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Abstract

It is well known that Neural Network (network) perfor-
mance often degrades when a network is used in novel op-
erating domains that differ from its training and testing do-
mains. This is a major limitation, as networks are being
integrated into safety critical, cyber-physical systems that
must work in unconstrained environments, e.g., perception
for autonomous vehicles. Training networks that generalize
to novel operating domains and that extract robust features
is an active area of research, but previous work fails to pre-
dict what the network performance will be in novel operat-
ing domains. We propose the task Network Generalization
Prediction: predicting the expected network performance
in novel operating domains. We describe the network per-
formance in terms of an interpretable Context Subspace,
and we propose a methodology for selecting the features
of the Context Subspace that provide the most information
about the network performance. We identify the Context
Subspace for a pretrained Faster RCNN network perform-
ing pedestrian detection on the Berkeley Deep Drive (BDD)
Dataset, and demonstrate Network Generalization Predic-
tion accuracy within 5% or less of observed performance.
We also demonstrate that the Context Subspace from the
BDD Dataset is informative for completely unseen datasets,
JAAD and Cityscapes, where predictions have a bias of 10%
or less.

1. Introduction
Deep Neural Networks (networks) are being integrated

into commercial, safety critical, autonomous systems that
operate in unconstrained environments, e.g., perception for
autonomous vehicles. When a network is deployed in an
unconstrained environment, the operating domain, i.e., the
distribution of context features that describe the network’s
environment, can change significantly from the testing do-

main, i.e., the distribution of context features that describe
the test data. Safety critical systems are regulated by in-
ternational functional safety standards, e.g., ISO 26262 for
the automotive industry, IEC 61508 for electronics and soft-
ware. Functional safety standards leverage various tech-
niques to verify the safety of software, including require-
ment specification, i.e., linking required system behavior to
specific code modules, white box testing, i.e., testing spe-
cific inputs that cover all branches or behavior in the code,
and code inspection and review to identify human error.
These techniques are challenging or impossible to apply
directly to networks, e.g., labeled data is used to implic-
itly specify the correct behavior in supervised learning, net-
works are black box systems, and network weights cannot
be manually inspected to identify failure cases.

New techniques are needed to bridge the gap between
the high performance of deep networks and the verification
required for safety critical systems. In particular, the abil-
ity to predict how a network’s performance will change in
a novel operating domain can enable verifying the required
level of performance before a network is deployed, we de-
note this task Network Generalization Prediction. We pro-
pose a methodology for Network Generalization Prediction
for networks trained via supervised learning. Our contribu-
tions are as follows:

1. We introduce the concept of a Context Subspace, a
low-dimensional space, encoding the context features
most informative about the network performance.

2. We propose a greedy feature selection algorithm for
identifying the Context Subspace by 1) ranking the
context features by the information they provide about
the network loss, and 2) selecting the subspace dimen-
sionality that leads to accurate Network Generalization
Prediction.

3. We leverage a Context Subspace for accurate Net-
work Generalization Prediction for pedestrian detec-
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tion in diverse operating domains, with a prediction
error from 0.5% to 2% for not safety critical pedestri-
ans (pedestrians not in the road), and a prediction error
from 2% to 5% for safety critical pedestrians (pedes-
trians in the road).

4. We demonstrate that the Context Subspace identified
for the Berkeley Deep Drive Dataset can be used to
predict pedestrian recall in completely unseen datasets,
the JAAD and Cityscapes Datasets, with a prediction
bias of 10% or less.

2. Background
2.1. Network Dependability

Avizienis et al. defined software dependability as “the
ability to deliver service that can justifiably be trusted,”
where dependability encompasses availability, reliability,
safety, integrity, and maintainability[1]. To describe the de-
pendability of a learned model, O’Brien et al. defined ML
Dependability as “the probability that a model will succeed
when operated under specified conditions”[14]. Cheng et
al. proposed that Robustness, Interpretability, Complete-
ness, and Correctness contribute to a network’s Depend-
ability [4]. Ponn et al. trained a random forest to pre-
dict whether a network would detect a pedestrian, based
on pedestrian attributes; they denote this task Detection
Performance Modeling[15]. Where Detection Performance
Modeling predicts whether one specific object will be de-
tected, Network Generalization Prediction predicts the ex-
pected network performance for a given operating domain,
described by a distribution of context features.

