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Abstract

Deep Learning of neural networks has progressively be-
come more prominent in healthcare with models reaching,
or even surpassing, expert accuracy levels. However, these
success stories are tainted by concerning reports on the lack
of model transparency and bias against some medical con-
ditions or patients’ sub-groups. Explainable methods are
considered the gateway to alleviate many of these concerns.
In this study we demonstrate that the generated explanations
are volatile to changes in model training that are perpendicu-
lar to the classification task and model structure. This raises
further questions about trust in deep learning models for
healthcare. Mainly, whether the models capture underlying
causal links in the data or just rely on spurious correla-
tions that are made visible via explanation methods. We
demonstrate that the output of explainability methods on
deep neural networks can vary significantly by changes of
hyper-parameters, such as the random seed or how the train-
ing set is shuffled. We introduce a measure of explanation
consistency which we use to highlight the identified prob-
lems on the MIMIC-CXR dataset. We find explanations of
identical models but with different training setups have a
low consistency: ≈ 33% on average. On the contrary, kernel
methods are robust against any orthogonal changes, with
explanation consistency at 94%. We conclude that current
trends in model explanation are not sufficient to mitigate the
risks of deploying models in real life healthcare applications.

1. Introduction

Deep Learning (DL) applications in healthcare have re-
cently enjoyed a series of successes, with DL models per-
forming on par with human experts leading to the US Food &
Drugs Administration (FDA) to approve 64 DL based medi-
cal devices and algorithms as summarised in a recent survey
[5]. Whilst these results demonstrate that the trained models

are able to perform well on the selected performance criteria,
this is not enough for models to reach widespread adoption
in practice. This is particularly true in the healthcare domain
where it is imperative that the DL models used must be both
transparent and explainable, in order to ensure that the rele-
vant stakeholders (patients, medical practitioners) can place
their trust in the model, and to help prevent “catastrophic
failures” [7, 16].

The ultimate aim of a DL model in highly sensitive ap-
plications, such as healthcare, is to capture the underlying
causal inter-relationships that medical professionals learn
through experience to use for classification. Such a model
would be robust to spurious correlations and changes in
model training perpendicular to the classification task. With-
out this level of robustness there will be no trust for its use
in the real-world. Current DL training methods often fail
to satisfy this requirement, as robustness/trust is yet to be
an intricate part of the evaluation and optimisation of said
models [8, 24]. An egregious recent example can be seen
in certain pneumonia diagnosis models, where it has been
shown that the models learned to detect regions (e.g. a metal
token placed by the radiologists) of the chest x-ray (CXR)
image that indicated which hospital the sample was from,
rather than the regions of the image that were causally linked
to pneumonia. Despite this, the model still achieved a reason-
able ROC-AUC of 0.773 as, incidentally, some hospitals had
higher rates of pneumonia than others and so image origin
was a good predictor of pneumonia [39]. Since the model
relied disproportionately on spurious correlations that are
not causally linked to pneumonia, it was unable to generalise
to unseen data outside of training hospitals.

Recent theoretical and experimental work has demon-
strated the challenge of generalisation for DL models and
their vulnerability to small changes in the data [10]. Ensem-
ble models, where multiple, slightly different models work
together to make a final prediction, have been proposed to
alleviate these issues [15, 26]. However, while these tech-
niques can improve the robustness of models, they are rarely
inherently explainable and do not necessarily capture causal



relationships. Additionally, a fundamental requirement of
trustworthy models is the interpretability of their decisions.
The development of explainable DL techniques to date use
either model agnostic post-hoc or model specific approaches.
However, the quality of explainable methods is still very dif-
ficult to quantify and is designed to be truthful to the model
not the data [18, 37].

This paper explores the limits of explainable machine
learning which highlights fundamental problems in the train-
ing and generalisation of neural networks. In particular, we
demonstrate how the noise learned by a deep learning model
can change significantly when factors such as the random
seed, initial weights or even training set order are changed
(whilst all other variables remain the same). We propose a
measure of the consistency of explanations to quantify the
problem and discuss its impact on the interpretation of the ex-
plainable output in relation to the input features importance.
We show that even the current state-of-the-art ensemble mod-
els present with the same issues, and discuss the implications
of these findings on the viability of deploying machine learn-
ing models in sensitive application domains [1, 2, 12].

