arXiv:2105.10559v2 [eess.|V] 6 Oct 2022

Hyper-Convolution Networks for Biomedical Image Segmentation

Tianyu Ma*
Cornell University

Cornell Tech
tm478@cornell.edu

Adrian V. Dalca
Massachusetts Institute of Technology
Massachusetts General Hospital
Harvard Medical School

Mert R. Sabuncu
Cornell University
Cornell Tech

msabuncu@cornell.edu

adalca@mit.edu

Abstract

The convolution operation is a central building block of
neural network architectures widely used in computer vi-
sion. The size of the convolution kernels determines both
the expressiveness of convolutional neural networks (CNN),
as well as the number of learnable parameters. Increas-
ing the network capacity to capture rich pixel relationships
requires increasing the number of learnable parameters,
often leading to overfitting and/or lack of robustness. In
this paper, we propose a powerful novel building block, the
hyper-convolution, which implicitly represents the convo-
lution kernel as a function of kernel coordinates. Hyper-
convolutions enable decoupling the kernel size, and hence
its receptive field, from the number of learnable parame-
ters. In our experiments, focused on challenging biomedi-
cal image segmentation tasks, we demonstrate that replac-
ing regular convolutions with hyper-convolutions leads to
more efficient architectures that achieve improved accuracy.
Our analysis also shows that learned hyper-convolutions
are naturally regularized, which can offer better generaliza-
tion performance. We believe that hyper-convolutions can
be a powerful building block in future neural network ar-
chitectures for computer vision tasks. We provide all of our
code here: https://github.com/tym002/Hyper-Convolution

1. Introduction

Deep convolutional neural networks (CNNs) are state-
of-the-art models for many computer vision tasks, such as
semantic segmentation. A CNN typically stacks a large
number of convolution operations to aggregate contextual
information [27]]. Each convolution is associated with a ker-
nel that consists of a fixed number of learnable weights,
which is proportional to the kernel size. For many se-
mantic segmentation tasks, especially in the biomedical do-
main, successful CNN architectures integrate both short-

*This work is accepted to WACV 2022

Hyper-network

— K(, j)

Kernel weight

(l’.])_'

Spatial coordinates

Convolutional kernel
K of arbitrary sizes

3
2}
1
0

1k
2L
3k

3210

L1
1 2 3

Figure 1. Illustration of the proposed hyper-convolution. A hyper-
network takes a coordinate (i,j) and produces the kernel weight at
location (i,j) for an arbitrary size convolutional kernel. The only
learnable weights are in the hyper-network, independent of the size
of the used kernel.

range and long-range information [18] 26]. Because con-
volutions are local operations, successive convolutional lay-
ers, increased kernel size, and downsampling operations are
often used to capture long-range information and increase
capacity [16] 17, 25].

A straightforward way to expand the capacity of a CNN
is to use kernels with a larger size [30]. How-
ever, larger kernels substantially increase the number of
learnable parameters, which can lead to overfitting, partic-
ularly when training data are limited, as in many biomed-
ical applications. Alternative representations, such as de-
formable [[7] and dilated convolutions [6] can
enhance the expressiveness of CNNs. However, for tasks
such as image segmentation, which requires dense pixel-
level classification at the highest resolution, such sparse ker-

nels can be less effective [[13].

In this paper, we present a new building block that we
call hyper-convolution. A hyper-convolution is an implicit
representation of a kernel as a parametrized function of
kernel grid coordinates, which decouples the number of
learnable parameters from the size of the possible kernel.
We illustrate the hyper-convolution building block in Fig-
ure Similar to a regular convolution with larger ker-
nels, hyper-convolutions can achieve expanded expressive-
ness but with significantly fewer learnable parameters. We
perform experiments on two biomedical image segmenta-
tion tasks and show improved results with fewer parameters
compared to baseline methods. We also observe that the
learned hyper-convolutional kernels are naturally spatially
regularized, which helps combat overfitting and improves
performance. We have analysis of the convolutional kernels
in section 4.4.

