Mean-Scale Hyperprior + ResNet-50 2.24 sec 1.92 sec

ResNet-50 w/ BQ 2.27 sec 2.25 sec
Our Entropic Student 0.972 sec 0.904 sec

5. Conclusions

This paper adopts ideas from knowledge distillation and
neural image compression to achieve feature compression
for supervised tasks. Our approach leverages a teacher
model to introduce a stochastic bottleneck and a learnable
prior for entropy coding at its early stage of a student model
(namely, Entropic Student). The framework reduces the
computational burden on the weak mobile device by of-
floading most of the computation to a computationally pow-
erful cloud/edge server, and the single encoder in our en-
tropic student can serve multiple downstream tasks. The
experimental results show the improved supervised rate-
distortion performance for three different vision tasks and
the shortened end-to-end prediction latency, compared to
various (neural) image compression and feature compres-
sion baselines.

To ensure reproducibility of the experimental results
and facilitate research to address this important prob-
lem, we release the training code and trained models at
https://github.com/yoshitomo-matsubara/
supervised-compression.
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Supplementary Material

A. Image Compression Codecs
As image compression baselines, we use JPEG,

WebP [21], and BPG [8]. For JPEG and WebP, we fol-
low the implementations in Pillow3 and investigate the rate-
distortion (RD) tradeoff for the combination of the codec
and pretrained downstream models by tuning the quality
parameter in range of 10 to 100. Since BPG is not avail-
able in Pillow, our implementation follows [8] and we tune
the quality parameter in range of 0 to 50 to observe the RD
curve. We use the x265 encoder with 4:4:4 subsampling
mode and 8-bit depth for YCbCr color space, following [7].

B. Quantization
This section briefly introduces the quantization tech-

nique used in both proposed methods and neural baselines
with entropy coding.

B.1. Encoder and Decoder Optimization

As entropy coding requires discrete symbols, we lever-
age the method that is firstly proposed in [5] to learn a dis-
crete latent variable. During the training stage, the quanti-
zation is simulated with a uniform noise to enable gradient-
based optimization:

z = fθ(x) + U(−
1

2
,
1

2
). (4)

During the inference session, we round the encoder output
to the nearest integer for entropy coding and the input of the
decoder:

z = bfθ(x)e. (5)
3https://python-pillow.org/

B.2. Prior Optimization

For entropy coding, a prior that can precisely fit the dis-
tribution of the latent variable reduces the bitrate. However,
the prior distributions such as Gaussian and Logistic dis-
tributions are continuous, which is not directly compatible
with discrete latent variables. Instead, we use the cumula-
tive of a continuous distribution to approximate the proba-
bility mass of a discrete distribution. [5]:

P (z) =

∫ z+ 1
2

z− 1
2

p(t)dt, (6)

where p is the prior distribution we choose, and P (z) is
the corresponding probability mass under the discrete dis-
tribution P . The integral can easily be computed with the
Cumulative Distribution Function (CDF) of the continuous
distribution.

C. Neural Image Compression
In this section, we describe the experimental setup that

we used for the neural image compression baselines.

C.1. Network Architecture

Factorized prior model [6]. This model consists of 4
convolutional layers for encoding and 4 deconvolutional
layers for decoding. Each layer follows (128, 5, 2, 2) con-
figuration in the format (number of channels, kernel size,
stride, padding). We also use the simplified version of gen-
eralized divisive normalization (GDN) and inversed GDN
(IGDN) [4] as activation functions for the encoder and de-
coder, respectively. The prior distribution uses a univariate
non-parametric density model, whose cumulative distribu-
tion is parameterized by a neural network [6].

Mean-scale hyperprior model. We use exactly the same
architecture described in [41].

C.2. Training

All the models are trained on a high-resolution dataset
with around 2,700 images collected from DIV2K dataset [1]
and CLIC dataset [53]. During training, we apply random
crop size (256, 256) to the images and set the batch size as
8. We also use Adam [30] optimizer with 10−4 learning rate
to train the model for 900,000 steps, and then the learning
rate is decayed to 10−5 for another 100,000 steps.