2. Generalisation and Underspecification
With the increased use of ML in general and DL in partic-

ular, we are becoming increasingly aware of the limitations
of DL models. For example, deep neural networks have been
shown to be susceptible to imperceptible changes in the the
input [34], or rely on unexpected parts of the input when
making their decisions [4]. There is also an increasing num-
ber of concerning scenarios wherein a neural network makes
biased decisions, such as face detection models reporting
high error rates for faces from ethnic minority groups [6, 38].

There is a growing concern of applications with profound
difference between the training dataset and that used in prac-
tice, so much so that the differences in the underlying causal
structure of the data leads to the poor performance of the
trained model [8]. Even when models are able to gener-
alise well, there is a lack of understanding of why, for ex-
ample, SOTA vision models converge and generalise even
when trained on unstructured noise [40]. The picture gets
even more complex with recent work suggesting neural net-
works are immune to the bias-variance trade-off with over-
parameterised networks demonstrating a striking absence of
the classic U-shaped test error curve [25, 36]. Additionally,
shortcut learning [14], or decision rules which work well on
standard benchmarks but fail to generalise to more complex
situations, has recently been shown to be prevalent across
many different machine learning domains. Post-hoc explain-
able methods have gained traction recently to mitigate the
issues with model training by opening, albeit rather partially,
the black box of a neural network. However, the quality
of explanations produced by these methods is difficult to
quantify [37]. In [9], the authors demonstrated the suscepti-

bility of explainable methods to the same type of adversarial
attacks to that of the original models. We demonstrate here
that the generated explanation can be unstable and inconsis-
tent due to variations in model training that are irrelevant to
the classification task.

From their inception, ensemble models that incorporate
many, diverse sub-models have been proposed to address
the problems of robustness and generalisability [32, 26, 35].
However, as we will demonstrate they also fail to mitigate
the low consistency problem of model explanations. We
argue that the lack of understanding of exactly how these
deep learning models work [11] and generalise is ultimately
preventing us from addressing the aforementioned issues.
Understanding how the stochastic nature of the training pro-
cess affects what properties of the data is captured by the
model is fundamental. But recent theoretical and experi-
mental studies to understand the generalisation of neural
networks concluded the inadequacy of current measures of
generalisation [10, 20].

A closer look at explainable outputs of DL models allows
us to understand how the randomness introduced during the
training significantly affects the explanation of the model’s
decisions despite consistent accuracy levels. This raises
important questions around the robustness of these models.
On the contrary kernel methods, namely SVM, are robust
against these changes, suggesting that it is the stochastic
nature of deep learning model training that may be causing
these issues to arise. We argue that these issues significantly
impede our ability to confidently suggest DL models for
use in healthcare, as they imply that the models might be
relying on spurious correlations in the data leading to models
producing inconsistent explanations upon retraining.

3. Measuring Explanation Consistency
We argue that consistency of the explanations produced

by a model regardless of orthogonal changes to hyper pa-
rameters is a strong surrogate to model robustness. Fidelity
of explanations on the micro level, i.e. input features, is
the basis to quantify explanations [37, 28]. Here, we are
validating explainability on the macro level, i.e. the robust-
ness of the produced explanation regardless of changes to
model training that are orthogonal to the model architecture,
data content, and classification task. Intuitively speaking,
the consistency of explanations across model variations en-
gender trust in these models as the end user does not expect
changes in the explanation due to an incremental model
update. Existing similarity metrics of different model out-
puts(e.g. cosine similarity, root mean squared error) are
ill-suited to this task as they are unable to accurately quan-
tify the small (yet important) changes that are particularly
of interest here. The separability of a binary classifier, i.e.
training accuracy, is an established measure of changes in
model output [13] which we adapt here to form the basis to



measure consistency within the framework defined next.

3.1. A Measure of Consistency

Given a dataset X = {x1, ..., xN} ⊂ Rd, where d ∈ N
is the dimension of the sample data, we have a classification
task Y (xi) ∈ Rn, where n is the number of classes in a
classification setting. We want to evaluate the consistency
of explanation method E, where E(Y (xi)) ∈ Rd assigns
a weight to every input feature based on its influence on
Y (xi).