The hyper-convolution concept can be used to improve
CNN architectures in a variety of ways. They can replace
regular convolutions to increase kernel sizes in an existing
architecture, given a fixed number of learnable parameters.
Alternatively, hyper-convolutions can reduce the number of
learnable parameters in a CNN, without modifying the ker-
nel sizes. More broadly, the flexibility that comes from de-
coupling the number of parameters from kernel size enables
the design of alternative architectures that might not have
been practical with regular convolutions.

A motivating example is illustrated in Figure [2] where a
flat CNN implements different kernel sizes without the need
for down/up-sampling layers. This architecture is competi-
tive for a segmentation problem, yet the substantial number
of parameters tends to lead to significant overfitting and op-
timization challenges. This is one of the main reasons that
flat architectures are not used in segmentation problems.
Replacing the convolutions with hyper-convolutions leads
to a significantly lower number of parameters, making the
architecture less prone to such complications.

Our contribution is two fold: we propose a novel hyper-
network based building block for image segmentation that
enables flexible kernel designs. The proposed strategy de-
couples the size and capacity of a convolutional kernel from
the total number of parameters. Additionally, as we demon-
strate empirically, the learned convolutional kernels are nat-
urally regularized and tend to be spatially smooth because
the hyper-network encodes kernels as a function of grid co-
ordinates. This property is also desirable in other areas,
such as in computer vision tasks where it can afford robust-
ness against adversarial attacks [8,134].

2. Related Works
2.1. Alternative Convolutional Kernels

There is substantial literature on alternative designs for
convolutional building blocks. Large kernels have been ex-
plored for image segmentation tasks [24]. Symmetric and
separable filters are often employed to reduce the computa-
tion cost and the number of parameters. Dilated convolu-
tions have been widely used to increase the receptive field
without increasing the number of learnable parameters [39]].
Atrous spatial pyramid pooling was developed to aggregate
long-range dependencies in images at multiple scales and
yielded excellent performance on several image segmenta-
tion datasets [3}16}10]. Dilated convolutions have been used
in multiple biomedical image segmentation tasks to achieve
state-of-the-art results [35]. The deformable convolution is
another popular technique to increase model capacity by
learning sampling locations of kernels and adopting geo-
metric variations in objects [7, 41].

These powerful techniques maintain a strong coupling
between the number of learnable parameters and the num-
ber of neighborhood pixels used in the convolutions. This,
in turn, can limit expressiveness for a wide variety of tasks
that require dense pixel-level predictions and exhibit long-
range dependencies such as biomedical image segmenta-
tion. In contrast, our hyper-convolutions break this link,
thus enabling the flexibility to design better networks. The
hyper-convolution can represent large yet dense kernels that
aggregate from all neighborhood pixels, in contrast to the
sparse kernels adopted by deformable and dilated convolu-
tions with even less parameters.

2.2. Non-local Network

Recently, self-attention and non-local networks have
gained popularity due to their ability to aggregate long-
range information by computing interactions between ev-
ery pixel pair in a feature map. A non-local block gathers
contextual information from all other positions in an im-
age by utilizing a self-attention mechanism [32, 37]. Other
works built on the non-local architecture and attempted to
reduce computational complexity by constructing a more
efficient attention map [40l |42]]. Non-local blocks have also
been used with a UNet architecture for biomedical image
segmentation tasks [38]]. Since non-local operations require
substantial computational resources, they are usually only
implemented on relatively low-resolution feature maps. In
contrast, the proposed hyper-convolution technique is feasi-
ble at any resolution.

2.3. Hyper-Networks

Hyper-Networks are powerful tools that can improve
neural networks’ parameter-efficiency without significantly
sacrificing expressiveness. The core idea is to use a neu-

% 3 x 3 Conv 5 x 5 Conv 9 x 9 Conv 5 x 5 Conv 3 x 3 Conv

z Input | —>| No.param.per |—| No.param.per |—> | No.param.per |~ | No.param.per |—| No.param.per | —> | Output

[channel: 9 channel: 25 channel: 81 channel: 25 channel: 9
Total No. param.
per channel: 149