2.2. Network Generalization

It has been shown that underspecification causes network
performance to degrade when deployed in operating condi-
tions different from the training and testing conditions[6].
The WILDS benchmark was released to provide datasets
with “in-the-wild” distribution shifts between the training
and test data [11]. Subbaswamy et al. propose to evaluate a
model’s robustness to distribution shifts with one fixed eval-
uation set [18]. Common techniques to improve network
generalization include extracting features robust to chang-
ing conditions[19], [10], zero or few-shot learning [24],
[23], and identifying when an input is outside the network’s
training distribution [13], [7].

2.3. Feature Selection

Feature selection algorithms aim to select a subset of the
available features, typically to use the features as input to
train a model for a given task. Feature selection algorithms
can be classified as filter methods, i.e., features are scored
according to their association with the task label, wrapper

Figure 1. Overview of Network Generalization Prediction.

methods, i.e., features are selected to minimize task error,
and embedded methods, i.e., features are selected in the
model training process [3]. The Mutual Information [12] is
often used in filter methods to measure the information be-
tween a given feature and the desired label [22]. As exhaus-
tive feature selection search is typically intractable, greedy
feature selection algorithms are often used [9], [21], [8].
Note, greedy feature selection is related to matching pursuit
in the sparse approximation literature [20] and has applica-
tions in compressed sensing [2].

3. Methods
3.1. Problem Formulation

It is well known that in supervised learning, a network,
f , is trained to produce a label, yi, from data, xi, and a loss
function, l(f(xi), yi), is used to drive training. In Network
Generalization Prediction, we are not training f . Instead,
we aim to predict the performance of a fixed network f ,
trained via supervised learning, when deployed in an oper-
ating domain, O, that differs from the testing domain, T ,
see Figure 1. The performance of f is measured using test
data, X = {xi}Ni=1, and test labels, Y = {yi}Ni=1, via a
loss function L = {l(f(xi), yi)}Ni=1, where the elements of
L are assumed to be discrete and bounded, e.g., an object
detection flag, whether a safety criteria was satisfied, or a
discretized classification error.
T is described via J context features, C = {ci}Ni=1,

where ci indicates a J dimensional context vector asso-
ciated with xi. Context features, e.g., image brightness,
weather, or robot speed, can be categorical or numerical;
numerical features are assumed to be discrete or discretized.
It is possible for multiple test samples to map to the same
context, i.e., ci = cj , i 6= j. pT (c) denotes the probability
of encountering c in T . O is described by the probabil-
ity of encountering c in O, pO(c). In many practical ap-
plications, the likelihood of encountering a context may be
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known without annotated data, e.g., there is a 25% chance
of snow in Boston, etc. Note, labeled test data from O is
not required. We assume that while the distribution of con-
texts shifts between the testing and operating domains, i.e.,
pT (c) 6= pO(c), the expected network performance in con-
text c is stable for both the testing and operating domains.
Table 1 describes the Notation used in the Methods Section.

As is typical, we approximate the posterior expected loss
in T , LT , using the empirical loss:

LT = E[l(f(X), Y )] =
1

N

N∑
i=1

l(f(xi), yi) (1)

We define g(c) = E[l(f(X), Y |c)]. Let I(a,b) be an indi-
cator function that is equal to 1 if a = b and 0 otherwise.
g(c) can be computed as:

g(c) =

∑N
i=1 I(ci, c) ∗ l(f(xi), yi)∑N

i=1 I(ci, c)
(2)

LT can equivalently be computed as:

LT =
∑
c∈C

pT (c)g(c) (3)

Likewise, we can now express the Network Generalization
Prediction, L̂O, as:

L̂O =
∑
c∈C

pO(c)g(c) (4)

This formulation holds theoretically for any number of con-
text features J . However, as J grows linearly, computing
Eqn. 4 requires exponentially more test samples to cover
every possible c ∈ C. Thus, we introduce the Context Sub-
space, CSK , a low-dimensional space, encoding the context
features most informative about the network performance.