Assume we have V variations of the model Y , which
we will indicate as Y v, v ∈ {1, . . . , V }, then we define the
explanation separability of any two of these variations as:

S(a,b) = Ei

[
D
(
E(Y a(xi)), E(Y b(xi))

)]
(1)

where i ∈ {1, . . . , N}, and D is a similarity measure
between the two explanations provided by E of the output
of the two models Y a and Y b, and Ei is the expected value.
The larger S(a,b) is then the more distinct the explanations
produced by the same model architecture under the training
conditions, a and b. Without loss of generality we assume
S(a,b) to be normalised in the range [0, 1] and we define
consistency as:

C = 1−
∑

(a,b) S(a,b)

α
(2)

where α is the number of comparisons made between
variations of the trained model. The separability metric
S(a,b) should be defined such that when the explanations are
completely separable (i.e. S(a,b) = 1) then the consistency
C = 0, and vice-versa.

3.2. Choosing a Suitable Separability Metric

The definition of S(a,b) should be determined based on
the characteristics of X , e.g. data dimension and sparsity,
and as such it makes sense that different definitions may be
appropriate in different scenarios, as long as it is monotonic
in the range [0, 1]. Multiple definitions could be chosen
ranging from information-theoretic measures to statistical
metrics of similarity (note that similarity metrics can be
modified to fit our definition of S(a,b) by “flipping” their
output to ensure that S(a,b) = 0 when a, b are identical).
Throughout this paper we use the training accuracy of a
binary model,M(a,b), trained to classify betweenE(Y a(xi))

and E(Y b(xi)) for i ∈ 1, . . . , T , where T is the size of the
testing set. Eq.2 can then be re-written as:

C = 1−
∑

(a,b) 2 ∗ |M(a,b) − 0.5|
α

(3)

where |.| is the absolute operator. S(a,b) is set to 2∗|M(a,b)−
0.5| to normalise the classification accuracy and make it

more meaningful as separability by measuring its distance
from theoretical random baseline. An accuracy M(a,b) = 1
means the two explanations are completely separable with
S(a,b) = 1 and C = 0, and on the other extreme an accuracy
M(a,b) = 0.5 means that there is perfect agreement between
a and b resulting in S(a,b) = 0 and C = 1. However, while
we have chosen to use the training accuracy of a binary clas-
sifier to measure the distance, D, between the explainability
values, as noted earlier different distance measures could be
used and it may be the case that different distance metrics
are suited better to different applications and datasets. When
choosing a separability metric, it is important to determine
whether the chosen distance metric is sensitive enough to
detect the small changes in the explanations that we wish
to detect. Each possible consistency metric will have vari-
ous advantages and disadvantages, and it may be that some
are better suited to different scenarios; one of the reasons
we have chosen to use a binary classifier is its wide range
applicability and intuitive interpretation.

Table 1 contains the values of different divergence mea-
sures that we have tested on 4 CNNs (of identical architec-
ture) trained on MNIST with different random seeds. Jensen-
Shannon divergence (JSD) is based upon Kullback-Leibler
(KL) divergence, and is a method of measuring the similarity
between two probability distributions; making it common in
machine learning applications, and a prime candidate for use
here. JSD is better suited for measuring separability as it is
normalised in the range [0, 1]. Its main disadvantage is that
it measures the divergence between probability distributions,
and not samples drawn from a distribution. This requires us
to estimate the distribution of the explainability values for
the two models under test. This adds an extra layer of com-
plexity to the calculation, and could lead to errors where dif-
ferences in the techniques and assumptions used to estimate
the probability functions. For our experiments reported in
Table 1 we used Kernel Density Estimation (KDE), a method
of estimating an unknown probability density function using
a kernel function [27], which has produced good results,
however this would be entirely problem-dependent, whereas
the binary classifier method (e.g., Linear Regression(LR))
discussed in the previous section is more generalisable.