<

5 Input |—>| 3 x3kermel |—>| 5x5kemel |—| 9x9kemel |—>| 5xSkemel |—>| 3 x3kernel |—>| Output

S

jus}

S

=

T T

T T Total No. param.
per channel: 25

Hyper-Conv N; =4 Hyper-Conv N; =4

No. param. per
channel: 5

No. param. per
channel: 5

Hyper-Conv N, =4

No. param. per
channel: 5

Hyper-Conv N, =4 Hyper-Conv N; =4

No. param. per
channel: 5

No. param. per
channel: 5

Figure 2. Overview of the flat CNN (top) and hyper-convolution network (bottom) architectures with same sized kernel for image segmen-
tation. N, is a hyper-parameter that mostly determines the number of parameters in hyper-network. The flat Hyper-CNN is significantly

more parameters efficient.

ral network to generate weights for another network that
is responsible for the main task. For example, Ha et el.
[9] used learnable layer embeddings as the input to the
hyper-network. For a deep convolutional neural network,
this strategy can greatly reduces the number of parameters
while maintaining an acceptable performance for a classi-
fication task [9]. The HyperSeg [22]] architecture encoded
the input image and used the encoded features to generate
the weights of a decoder that solved a segmentation task.
Hyper-networks have also been used to train networks ag-
nostic to the degree of regularization [[12}|33]].

2.4. Neural Network Implicit Representation

Neural networks have also been used to create an implicit
representation of different types of signals, such as natu-
ral images. These (usually small) neural networks take in a
pixel coordinate and encode an RGB-values image [[15 28]].
In addition to natural images, people have also used neu-
ral networks to learn representations of 3D shape [2, 23]].
More similar to our work, implicit representations have also
been used as kernel functions for irregularly structured point
cloud data where gridded data are not possible [36].

3. Proposed Method

Our core idea is an implicit representation for convolu-
tional kernels. For a standard convolutional filter, the train-
able weights are independent and explicitly learned. In-
stead, we propose to obtain the value of the kernel given
kernel grid coordinates using a parametrized function. Un-
like the standard convolution operation, the size of the con-
volutional kernel is a design choice that does not affect the
number of learnable parameters.

Specifically, a hyper-convolution is a function ®4(-) with
learnable parameters 6, that maps kernel grid coordinates to

a filter weight K. For example, for a 2D condition,
Kij = ®4(i,7) (D

where (i, j) € R? and K;; indicates the filter weight at filter
location ¢j. In our implementation, the center pixel of the
convolution kernel has coordinates (0, 0).

3.1. Hyper-network

We use a neural network to map each 2D input ker-
nel coordinate to the kernel value. The convolutional ker-
nel weights are thus generated by a neural network (hyper-
network) instead of independently learned.

For each convolution layer in a segmentation CNl\ﬂ we
implement a corresponding Hyper-CNN ®4(-) as a CNN
made up of 1 x 1 convolutional layers, with leaky ReLU
nonlinearities with slope of 0.1 [20].

Depending on the capacity of the network ®4, the Hyper-
convolutional kernel can be restricted or expressive as a reg-
ular convolution kernel. In our experiments, we use Hyper-
convolution with four hidden layers and the first three layers
have a fixed number of nodes. We experiment with several
variants of Ny, the number of nodes in the final layer.

3.2. Kernel size and parameter efficiency

In a standard convolution layer, where the 2D kernel size
is h x w (e.g., 3 x 3) and the numbers of input and output
channels are V;,, and N,,;, the total number of parameters
is (h X w) X N X Nyyt, excluding the bias terms.

In the hyper-convolution, a hyper-network with L layers
has (Np, + 1) Ny Nowe + Z]L:_Ol(Nj + 1)N;41 parameters,
where N is the number of nodes in the j’th layer. Addition-
ally, we have N;,, X N,,; independent bias terms. The num-
ber of learnable parameters of the hyper-convolution block

'Except for the final 1 x 1 convolution layer.

used in our experiments. Left: Liver lesion. Right: MS-lesion.

is independent of the kernel size h x w, and depends on the
number of input and output channels, as well as the hyper-
parameter Nz,.