3.2. Defining a Context Subspace

We are interested in selecting theK context features that
provide the most information about the network loss, to in-
clude these features in CSK . Let SK = {sk}Kk=1 be the in-
dices of context features of interest and CSK = {Csk}Kk=1,
where Csk = {cski }Ni=1 are the annotated attributes for each
example in the test set for context feature sk. To select the
context features to include in CSK , we 1) rank the context
features by how much information they provide about the
network loss, 2) select the CSK dimensionality K to enable
accurate Network Generalization Prediction.

3.2.1 Ranking Context Features

Recall, the Mutual Information is often used to rank fea-
tures in filter feature selection algorithms and is computed

Notation
X = {xi}Ni=1 The Test Data
Y = {yi}Ni=1 The Test Labels

f The trained network
L = {l(f(xi), yi)}Ni=1 The Test Set Loss

C The context features
c ∈ C A context vector
g(c) The expected loss of f in c
CSK The Context Subspace
T The Testing Domain
O The Operating Domain

pT (c), pO(c) The probability of c in T , O
LT The observed loss in T
L̂O The predicted loss in O

Table 1. Notation.

as I(L,Cj) for loss L and context feature Cj :

I(L,Cj) =
∑
`∈L

∑
c∈Cj

p(`, c)log(
p(`, c)

p(`)p(c)
) (5)

where p(`, c) indicates the joint probability of ` and c, and
p(`) and p(c) indicate the marginal probabilities for ` and c,
respectively. The Interaction Information is a generalization
of the Mutual Information toK features. The Interaction In-
formation between L and the context features Cs1 , ..., CsK

is defined as:

I(L,Cs1 , ..., CsK ) = I(L,Cs1 , ..., CsK−1)

− I(L,Cs1 , ..., CsK−1 |CsK ) (6)

For two features, this becomes:

I(L,Cs1 , Cs2) = I(L,Cs2)− I(L,Cs2 |Cs1) (7)

Where I(L,Cs2 |Cs1) can be computed as:

I(L,Cs2 |Cs1) =
∑
`∈L

∑
c2∈C2

∑
c1∈C1

p(`, c2, c1)

× log
(

p(`, c2, c1)

p(`, c1)p(c2, c1)

)
(8)

The computational complexity of I(L,Cs1 , ..., CsK ) grows
combinatorially with K. We are interested in ranking the
context features by the Interaction Information, but comput-
ing the exact Interaction Information becomes intractable
as K grows. To make computation tractable, we propose
∆I(L,Cs1 , ..., CsK ) to approximate how much more infor-
mation including context feature CsK in the Context Sub-
space provides about L.

∆I(L,Cs1 , ..., CsK ) = I(L,CsK )−
K−1∑
k=1

I(Csk , CsK )

(9)
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Algorithm 1 Greedy ∆I Context Selection
1: SK = {}
2: for k = 1 : K do
3: s∗k ← argmaxj [I(Cj , L)−

∑
sk∈SK

I(Cj , Csk)]
4: ∀j ∈ J \ SK

5: SK = SK ∪ s∗k
6: end for
7: g(cSK ) = E[l(f(X), Y |cSK )]

Intuitively, ∆I(L,Cs1 , ..., CsK ) subtracts the redun-
dant information in CsK ,

∑K−1
k=1 I(Csk , CsK ), from

the information it provides about the loss, I(L,CsK ).
Note that the computational complexity of computing
∆I(L,Cs1 , ..., CsK ) grows linearly withK. Like the Inter-
action Information, ∆I(L,Cs1 , ..., CsK ) can be positive or
negative. In Appendix A, we show that for independent fea-
tures in the Context Subspace, ∆I(L,Cs1 , Cs2) approaches
I(L,Cs1 , Cs2) as Cs2 approaches perfect information on
L. We propose a greedy algorithm to iteratively select the
K most informative features from the context, see Algo-
rithm 1.