Statistical hypothesis tests that are designed to test
whether two sets of samples are drawn from the same dis-
tribution are other candidates. The 2 sample Kilmogorov-
Smirnov (KS) test is a two-sided test for the null hypothesis
that the 2 sets of samples are drawn from the same contin-
uous distribution [29]. Using the KS test as a separability
measure has the benefit of having a solid statistical underpin-
ning, but we encounter problems when carrying out the test.
While we can accurately compute the test statistic (reported
for a small set of model in Table 1), we cannot compute the
associated p-values, preventing us from accurately complet-
ing the hypothesis test. In all of our experiments (except



M1 Seed M2 Seed JSD KS Wilcoxon LR
1 1 0 0 0 0.5
1 12303 0.8062 0.9744 7.877e+09 0.973
1 15135 0.8012 0.9690 1.738e+10 0.978
1 16959 0.7346 0.8890 2.464e+11 0.975

12303 12303 0 0 0 0.5
12303 15135 0.8228 0.9913 4.350e+08 0.979
12303 16959 0.7900 0.9567 3.316e+10 0.974
15135 15135 0 0 0 0.5
15135 16959 0.8122 0.9810 6.611e+09 0.975

Table 1: Table reporting the Jensen-Shannon divergence,
2 sample Kilmogorov-Smirnov and Wilcoxon signed-rank
test statistics on the SHAP values from a small subset of
the MNIST CNNs tested. The p-values for all hypothesis
tests were calculated as 0. Kernel Density Estimation was
used before calculating the Jensen-Shannon divergence of
the explanations. LR is the accuracy of Logistic Regression
classifiers trained on the SHAP values, as used throughout
this paper as M(a,b).

those where we were testing a model against itself, where
we calculated a test statistic of 0 and p-value of 1), our calcu-
lations returned a p-value of 0 (due to technical limitations,
we cannot calculate precise enough p-values and so they are
rounded down to 0). A similar issue arises when we use
the Wilcoxon signed-rank test, which is a non-parametric
alternative to the paired t-test which can work on highly
non-normal data that works on the null hypothesis that the
median differences between pairs of samples are 0. While
these results (i.e. calculating a p-value of 0) highlight that
our results are highly statistically significant (and hence we
can reject the null hypothesis and conclude the explanations
are drawn from different distributions), we cannot use re-
sults from hypothesis tests to quantify to what degree the
explanation’s from two models are separable (i.e. we will
be unable to infer if one architecture produces more consis-
tent explanations than another), whereas our results with a
binary LR classifier allow us to do so. This is not to say that
JSD or KS/Wilcoxon hypothesis tests are entirely unsuited
to use as a basis for the consistency measure. In this work
we have focused our experiments on image data, where in-
put contains a large number of features; applications where
fewer features are used might alleviate the technical issues
mentioned above. In these cases, it may be appropriate to
use one of these measures. However, our choice of a binary
classifier is easy to use in any scenario, to any dataset and is
easy to interpret and quantify.

4. Experimental Setup

We use two publicly available datasets. MNIST is used
for efficient baseline tests, and we then extend our experi-
ments to use the MIMIC-CXR-JPG [21]. We investigate a

wide breadth of different model architectures, explanation
methods, and training variations1. For both datasets, we use
the recommended train/test/val splits. For reproducibility,
the specific hyperparameters used for each experiment can
be found in the Supplementary Material.

MNIST Experiments: We experimented with the fol-
lowing variations: 1) MLP with two hidden layers of sizes
412 and 512 respectively and a dropout layer, 2) Small-
CNN, a convolutional neural network of 1 convolutional
layer with kernel size 3, followed by a max pooling and fully
connected layer, 3) CNN two convolutional layers with ker-
nel size 3, using max pooling and fully connected layers in
between, 4) GaborNet, a Small-CNN network with the first
convolutional layer restricted to use Gabor filters (the exact
parameters of these filters are learned by the network) [3],
5) ResNet18 [17] with the first convectional layer modified
to take 1 channel inputs and the final output layer to have
an output size of 10, and 6) SVM with RBF kernel. We
also train two ensemble models: 1) ADP ensemble [26] us-
ing the default hyperparameters and consisting of 10 ResNet
sub-models, and 2) Hyperensemble a hyper-batch ensemble
[35] using the default hyperparameters with 3 sub-models.