In practice, N;,, and N,,; are most often chosen to be 8
or larger. Furthermore, in our hyper-network design, we can
choose the number of nodes before the penultimate layer
Ny, to be small (e.g. 8). Under these conditions, the num-
ber of parameters in the proposed hyper-convolution net-
work is dominated by the final layer and is approximately
(N, + 1) X Nipy X Npye. If N < h X w, the hyper-
convolution will have fewer parameters than a standard con-
volution kernel. In this way, for a fixed number of parame-
ters, the proposed representation can implement dense ker-
nels with larger receptive fields, capturing high-resolution
contextual information.

Hyper-convolutions can thus afford expanded receptive
field without increasing the number of training parameters.
With a small overhead due to additional operations generat-
ing kernel weights, the majority of the memory and compu-
tational burden is due to the main network.

3.3. Implementation Details

The input is a 2-channel pixel coordinate grid of the size
equal to the desired kernel size. For instance, for a 3 x 3
kernel, the input is

-1 -1 -1 -1 0 +1
0O 0 O -1 0 +1
+1 +1 +1 -1 0 +1

In training all methods, we perform data augmentation,
including vertical and horizontal flipping, random rotation
up to 30 degrees, and scaling between 0.9 and 1.1. We train
all the models using Adam optimizer [[14] with a learning
rate of 0.0001 and a mini-batch size of 8 (Liver lesion) or
16 (MS Lesion). We use dropout regularization with 0.5
probability and batch normalization in all the experiments.
We use soft Dice loss [21] for training and report Dice score
results for the epoch with the best validation loss. The Dice
score quantifies the overlap between the automatic and man-
ual segmentations and is widely used in the literature.

4. Experiments

The hyper-convolution is a general module that can re-
place regular convolutions for a wide range of computer vi-
sion applications. In this work, we demonstrate it in the
context of a segmentation task. We conduct experiments on
two biomedical image segmentation tasks: liver lesion seg-
mentation 3] and MS lesion segmentation [4] (Figure @)
We choose these to demonstrate the hyper-convolution op-
eration since many biomedical image segmentation tasks
benefit from larger receptive field while being prone to
overfitting. We then analyze perspectives of the hyper-
convolution kernels compared to standard kernels.

4.1. Baselines

We explore two CNN architectures. The UNet, a popular
architectures used for biomedical segmentation, adopts an
multi-scale feature learning, aggregating contextual infor-
mation using max-pooling operations [25]. Our 2D UNet
backbone has three max-pool layers, two convolution lay-
ers per scale, and ReLU nonlinearities. We use a regular
1 x 1 convolution in the final output layer. The number of
channels is doubled after each max-pool layer. Below we
indicate the number of channels of the first layer. We exper-
iment with varying the kernel size (3 X 3 and 5 x 5), using di-
lated convolutions [35], and modifying the number of chan-
nels, as described in the results sections and supplementary
material. We implement a non-local UNet [38]], which inte-
grates a non-local self-attention block into the bottleneck of
the UNet architecture. We also include our implementation
of HyperSeg[22], a recent segmentation method employing
hyper-networks.

The flat CNN backbone [39]] consists of a series of con-
volutional layers with different kernel sizes to expand the
receptive field (Figure 2). In contrast with the UNet, this
architecture does not have any down/up-sampling layers,
and convolution operations are executed at the original res-
olution. Each network block consists of several convolu-
tions, batch-normalization, and activation. The Kernel sizes
in consecutive layers first increase and then decrease, mir-
roring the UNet contracting and expanding architecture. As
another baseline, we implement a 2D flat CNN with dilated
convolutions that gradually expand the receptive field con-
sisting of sequential residual convolutional kernels of size
three, with dilations of 1, 2, 4, 8, 4, 2, 1. The numbers of
channels for each of these layers are 16, 32, 64, 128, 64, 32,
16, respectively.