3.2.2 Selecting the Context Subspace Dimensionality

Selecting the number of features, K, to include in CSK is
not trivial: including more features can lead to a more de-
scriptive CSK but can also lead to many untested contexts
in CSK . To select K, we compute the expected predic-
tion error for a given subspace dimensionality, εK . Us-
ing the K most informative context features, g(cSK ) =
E[l(f(X), Y |cSK )] can be computed according to Eqn. 2.
where cSK is a K dimensional feature vector in CSK . We
iteratively compute the prediction error within the test set,
εK , to estimate the expected prediction error ε̃K , see Al-
gorithm 2. First, we randomly partition the test set into a
fit set and a val set: Xfit, Y fit, Cfit with Nfit samples
and Xval, Y val, Cval with Nval samples respectively. We
estimate gfit(cSK ) using the fit set. We compute the ob-
served loss from the val set, Lval. Let pval(cSK ) indicate
the probability of encountering context cSK in Cval. The
prediction error, εK , is the difference between the observed
validation loss, Lval, and the predicted validation loss using
gfit(cSK ). This procedure can be iterated multiple times,
and the subsequent εK’s averaged, to estimate the expected
prediction error, ε̃K , for different random fit and val parti-
tions of the test set. We select the K that minimizes ε̃K .
ε̃K measures the expected prediction error within T .

When the context is informative about the loss, we ex-
pect ε̃K to decrease as K increases until an optimal K∗ is
reached, then ε̃K will begin to rise as K increases and there
are many untested contexts. If ε̃K is flat or increasing as K
increases, it indicates that the context features available are

Algorithm 2 Context Subspace Dimensionality Selection
1: ε̃K = {}
2: for K = 1 : J do
3: εKs = []
4: for iteration do
5: split test set into fit and val set
6: gfit(cSK ) = E[l(f(Xfit), Y fit|cSK )]

7: Lval = 1
Nval

∑Nval

i=1 l(f(xvali ), yvali )

8: εK = |Lval−
∑

cSK∈CSK pval(cSK )gfitk (cSK )|
9: εKs.append(εK)

10: end for
11: ε̃K = mean(εKs)
12: end for
13: K ← argminK ε̃K

not informative about the loss.
After we have ranked the context features and selected

the number of features to include in the subspace, we can
form CSK . The K most informative context features form
the axes of the subspace. Recall, we assumed the con-
text features are categorical or numerical and discrete, this
yields a finite set of context partitions, cSK ∈ CSK .

3.3. Using the Context Subspace

We use CSK to describe the expected network loss in dif-
ferent contexts, g(cSK ), and to describe the probability of
encountering a context in the operating domain, pO(cSK ).
We can compute g(cSK ) using Eqn. 2, note we use the en-
tire test set to compute g(cSK ) once we have selected the
subspace dimensionality K. Recall, we do not assume to
have labeled test data in O, but we do assume to know
pO(cSK ). Individual context feature probabilities can be
multiplied to obtain a joint probability distribution if the
context feature probabilities are assumed to be independent.

3.4. Network Generalization Prediction

We can now perform Network Generalization Prediction,
where L̂O is the predicted loss in O:

L̂O =
∑

cSK∈CSK

pO(cSK )g(cSK ) (10)

Recall, we selected a small number of informative context
features so that it would be practical to describe the unique
contexts cSK ∈ CSK , but there may be untested contexts
in CSK . For conservative predictions, we assume the max-
imum loss in untested contexts. The maximum loss may
correspond to a binary failure or a large expected error.
Leveraging CSK renders Network Generalization Predic-
tion practical for interestingly complex applications, like
perception for autonomous vehicles.
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4. Experimental Results

4.1. Pedestrian Detection Generalization

Perception for autonomous vehicles is an active area of
research, and systems that use deep networks to detect and
avoid obstacles, like pedestrians, while driving are commer-
cially available. Some of these commercial systems can be
used in any driving conditions, at the user’s discretion, and
the operating domains can vary significantly in terms of the
lighting conditions, e.g., daytime compared to night, road
conditions, e.g., clear weather compared to rainy or snowy
weather, and obstacle density, e.g., a residential street com-
pared to a restricted access highway. It would be impracti-
cal for autonomous vehicle developers to test a perception
system in every possible operating domain, but it is also im-
perative to know whether it is safe to use a perception sys-
tem in a given operating domain. We perform experiments
analogous to an autonomous vehicle developer: we test a
fixed network in one testing domain, T , and predict the net-
work’s performance in novel operating domains, where the
distribution of context features vary significantly from T .
Our goal is to accurately predict the observed network per-
formance when the network is used in a novel operating
domain, O.