MIMIC-CXR-JPG Experiments: The dataset contains
377,110 chest x-rays (CXRs) images from 227,827 studies
[21]. Each study has up to 14 associated labels denoting
the disease(s) which are present in the CXR images. For
our purposes, we focus only on images with the Edema
label; this gives us a subset of 77,483 images of which
47.2% present with the disease (have a positive label) and
the remaining 52.8% do not (have a negative label). We
use the labels as presented in the MIMIC-CXR-JPG dataset:
these have originally been extracted from free-text radiology
reports via the CheXpert tool [19, 21]. We use the MIMIC-
CXR-JPG dataset to demonstrate the issues raised here on
a real-life healthcare application. We focus on the Edema
label as otherwise we are left with a multi-label classification
problem (as one CXR image may show multiple diagnoses),
which would make isolating the source of variation very
difficult to guarantee. We chose the Edema label specifically
as it provides a large number of images whilst also having
largely balanced classes. The scope for experimentation
with MIMIC-CXR-JPG is necessarily more limited than that
with MNIST, as the data requires more complex networks
to gain optimal performance. We follow the same process
as CheXNet [31], fine tuning a pre-trained Densenet-121
model. We also train a voting ensemble consisting of 3
pre-trained Densenet-121 models trained on subsets of the
training dataset.

On both datasets, we train the models repeatedly. For
each run we change the hyperparameters that can lead to
variations in the randomness used during training without

1Code to reproduce our experiments can be found at
https://github.com/mattswatson/agree-to-disagree

https://github.com/mattswatson/agree-to-disagree


Model Architecture Dataset Shuffle Random Seed Dropout
MLP MNIST 98.195± 0.9550 98.18± 0.94 98.25± 0.8292
SVM MNIST 93.825± 0.7746 94.218± 0.3943 n/a

Small-CNN MNIST 98.385± 0.0250 98.345± 0.015 98.3267± 0.0330
ADP Ensemble MNIST 98.5± 0.14 99.0875± 0.2573 n/a

CNN MNIST 97.5± 0.5 99.2170± 0.0443 99.1580± 0.0595
GaborNet MNIST 95.031± 0.2769 95.034± 0.2742 95.054± 0.2934
ResNet18 MNIST 99.083± 0.2514 99.471± 0.0438 n/a

Densenet-121 MIMIC-CXR 76.005± 0.8363 75.4535± 1.2539 n/a
Densenet-121 Ensemble MIMIC-CXR 81.98± 0.34 80.8533± 0.5311 n/a

Hyperensemble MNIST n/a 99.32± 0.0082 n/a

Table 2: Table reporting mean model accuracy (± standard deviation) across variations on the base classification task.

changing the architecture of the model. We change: 1) the
random seed used during training, 2) the dropout rate used
in the networks (where applicable), and 3) the order of the
training data. It is important to note that the train/test/val
splits remain the same, rather it is the order in which the
training data is passed to the model during training which
changes. The accuracy of the models on the base classifica-
tion task (i.e. MNIST or MIMIC-CXR) are summarised in
Table 2. To inspect the consistency of decision explanations
as a result of changing these hyperparameters, we use two
state-of-the-art explainability techniques: SHAP [22] and
Integrated Gradients (IG) [33]. These two techniques were
chosen as they represent the most commonly used state of
the art feature-attribution explanation methods: I) SHAP is
a permutation-based model-agnostic approach, so can be ap-
plied to the output of any model II) IG is gradient based mak-
ing it applicable for all neural networks architectures. We
calculate the explanation consistency for each explanation
technique per model and dataset taking into account every
training variation. A Logistic Regression (LR) classifier is
used as the binary model to classify betweenE(Y a(xi)) and
E(Y b(xi)) as per Eq. 3. This LR model takes the explana-
tion values (i.e. SHAP values, IG values) of the two models
as input, and is trained to classify which model the values
originated from. The average training accuracy from 10-fold
cross validation of the LR model is used. The higher the
accuracy of the LR models, the more separable the explain-
ability values are, suggesting that the two models are placing
importance on significantly different parts of the input.

To confirm that the underlying problem lies in the mod-
els themselves, and not the explainability techniques used,
we calculate three different explanation quality metrics that
are designed to ensure the explanations produced accurately
represent the models: I) (In)fidelity: is the mean squared
error between the explanation multiplied by a (meaningful)
change in the input and the difference between the model
output when given the original and perturbed inputs. II)

Sensitivity: measures the change in explanations when the
input is slightly perturbed, calculating this using a Monte
Carlo sampling based approximation [37]. III) Explana-
tion Accuracy: is the accuracy of a model on the base task
(of the same architecture the explanations were produced
from) trained on the produced explanations (for example,
for MNIST, can a model be trained on the explanations to
classify each explanation into one of the 10 digit classes)
[23].