4.2. Liver lesion segmentation

Data: We use the LiTS dataset [3] for liver lesion
segmentation, which includes 131 liver CT volumes with
ground truth manual segmentation. The number of slices (of
size 512 x 512) in each volume varies between 74 and 987,

0724 ©® hyper-convolution *
® convolution
0.701 x - =
+
L 0.68 . =
v 0.66 .
a +
0.64 A r X < +
0o62{e® * *
0.601 o
107t 10°

Number of Parameters (M)

Figure 4. Dice scores for held-out test data segmented with 5 X 5
Hyper-UNet (blue) and standard UNet (red) with different num-
bers of parameters in millions. o,x,x, and + indicates 4,8,16 and
32 initial channels.

totaling 58638 2D slices. We resize each slice to 256 x 256
and truncate the intensity range to [—100, 250] before map-
ping it to [0, 1]. We randomly split the data and use 80 cases
for training, 20 for validation, and 31 for held-out testing.

Results: We run extensive experiments with the UNet
backbone and the Hyper-UNet versions where all convolu-
tions are replaced with hyper-convolutions of a 5 x 5 kernel
size. For both methods, we vary the number of channels
used in the segmentation network, which changes the to-
tal number of learnable parameters. For the Hyper-UNet,
we also vary the number of units Ny, in the last layer of
the hyper-network. Figure] shows test Dice scores as the
number of parameters are varied for UNet and Hyper-UNet.
Hyper-convolutions yield a consistent and significant boost
in performance across a wide range of total number of learn-
able parameters. Dramatically increasing the number of pa-
rameters sometimes yields a drop in test performance, likely
due to overfitting.

Table[T]lists training and test results from the epoch with
best validation loss, in addition to the receptive field size
and number of learnable parameters, for a collection of
baseline models and their hyper-convolution counterparts.
As we increase the kernel size from 3 to 5 in the UNet
baseline, the train Dice improves, indicating a model with
better expressiveness. However, with this change, the to-
tal number of learnable parameters more than double, and
the UNet with the larger kernel exhibits more overfitting, as
evidenced by the increased difference between the test and
train Dice scores. The dilated UNet baseline with a kernel
size of 3 achieves the same receptive field as a 5 x 5 UNet.
Despite having the same number of learnable parameters
as a 3 x 3 UNet, the dilated UNet has worse test perfor-
mance, indicating that simply increasing the receptive field
does not necessarily improve model performance. By utiliz-

0.90 ./.—_Q/.

0.85 4
g
S 0.801 —e— Training
_S Testing
a

0.75 A

0.70 A

1 2 3 4 5

Number of Parameters (M)

Figure 5. Train (blue) and test (orange) Dice scores for 5 x 5
Hyper-UNet with different numbers of parameters in millions, cor-
responding to Ny, = 2,4, 8, 24.

ing a self-attention mechanism, the non-local UNet baseline
shows a robust improvement in test Dice score, without a
significant increase in the total number of parameters. The
performance boost is likely due to its capability of aggre-
gating information from all pixels and thus utilizing global
information to make predictions.

For methods with hyper-networks, we replace regular
convolution in the baselines with hyper-convolution. The
Hyper-UNet and non-local Hyper-UNet modify the UNet
and non-local UNet backbones by replacing all convolu-
tions with 5 x 5 hyper-convolutions that have N; = 4.
These hyper-convolutions in Hyper-UNet provide an in-
creased receptive field while only having half of the total
number of learnable parameters as the 3 x 3 UNet baseline.
With a more restricted kernel as an effective regularization,
the proposed Hyper-UNet and non-local Hyper-UNet show
less overfitting and achieve the best test performance com-
pared to all other methods.

The flat CNN baseline has 0.45M of learnable parame-
ters, which is much less than the 3 x 3 UNet, but has a re-
ceptive field that is larger. The test performance, however,
is the worst among all baselines, due to substantial overfit-
ting. In contrast, the flat Hyper-CNN, which implements
dense kernels with the same receptive field size as the flat
baseline, achieves a test Dice score that is comparable to the
3 x 3 UNet - with a significant reduction in the gap between
test and train scores and 1/5°th of the number of parameters
- the same as the flat baseline. This result suggests that it
is not just the reduced number of parameters in the hyper-
convolution that yields better test performance. In fact, as
we show below, we believe that the spatial regularization
achieved by hyper-convolution kernels can, in part, explain
the performance boost.