We test a pretrained Faster RCNN [17] object detec-
tor for pedestrian detection, where the objects detected as
person are used as pedestrian detections. In our analysis,
we consider pedestrians whose ground truth bounding box
area is ≥ 300 pixels. We evaluate the network performance
at the pedestrian level. Pedestrians correctly detected with
an IoU > 0.5 and a confidence score > 0.5 are assigned
a loss of 0; pedestrians that are not detected are assigned
a loss of 11. Pedestrians in images with multiple people
are considered independently; images with no pedestrians
present are not assigned any loss.

The Berkeley Deep Drive (BDD) Dataset [25] was
recorded across the continental US and includes data from
varying times of day (daytime, dawn/dusk, or night),
weather conditions (clear, partly cloudy, overcast, rainy,
foggy, or snowy), and scene types (city street, residential,
or highway). BDD images are of size 720 × 1280. We use
10, 000 images from the BDD Dataset for testing, denoted
the BDD Test Set. We use the remaining 70, 000 images in
the BDD Dataset, denoted the BDD Operating Set, to define
novel operating domains. The BDD Test Set and BDD Op-
erating Set correspond to the BDD “Validation” and “Train”
folds, respectively.

1We are predicting the network’s recall. We do not assign a loss for
false positive detections; this same methodology can be used to predict
network precision if that is of interest. We focus on recall because failing
to predict a pedestrian who is truly present in the scene is a higher safety
risk than trying to avoid a pedestrian who is not present.

4.2. Defining the Context Subspace

We evaluate the network performance at the pedestrian
level; therefore, context features are assigned to individual
pedestrians. We do not know a priori which pedestrian at-
tributes are informative about the network loss, so we in-
clude all available context features. The BDD dataset in-
cludes metadata on the image time of day, weather, and
scene type. We include the metadata as context features. We
also include the image brightness and the pedestrian bound-
ing box brightness. We define the road(s) to be the safety
critical (SC) region(s) in the images. Pedestrians in the road
are labeled SC, pedestrians outside the road, e.g., on the
sidewalk, are labeled not safety critical (NSC). The road
is defined using the drivable area annotations. Whether a
pedestrian is SC, denoted the safety critical flag, is included
as a context feature. To capture information about the ob-
stacle density in the scene, we include the total number of
pedestrians, the number of SC pedestrians, and the number
of NSC pedestrians in the image as context features.

4.2.1 Ranking Context Features

We use Algorithm 1 to rank the context features by how
much information they provide about the network loss.
When computing the mutual information for a numerical
feature with more than 10 unique values, we uniformly par-
tition the feature into 10 discrete bins. Categorical features
are labeled discretely with their assigned labels. See Fig-
ure 2 for the ∆I computed for the first three iterations of
Algorithm 1. The 6 most informative features were found
to be: 1) image brightness, 2) safety critical flag, 3) scene ,
4) number SC pedestrians, 5) time of day, and 6) bounding
box brightness.

4.2.2 Selecting the Context Subspace Dimensionality

To select the number of features to include in the Context
Subspace, we compute ε̃K for values of K from 1 to 6. For
each dimensionality, K, we compute εK 50 times by ran-
domly partitioning the test data into 50% for fitting g(cSK )
and 50% for validation. We select the K with the minimum
expected prediction error ε̃K over the 50 iterations. K = 3
was found to be optimal, with an average prediction error
of 0.63%, see Figure 2 center. We subsequently define the
Context Subspace with three dimensions: 1) image bright-
ness, 2) safety critical flag, and 3) scene.