5. Results and Discussion

Through visualisation of the explanation differences, we
are able to discern whether the lack of consistency between
variations is a cause for concern when deploying deep learn-
ing models to real-world scenarios. Figure 1 demonstrates
the change in explanations between two variations of the
same Densenet-121 model using SHAP. We see two main
sets of differences in the images: 1) areas of the image that
are clinically significant (e.g. the lungs and the heart), and 2)
areas in background portions of the image. Those differences
that are in clinically relevant to diagnosis can result in signifi-
cantly reduced trust in the model, as we ideally want a model
which has learnt the entire set of causal links present in the
data (whereas these differences show that the two models
have learnt to look at different sets of causal features). The
remaining differences are in the background noise of the im-
ages, which suggests that the models are potentially picking
up spurious correlations, with each model learning different
sets of spurious correlations. Neither of these scenarios is
desirable. Examples on Small-CNN trained on MNIST are
shown in Figure 1 in the Supplementary Material - simi-
larly to the CXR samples, we can see that the changes in
the SHAP values are mainly centered around the areas of
the image that are critical for number classification. These
results are significant - it suggests both that variations in the
training setup of a model changes the importance of the fun-



Figure 1: 3 random samples from the MIMIC-CXR-JPG dataset overlayed (in green) with the difference between the
normalised SHAP values from two Densenet121 training variations.

Figure 2: (a) Box plot of S(a,b) for SHAP across all training variations (a, b), for all model architectures tested. (b) Plot of
SHAP explanation consistency of model architectures vs. SHAP infidelity and sensitivity of the same models across both
MNIST and MIMIC data.

damental features that we would expect to be causally linked
to the final classification, and on more complex tasks are
also changing the spurious correlations learned by models.

Following, we report the accuracy of all models tested on
MNIST and MIMIC-CXR-JPG, and the consistency of the
explainability methods per model/dataset. Table 3 contains
each model architecture’s consistency, and a further break-
down of the consistency for the different types of training
variation tested. For all model architectures, the degree of
consistency is similar regardless of which hyperparameters

is changed; this suggests that deep learning models are sen-
sitive to all training hyperparameters, and not just a select
few. Figures 2(a) and 3 further demonstrate the variation
in the separability measure (S(a,b)) used to calculate consis-
tency across all models/datasets. These figures show that
there is very little consistency of either SHAP and IG for
any training variation when used with deep learning models.
By contrast, we find that SVMs do not suffer from the same
issue as deep learning models, achieving very high levels
of consistency across both random seed and training shuffle



Consistency
Model Architecture Dataset α Overall Shuffle Random Seed Dropout Accuracy

MLP MNIST 6 0.0668 0.062 0.066 0.0687 98.125± 0.9270
SVM MNIST 10 0.9444 0.96 0.94 n/a 94.0556± 0.6213

Small-CNN MNIST 6 0.0252 0.018 0.06 0.034 98.3486± 0.0360
GaborNet MNIST 12 0 0 0 0 95.038± 0.2824
ResNet18 MNIST 10 0 0 0 n/a 99.425± 0.0626

ADP Ensemble MNIST 6 0.2193 0.192 0.233 n/a 99.083± 0.2514
CNN MNIST 12 0.0652 0.052 0.0564 0.0914 98.9976± 0.5756

Densenet-121 MIMIC-CXR 6 0.3329 n/a 0.3329 n/a 75.6723± 1.1379
Densenet-121 Ensemble MIMIC-CXR 4 0.3367 n/a 0.3667 n/a 80.8± 0.7483

CNN (IG) MNIST 12 0 0 0 0 98.9976± 0.5756
Hyperensemble (IG) MNIST 2 0 n/a 0 n/a 99.32± 0.0082
Densenet-121 (IG) MIMIC-CXR 6 0.168 0.115 0.2033 n/a 75.6723± 1.1379

Table 3: Table reporting the consistency between training variations for the models tested and the average accuracy of the
model architecture on the base classification task. The Shuffle, Random Seed and Dropout columns report the consistency of
models when only the respective hyperparameter was changed. The Overall column reports the overall consistency of that
architecture, taking an average of the consistency across all hyperparameters. α refers to the number of models tested for the
overall architecture consistency (see Eq. 2). Please refer to Table 1 in the Supplementary Material for α values for the shuffle,
seed and dropout consistencies.