Hyperparameters: Table 2] shows results for the 32-
channel Hyper-UNet with variable kernel sizes and Ny, val-
ues. We observe that the 3 x 3 hyper-convolution kernel

Method Train Dice | Test Dice | Receptive Field | Params (M) \
UNet 3 x 3 [25] 0.931 0.651 68 pixels 2.1
UNet 5 x 5 0.942 0.639 128 pixels 53
Dilated UNet 3 x 3 [35] 0.930 0.612 128 pixels 2.1
HyperSeg [22] 0.902 0.683 All pixels 1.2
Non-local UNet 3 x 3 [38]] 0919 0.690 All pixels 2.3
Hyper-UNet 5 x 5 (ours) 0.886 0.728 128 pixels 1.2
Non-local Hyper-UNet 5 x 5 (ours) 0.893 0.733 All pixels 1.4
Flat Dilated CNN [39] 0.892 0.607 89 pixels 0.45
Flat Hyper-CNN (ours) 0.824 0.647 89 pixels 0.45

Table 1. Train and test performance of different models in the liver lesion segmentation task. Best test Dice score is bold-faced.

’ Size, Ny, \ Test Dice \ Recep. Field \ Params (M) ‘

3x3,2 0.604 68 pixels 0.73
3x3,4 0.627 68 pixels 1.2
3x3,8 0.648 68 pixels 2.2
5x5,2 0.692 128 pixels 0.73
5x5,4 0.728 128 pixels 1.2
5x5,8 0.705 128 pixels 2.2
TxX7,2 0.683 188 pixels 0.73
7Tx17,4 0.704 188 pixels 1.2
7TX7,8 0.717 188 pixels 2.2

Table 2. Performance of Hyper-UNet on Liver Lesion data with
different kernel sizes and hyper-network capacity.

performs worse than the standard 3 x 3 convolution, possi-
bly because of its restricted capacity. The gap shrinks as
we increase Ny. Larger kernel sizes achieve better test
Dice scores, however increasing hyper-network capacity
(i.e., N1) does not always improve performance (seen with
5 x 5 kernels), likely due to overfitting.

Figure [5] shows the train and test Dice scores for 5 x 5
hyper-convolutions with different Ny, = 2,4,8,24. A
hyper-convolution model with N;, = 24 has approximately
the same number of learnable parameters as a regular 3 x 3
UNet. We note that the train Dice increases with number of
parameters, indicating better model expressiveness. How-
ever, the test Dice peaks at N;, = 4, demonstrating that
regularization via restricted hyper-convolution capacity can
improve generalization.

4.3. Multiple Sclerosis Lesion Segmentation

Data: Next, we consider a Multiple Sclerosis (MS) le-
sion segmentation task. We use a public dataset [4], which
contains brain MRI scans from 19 subjects, each with 4-6
scans from different time points. Among the 19 subjects,
manual annotations are provided for 5 subjects (21 images),
and the remaining 14 subjects (61 images) are used for in-
dependent testing. For the 14 test subjects, we submit seg-
mentations via an online portal for evaluation, which reports
back test Dice scores. The dataset has two independent ex-
pert annotations, which have a Dice overlap score of 0.732,

0.66 A -
® hyper-convolution +
0.64{ ® convolution + +
% X
] .+
o 0.62 » X%
8 .
& 0.60 A *
(] *
1)
7 0.581 :
*
0.56 A
0541 o
101 100

Number of Parameters (M)

Figure 6. Test Dice scores for 5 x 5 Hyper-UNet (blue) and UNet
baseline (red) with different numbers of parameters. o,%,x, and +
indicates 4,8,16 and 32 initial channels.

highlighting how challenging the task is. We use the inter-
section of the two manual labels as the gold standard labels
during training and validation. Each image contains four
different Magnetic Resonance Imaging (MRI) contrasts:
FLAIR, PD-weighted, T2-weighted, and T1-weighted. The
original images have size 182 x 256 x 182. In total there are
3822 2D images for training. We crop the center of each 3D
image to 144 x 176 x 144 and apply z-score normalization
for subsequent training.