The image brightness is a continuous feature; we uni-
formly partition the image brightness into 10 bins. The
safety critical flag and the scene type are discrete and cate-
gorical features with 2 and 3 possible values, respectively.
This results in a Context Subspace, CSK , with 60 discrete
contexts, cSK .
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Figure 2. Defining the Context Subspace. 1) Rank Context Features: The ∆I(L,C) between different context features and the loss in
the BDD Test Set for the first three rounds of Algorithm 1. Note that in iteration one, ∆I(L,C) = I(L,C) so the features’ scores are
non-negative. 2) Select K: We estimate the expected prediction error for different Context Subspace dimensionalities, K, and choose
the dimensionality with the lowest expected prediction error: in this case, K = 3. We form the Context Subspace with the three most
informative context features: brightness, safety critical flag, and the scene type. Right: heatmaps of the probability of encountering a
context in the testing domain, pT (cSK ), and the expected network loss in different contexts, g(cSK ). X-axis: brightness (dark to bright
from left to right). Y-axis: (top to bottom) scene type ‘H’ highway, ‘R’ residential, ‘C’ city street. Separate heatmaps shown for NSC and
SC pedestrians.

4.3. Using the Context Subspace

We use CSK to estimate the expected network loss in
a context, g(cSK ), and to describe the probability of en-
countering a context in O, pO(cSK ), see Figure 2 right.
For all tested contexts, g(cSK ) is computed according to
Eqn. 2. All untested contexts are assigned an expected loss
of 1, i.e., a 100% chance of failing to detect a pedestrian.
The BDD Operating Set is used to define four novel oper-
ating domains: 1) daytime, small groups; 2) daytime, large
groups; 3) night, small groups; and 4) night, large groups.
The time of day annotated in the images was used to as-
sign “daytime” or “night”. The SC and NSC pedestrians
are considered independently. Pedestrians in images with
fewer than 5 (N)SC pedestrians are categorized as small
groups; pedestrians in images with 5 or more (N)SC pedes-
trians are categorized as large groups, i.e., in an image with
2 SC pedestrians and 15 NSC pedestrians, the SC pedestri-
ans would be labeled ‘small group’ and the NSC pedestri-
ans would be labeled ‘large group’. We compute pO(cSK )
for each O by counting the number of pedestrians that fall
into each cSK ∈ CSK and dividing by the total number of
pedestrians.

4.4. Pedestrian Detection Generalization Prediction

We predict the network loss in the novel operating do-
mains defined in 4.3 using Eqn. 10. The heatmaps of
pO(cSK ) in Figure 3 illustrate that the novel operating do-
mains are significantly different from each other and the
testing domain, see pT (cSK ) in Figure 2. Our network
loss is equivalent to the fraction of pedestrians that are not
detected by the network; we convert the predictions into
the predicted network recall by subtracting the fraction of
pedestrians that are not detected from 1, see Figure 3. We

then pass the BDD Operating Set through the network; the
observed recall is computed as the fraction of pedestrians
that were correctly detected. Figure 3 illustrates that our
predictions are accurate with Network Generalization Pre-
diction accuracy between 0.5% and 2.5% for NSC pedes-
trian recall and 2% and 5% for SC pedestrian recall. All
the SC predictions underpredict the observed recall; this
demonstrates that our predictions are conservative. Note,
the only prediction with significant error is for night, large
group SC pedestrians. Only one image in the BDD Operat-
ing Set falls into this category, so the observed performance
is based on minimal data.

4.5. Generalization Prediction for Unseen Datasets

As a preliminary study, we investigate whether the Con-
text Subspace, CSK , defined using the BDD Test Set and
the network loss, g(cSK ), estimated from the BDD Test Set
provide information about completely unseen datasets. Un-
seen datasets include shifts in the context feature distribu-
tions, as well as changes in camera parameters and physical
setup that are not captured by the test set. As such, we ex-
pect predictions for unseen dataset to contain bias, i.e., the
prediction error for an unseen dataset will have a consis-
tent non-zero offset. We are interested in determining the
magnitude of this prediction bias to evaluate the usefulness
of Network Generalization Prediction across datasets. We
perform Network Generalization Prediction for the JAAD
Dataset [16], and the Cityscapes Dataset with the gtFine la-
bels [5], see Figure 4 for sample images. For both datasets,
the (N)SC pedestrian image brightness distribution is com-
puted from the images.