Figure 3: Boxplot of the separability S(a,b) of the Integrated
Gradients explanations.

variations. This provides evidence for our hypothesis that
it is the stochastic nature of deep learning model training
that may be causing these issues to arise. Figure 3 shows
the boxplot for IG, with even more pronounced separability,
which can likely be attributed to how IG is calculated based
on the weights of the network. Figure 2(a) does not show any
real link between the size/depth of a network architecture
and the separability/consistency.

Interestingly, both GaborNet and ResNet18 are highly in-
consistent. The purpose of Gabor filters in CNNs is to more
accurately simulate our biological understanding of human

vision, with these filters picking up low-level features. Our
results show that the features picked up are inconsistent -
intuitively this makes sense, with lower-level features being
more prone to smaller changes in the model. The purpose of
testing the ResNet18 architecture was to investigate whether
overparameterised networks also suffer from this inconsis-
tency problem; as can be seen in Figure 2(a) and Table 3,
they do. This implies that even models which have many
more times the number of parameters than data points are
converging to slightly different points on the loss landscape
when small hyperparameter changes are made. It also sug-
gests that even high capacity networks, which we would
expect to be able to learn the entire set of meaningful fea-
tures, are in fact either not able to do so. We hypothesise that,
although ResNet18 is most likely learning (to some degree)
all of the features present in the model, it is applying differ-
ent weights to the noise present in the model when training
hyperparameters are changed. This is not surprising as the
overparameterised model has more chance of picking up spu-
rious correlations. Figure 2(b) shows the correlation, or lack
thereof, between explanation consistency and (in)fidelity and
sensitivity as measures of the explanation’s quality across all
experimental settings. Both measures show weak Pearson
correlation (0.4 for (in)fidelity and -0.3 for sensitivity). This
is not surprising as those metrics are designed to be faith-
ful to the model, not to the underlying data. This disparity
between explanation consistency and quality highlights the
problem with the use of explanation methods as a surrogate
to model transparency. A lower consistency model is less ro-
bust and can lead to misinterpretation of model output, hence



Figure 4: Figures showing the CCA similarity as training progresses between layer parameters. Each coloured line is a separate
training variation pair of a CNN trained on MNIST.

damaging the confidence of using the model in sensitive do-
mains. To further measure the quality of the SHAP and IG
explanation, we also calculate the explanation accuracy for
each model, i.e. the accuracy of the model trained on the
explanation output of the sample data: a higher accuracy
suggests more representative explanations. We report each
model’s individual explanation infidelity, sensitivity max
and accuracy in Table 1 in the Supplementary Material. The
weak correlation between the quality metrics and consistency
lead to two conclusions: 1) explanation quality metrics are
unable to detect inconsistency in the models, and 2) if the
explanations are indeed faithful to the model, then the only
remaining source of inconsistency is the trained model itself,
or more precisely the training approach of these models. En-
semble approaches seem to have higher consistency but it is
still significantly lower than that of SVMs. We use SVCCA
[30] to inspect the similarity of layer parameters between
two training variations, and how these change as training pro-
gresses. SVCCA views neurons as their activation vectors,
and uses an amalgamation of Singular Value Decomposi-
tion and Canonical Correlation Analysis to analyse these
representations: we encourage the interested reader to pe-
ruse [30] for a more thorough explanation. Figure 4 shows
the SVCCA similarity between layers of CNNs trained on
MNIST with different random seeds. It shows a high degree
of similarity for the final layer, whereas the middle layer
(conv2) shows a significant difference. This corroborates
our explainability consistency results; the final layers (fc2)

are similar and so the models will produce similar outputs,
resulting in similar performance levels. Conversely, all other
layers are significantly different and so the explanations,
which take into account the whole model, are different. In
addition, the two convolutional layers show an extremely
low degree of similarity between the two models, hence the
feature maps learned by these two models are likely also not
similar resulting in lower consistency.

6. Conclusion
In this paper we introduced a consistency measure of

explainable machine learning and demonstrated that deep
learning models converge to learn different features when the
same model is trained with different random seeds, training
set orders and dropout rates. By validating the quality of the
explanation techniques used, and using both gradient-based
and perturbation-based techniques, we have shown that this
is a fundamental problem with deep learning models rather
than an issue with the explanations. Additionally, we verified
that SVMs are immune to this problem. We argue that there
is still significant work that need to be done to build robust
trustworthy deep learning solutions in real-life healthcare
applications.
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