D. Channel Reduction and Bottleneck
Quantization

A combination of channel reduction and bottleneck
quantization (CR + BQ) is a popular approach in studies
on split computing [19, 39, 49, 40], and we refer to the ap-
proach as a baseline.
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Figure 8: Our encoder and decoder introduced to ResNet-50. k: kernel size, s: stride, p: padding.

D.1. Network Architecture

Image classification. We reuse the architectures of en-
coder and decoder from Matsubara et al. [39] introduced
in ResNet [24] and validated on the ImageNet (ILSVRC
2012) dataset [46]. Following the study, we explore the rate-
distortion (RD) tradeoff by varying the number of channels
in a convolution layer (2, 3, 6, 9, and 12 channels) placed at
the end of the encoder and apply a quantization technique
(32-bit floating point to 8-bit integer) [27] to the bottleneck
after the training session.

Object detection and semantic segmentation. Simi-
larly, we reuse the encoder-decoder architecture used as
ResNet-based backbone in Faster R-CNN [45] and Mask R-
CNN [23] for split computing [40]. The same ResNet-based
backbone is used for RetinaNet [33] and DeepLabv3 [13].
Again, we examine the RD tradeoff by controlling the num-
ber of channels in a bottleneck layer (1, 2, 3, 6, and 9 chan-
nels) and apply the same post-training quantization tech-
nique [27] to the bottleneck.

D.2. Training

Using ResNet-50 [24] pretrained on the ImageNet
dataset as a teacher model, we train the encoder-decoder
introduced to a copy of the teacher model, that is treated as
a student model for image classification. We apply the gen-
eralized head network distillation (GHND) [40] to the in-
troduced encoder-decoder in the student model. The model
is trained on the ImageNet dataset to mimic the intermedi-
ate features from the last three residual blocks in the teacher
(ResNet-50) by minimizing the sum of squared error losses.
Using the Adam optimizer [30], we train the student model
on the ImageNet dataset for 20 epochs with the training
batch size of 32. The initial learning rate is set to 10−3

and reduced by a factor of 10 at the end of the 5th, 10th,
and 15th epochs.

Similarly, we use ResNet-50 models in RetinaNet

with FPN and DeepLabv3 pretrained on COCO 2017
dataset [34] as teachers, and apply the GHND to the stu-
dents for the same dataset. The training objective, the ini-
tial learning rate, and the number of training epochs are the
same as those for the classification task. We set the training
batch size to 2 and 8 for object detection and semantic seg-
mentation tasks, respectively. The learning rate is reduced
by a factor of 10 at the end of the 5th and 15th epochs.

E. Proposed Student Model
This section presents the details of student models and

training methods we propose in this study.

E.1. Network Architecture

As illustrated in Fig. 8, our encoder fθ is composed of
convolution and GDN [4] layers followed by a quantizer
described in Section B. Similarly, our decoder gφ is de-
signed with convolution and inversed GDN (IGDN) layers
to have the output tensor shape match that of the first resid-
ual block in ResNet-50 [24]. For image classification, the
entire architecture of our entropic student model consists of
the encoder and decoder followed by the last three resid-
ual blocks, average pooling, and fully-connected layers in
ResNet-50. For object detection and semantic segmenta-
tion, we replace ResNet-50 (used as a backbone) in Reti-
naNet [33] and DeepLabv3 [13] with our student model for
image classification.

E.2. Two-stage Training

Here, we describe the two-stage method we proposed to
train the entropic student models.

Image classification. Using the ImageNet dataset, we put
our focus on the introduced encoder and decoder at the first
stage of training and then freeze the encoder to fine-tune all
the subsequent layers at the second stage for the target task.
At the 1st stage, we train the student model for 10 epochs to
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mimic the behavior of the first residual block in the teacher
model (pretrained ResNet-50) in a similar way to [40] but
with the rate term to learn a prior for entropy coding. We use
Adam optimizer with batch size of 64 and an initial learning
rate of 10−3. The learning rate is decreased by a factor of
10 after the end of the 5th and 8th epochs.