The JAAD Dataset was recorded in North America and
Europe; it includes primarily daytime images from residen-
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Figure 3. Top: BDD Novel Operating Domains. (a) Sample images of NSC pedestrians in the operating domain, NSC pedestrians outlined
in cyan. Drivable area shown in transparent color. (b) NSC pedestrian pO(cSK ). (c) Sample images of SC pedestrians in the operating
domain, SC pedestrians outlined in red. Drivable area shown in transparent color. (d) SC pedestrian pO(cSK ). Bottom: Pedestrian
Generalization Prediction Results. NSC pedestrian recall and SC pedestrian recall are shown separately. X-Axis: Ground Truth (GT) recall
in the operating domain O. Y-Axis: predicted recall. Perfect predictions would fall on the diagonal line. Predictions in the shaded region
are conservative, i.e., the predicted recall is less than the GT recall.

tial and city streets in varying weather conditions. JAAD
images are of size 1080× 1920. For the JAAD Dataset, we
sampled images every three seconds from the videos to limit
temporal correspondence between frames; this resulted in
1,031 images. Pedestrians in the road were manually an-
notated as SC, all others were labeled NSC. Scene annota-
tions are not available for the JAAD dataset. To estimate
the probability distribution of scenes, the scene type was
annotated for a subset of 100 images, we assume the dis-
tribution holds for the entire dataset. The marginal (N)SC
image brightness distributions and scene type distribution
are multiplied to obtain the joint probability distributions
for the JAAD Dataset.

The Cityscapes Dataset contains 3, 475 images recorded

in 50 cities across Germany in the daytime during fair
weather conditions. Cityscapes images are of size 1024 ×
2048. We defined the pedestrian bounding boxes using the
outermost edges of the labeled person instance segmenta-
tions, and we used the semantic segmentation of the road to
define the SC region in the image. For Cityscapes, the scene
type is known to be “city street”.

We make Network Generalization Predictions for the
JAAD and Cityscapes Datasets using g(cSK ), estimated us-
ing the BDD Test Set. The prediction bias is consistently
around 10%, with a minimum prediction error of 5% for
SC pedestrian recall in the JAAD Dataset. We underpredict
pedestrian recall for the JAAD Dataset and we overpredict
pedestrian recall for the Cityscapes Dataset.
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Figure 4. Left: Unseen Dataset Novel Operating Domains. (a) Sample images from the unseen datasets. NSC pedestrians outlined in blue.
SC pedestrians outlined in red. (b) NSC pedestrian pO(cSK ). (c) SC pedestrian pO(cSK ). Right: Generalization Prediction for Unseen
Datasets. NSC pedestrian recall and SC pedestrian recall are shown separately. X-Axis: Ground Truth (GT) recall in the dataset. Y-Axis:
predicted recall. Perfect predictions would fall on the diagonal line. Predictions in the shaded region are conservative, i.e., the predicted
recall is less than the GT recall.

5. Discussion

We make accurate Network Generalization Predictions
for the BDD Operating Set, where the observed recall varies
from 47% to 87%. This demonstrates that a fixed test set
can be used to predict a network’s performance in diverse,
novel operating domains. The observed recall for SC pedes-
trians is about 20% higher than for NSC pedestrians. This
makes intuitive sense, as SC pedestrians tend to be central
in the image and closer to the vehicle. This is encourag-
ing, because the performance of perception systems for au-
tonomous vehicles will ultimately be determined by how
well they detect SC pedestrians and obstacles. However, in
the BDD Test Set there are many more examples of NSC
pedestrians, 11, 169, than SC pedestrians, 484. This leads
to more untested contexts for the SC pedestrians, which in
turn leads to the slight underprediction of SC recall.

For unseen datasets, we find a Network Generalization
Prediction bias of 10%; we believe these results are promis-
ing and that the results indicate the Context Subspace iden-
tified for one dataset, e.g., one camera setup and one phys-
ical setup, can be informative for unseen datasets. Investi-
gating how network performance changes between datasets
and identifying what physical changes lead to performance
differences is a direction for future work.

Network Generalization Prediction can be used to link
network behavior in novel operating domains to required
levels of performance. The Context Subspace can be lever-
aged for quasi-white box testing by testing the network
across variations in context features that are known to im-
pact network behavior. The Context Subspace also makes
the network behavior interpretable by elucidating where
failure is more likely. In addition to making the Network
Generalization Prediction tractable, we believe the Context
Subspace can be used during network training to extract fea-

tures that are robust to changes in the Context Subspace.
The Context Subspace can also be used for online error
monitoring, e.g., an autonomous vehicle could notify the
driver if it detects the surrounding scene is a context with
subpar expected performance. We believe the Context Sub-
space is a tool that can make network performance more
interpretable during training, testing, and deployment.

6. Conclusions

We propose the task Network Generalization Predic-
tion and leverage a Context Subspace to render Network
Generalization Prediction tractable with scarce test sam-
ples. We identify the Context Subspace automatically and
demonstrate accurate Network Generalization Prediction
for Faster RCNN used for pedestrian detection in diverse
operating domains. We show that the Context Subspace
identified for the BDD Dataset is informative for completely
unseen datasets. We believe that accurate Network General-
ization Prediction, with an interpretable Context Subspace,
is a step towards bridging the gap between the high perfor-
mance of deep networks and the verification required for
safety critical systems.
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A. Comparing ∆I and I

We propose ∆I(L,Cs1 , ..., CsK ) to approximate the In-
teraction Information between K context features and the
network loss L, I(L,Cs1 , ..., CsK ). The computational
complexity of computing ∆I(L,Cs1 , ..., CsK ) grows lin-
early with K, as compared to the computational complex-
ity of computing I(L,Cs1 , ..., CsK ) which grows combi-
natorially with K. We investigate the difference between
I(L,Cs1 , ..., CsK ) and I(L,Cs1 , ..., CsK ). To simplify the
notation, we denote Cs1 as C1 and Cs2 as C2. It is triv-
ial to compute the Mutual Information between the context
features and L and select C1 to be the feature most infor-
mative about the loss. We assume C1 has been selected and
we compare I(L,C1, C2) and ∆I(L,C1, C2).

I(L,C1, C2) = I(L,C2)− I(L,C2|C1) (11)

∆I(L,C1, C2) = I(L,C2)− I(C1, C2) (12)

The difference between I(L,C1, C2) and ∆I(L,C1, C2)
is:

I(L,C1, C2)−∆I(L,C1, C2) = I(C1, C2)−I(L,C2|C1)
(13)

As we would like the context features in CSK to be roughly
independent, let us assume thatC1 is not informative ofC2,
i.e., I(C1, C2) = 0.

I(L,C1, C2)−∆I(L,C1, C2) = −I(L,C2|C1) (14)

The reader is reminded that the conditional mutual informa-
tion is computed as:

I(L,C2|C1) =
∑
`∈L

∑
c1∈C1

∑
c2∈C2

p(`, c1, c2)

× log
(
p(c1)p(`, c1, c2)

p(`, c1)p(c1, c2)

)
(15)

For simplicity, let us consider the point wise conditional
mutual information at `, c1, and c2:

log

(
p(c1)p(`, c1, c2)

p(`, c1)p(c1, c2)

)
(16)

Recall, it was assumed thatC1 andC2 are independent, thus
p(c1, c2) = p(c1)p(c2). The joint probability p(`, c1, c2)
can also be factored as 1

Zψ(`, c1)ψ(`, c2).

= log

(
p(c1)ψ(`, c1)ψ(`, c2)

Zp(`, c1)p(c1)p(c2)

)
(17)

= log

(
ψ(`, c1)ψ(`, c2)

Zp(`, c1)p(c2)

)
(18)

Note ψ(`, c1) ∝ p(`, c1) and ψ(`, c2) ∝ p(`, c2). Thus,
the difference between the proposed ∆I and the Interaction
Information is proportional to

∝ log (p(`|c2)) (19)

If we consider only combinations of ` and c2 that exist in
the test set, p(`|c2) > 0. As the new context feature be-
comes more informative, p(`|c2) → 1 and the difference
log (p(`|c2)) → 0. This demonstrates that, if the context
features are informative about the loss, ∆I is a good ap-
proximation of the Interaction Information.
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