Once we finish the 1st stage, we fix the parameters of the
encoder that has learnt compressed features at the 1st stage
and fine-tune all the other modules, including the decoder
for the target task. By freezing the encoder’s parameters, we
can reuse the encoder for different tasks. The rest of the lay-
ers can be optimized to adopt the compressible features for
the target task. Note that once the encoder is frozen, we also
no longer optimize both the prior and encoder, which means
we can directly use rounding to quantize the latent variable.
With the encoder frozen, we apply a standard knowledge
distillation technique [25] to achieve better model accuracy,
and the concrete training objective is formulated as follows:

L = α · Lcls(ŷ,y) + (1− α) · τ2 · LKL
(
oS,oT) , (7)

where Lcls is a standard cross entropy. ŷ indicates the
model’s estimated class probabilities, and y is the annotated
object category. α and τ are both hyperparameters, and LKL
is the Kullback-Leibler divergence. oS and oT represent the
softened output distributions from student and teacher mod-
els, respectively. Specifically, oS = [oS

1, o
S
2, . . . , o

S
|C|] where

C is a set of object categories considered in target task. oS
i

indicates the student model’s softened output value (scalar)
for the i-th object category:

oS
i =

exp
(
vi
τ

)∑
k∈C exp

(
vk
τ

) , (8)

where τ is a hyperparameter defined in Eq. 7 and called
temperature. vi denotes a logit value for the i-th object cat-
egory. The same rules are applied to oT for teacher model.

For the 2nd stage, we use the stochastic gradient descent
(SGD) optimizer with an initial learning rate of 10−3, mo-
mentum of 0.9, and weight decay of 5 × 10−4. We reduce
the learning rate by a factor of 10 after the end of the 5th
epoch, and the training batch size is set to 128. The balanc-
ing weight α and temperature τ for knowledge distillation
are set to 0.5 and 1, respectively.

Object detection. We reuse the entropic student model
trained on the ImageNet dataset in place of ResNet-50
in RetinaNet [33] and DeepLabv3 [13] (teacher models).
Note that we freeze the parameters of the encoder trained
on the ImageNet dataset to make the encoder sharable for
multiple tasks. Reusing the encoder trained on the Ima-
geNet dataset is a reasonable approach as 1) the ImageNet
dataset contains a larger number of training samples (ap-
proximately 10 times more) than those in the COCO 2017

dataset [34]; 2) models using an image classifier as their
backbone frequently reuse model weights trained on the Im-
ageNet dataset [45, 33].

To adapt the encoder for object detection, we train the
decoder for 3 epochs at the 1st stage in the same way we
train those for image classification (but with the encoder
frozen). The optimizer is Adam [30], and the training batch
size is 6. The initial learning rate is set to 10−3 and reduced
to 10−4 after the first 2 epochs. At the 2nd stage, we fine-
tune the whole model except its encoder for 2 epochs by the
SGD optimizer with learning rates of 10−3 and 10−4 for the
1st and 2nd epochs, respectively. We set the training batch
size to 6 and follow the training objective in [33], which is
a combination of L1 loss for bounding box regression and
Focal loss for object classification.

Semantic segmentation. For semantic segmentation, we
train DeepLabv3 in a similar way. At the 1st stage, we
freeze the encoder and train the decoder for 5 epochs, using
Adam optimizer with batch size of 8. The initial learning
rate is 10−3 and decreased to 10−4 after the first 3 epochs.
At the 2nd stage, we train the entire model except for its
encoder for 5 epochs. We minimize a standard cross en-
tropy loss, using the SGD optimizer. The initial learning
rates for the body and the sub-branch (auxiliary module)4

are 2.5×10−3 and 2.5×10−2, respectively. Following [13],
we reduce the learning rate after each iteration as follows:

lr = lr0 ×
(
1− Niter

Nmax iter

)0.9

, (9)

where lr0 is the initial learning rate. Niter and Nmax iter in-
dicate the accumulated number of iterations and the total
number of iterations, respectively.

E.3. End-to-end Training

In this work, the end-to-end training approach for feature
compression [51] is treated as a baseline and applied to our
entropic student model without teacher models.

Image classification. Following the end-to-end training
approach [51], we train our entropic student model from
scratch. Specifically, we use Adam [30] optimizer and co-
sine decay learning rate schedule [35] with an initial learn-
ing rate of 10−3 and weight decay of 10−4. Based on
their training objectives (Eq. 10), we train the model for 60
epochs with batch size of 256.5 Note that Singh et al. [51]
evaluate the accuracy of their models on a 299× 299 center

4https://github.com/pytorch/vision/tree/master/
references/segmentation

5For the ImageNet dataset, Singh et al. train their models for 300k steps
with batch size of 256 for 1.28M training samples, which is equivalent to
60 epochs (= 300k×256

1.28M
).
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Figure 9: Component-wise delays to complete input-to-prediction pipeline, using RPI4 as mobile device.

Figure 10: Component-wise delays to complete input-to-prediction pipeline, using JTX2 as mobile device.

crop. Since the pretrained ResNet-50 expects the crop size
of 224 × 224,6 we use the crop size for all the considered
classifiers to highlight the effectiveness of our approach.

L = Lcls(ŷ,y)︸ ︷︷ ︸
distortion

− β log pφ(fθ(x) + ε)︸ ︷︷ ︸
rate

, ε ∼ Unif(− 1
2 ,

1
2 )

(10)

Object detection. Reusing the model trained on the Im-
ageNet dataset with the end-to-end training method, we
fine-tune RetinaNet [33]. Since we empirically find that
a standard transfer learning approach7 to RetinaNet with
the model trained by the baseline method did not converge,
we apply the 2nd stage of our fine-tuning method described
above to the RetinaNet model. The hyperparameters are the
same as above, but the number of epochs for the 2nd stage
training is 5.

Semantic segmentation. We fine-tune DeepLabv3 [13]
with the same model trained on the ImageNet dataset. Us-
ing the SGD optimizer with an initial learning rate of 0.01,

6https://pytorch.org/vision/stable/models.html#
classification

7https://github.com/pytorch/vision/tree/master/
references/detection

momentum of 0.9, and weight decay of 0.001, we minimize
a standard cross entropy loss. The learning rate is adjusted
by Eq. 9, and we train the model for 30 epochs with batch
size of 16.

F. End-to-End Prediction Latency
In this section, we provide the detail of the end-to-end

prediction latency evaluation shown in this work. Figures 9
and 10 show the breakdown of the end-to-end latency per
image for Raspberry Pi 4 (RPI4) and NVIDIA Jetson TX2
(JTX2) as mobile devices, respectively. For each of the
configurations we considered, we present 1) local process-
ing delay (encoding delay on mobile device), 2) communi-
cation delay to transfer the encoded (compressed) data to
edge server by LoRa [47], and 3) server processing delay
to decode the data transferred from mobile device and com-
plete the inference pipeline on edge server (ES). Follow-
ing [38, 39, 40], we compute the communication delay by
dividing transferred data size by the available data rate, 37.5
Kbps (LoRa [47]) in this paper. For all the considered ap-
proaches, we use the data points with about 74% accuracy
in our experiments with the ImageNet dataset.

From the figures, we can confirm that the communica-
tion delay is dominant in the end-to-end latency for all the
approaches we considered, and the third component (server

14

https://pytorch.org/vision/stable/models.html#classification
https://pytorch.org/vision/stable/models.html#classification
https://github.com/pytorch/vision/tree/master/references/detection
https://github.com/pytorch/vision/tree/master/references/detection


processing delay) is also negligible as the edge server has
more computing power that the mobile devices have. Over-
all, our entropic student model successfully saves the end-
to-end prediction latency by compressing the data to be
transferred to edge server with a small portion of computing
cost on mobile device.
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