Since we only have 5 subjects with gold standard seg-
mentations, we run 5-fold experiments where each fold has
4 train subjects and 1 validation subject. All reported Dice
scores (train and test) are averaged across these 5 folds. As
the baseline UNet model, we adopt the multi-branch variant
[1] (MB-UNet) which utilizes the 4 modalities and all or-
thogonal planes of the 3D volumes to achieve competitive
results for this task.

Results: Figure [6] shows test Dice scores for the MB-
UNet models with different numbers of parameters obtained
by varying the number of channels and kernel size for stan-
dard convolution. The hyper-convolutions implement 5 x 5
kernels. As in the liver lesion segmentation task, we ob-

Method

Train Dice | Test Dice | Receptive Field | Params (M) \

MB-UNet 3 x 3[1]] 0.887 0.624 68 pixels 2.1
MB-UNet 5 x 5 0.893 0.605 128 pixels 53
Dilated MB-UNet 3 x 3 0.881 0.625 128 pixels 2.1
HyperSeg [22]] 0.864 0.64 All pixels 1.2
Non-local MB-UNet 3 x 3 [38]] 0.905 0.637 All pixels 2.3
Hyper-MB-UNet 5 x 5 (ours) 0.82 0.655 128 pixels 1.2
Non-local Hyper-MB-UNet 5 x 5 (ours) 0.834 0.652 All pixels 1.4
Flat Dilated CNNJ[39] 0.854 0.616 89 pixels 0.45
Flat Hyper-CNN (ours) 0.805 0.649 89 pixels 0.45

Table 3. Train and Test Performance of different models in MS lesion segmentation task. Best test Dice score is bold-faced.

serve that hyper-convolutions consistently boost the test
Dice score over a wide range of parameterizations.

Table [3| lists train and test results from the epoch with
best validation loss, in addition to the receptive field size
and number of learnable parameters, for baseline models
and their hyper-convolution counterparts. Similar to above,
we observe that hyper-convolutions boost test performance
and shrink the gap between train and test loss.

Contrary to what we observed in liver lesion segmenta-
tion, the flat Hyper-CNN yields better results than the BM-
UNet baseline and the non-local UNet, which have larger
receptive fields. We believe this difference can be attributed
to the fact that MS lesions are relatively small compared to
liver lesions, and thus their segmentation does not require a
large receptive field (Figure [3).

Hyperparameters: Table (4| shows results for the 32-
channel Hyper-MB-UNet with variable kernel sizes and Ny,
values. We observe that the 5 x 5 hyper-convolution kernel
yields the best results. We also note that, as before, increas-
ing the capacity of the hyper-network does not always yield
better test performance, presumably due to overfitting. This
underscores the importance of the regularization achieved
by using restricted hyper-convolutions.

Size, Ni, | Test Dice | Recep. Field | Params (M) ‘
3x3,2 0.622 68 pixels 0.73
3x3,4 0.625 68 pixels 1.2
3x3,8 0.617 68 pixels 2.2
5x5,2 0.648 128 pixels 0.73
5x5,4 0.655 128 pixels 1.2
5x5,8 0.651 128 pixels 2.2
7TX7,2 0.634 188 pixels 0.73
TxT7,4 0.644 188 pixels 1.2
7Tx7,8 0.646 188 pixels 2.2

Table 4. Performance of Hyper-MB-UNet on MS Lesion data with
different kernel sizes and hyper-network capacity.

4.4. Kernel Smoothness

To gain further insights into hyper-convolutions, we per-
form an analysis of the kernels of the 5 x 5 UNet and Hyper-
UNet models trained for the liver segmentation task. Fig-
ure [7] shows the learned 5 x 5 kernels for standard convolu-
tions and hyper-convolutions. In each panel, each row cor-
responds to one layer in the network, from which we show
8 randomly chosen kernels. We observe that the kernels
learned in both the low capacity (N, = 8) and high capac-
ity (/N = 24) Hyper-CNNs are significantly smoother than
those learned in the standard UNet, despite the high capac-
ity hyper-convolution being equally expressive as the stan-
dard 5 x 5 convolution (as we show below). The smooth-
ness of a kernel can be quantified by calculating its aver-
age 2nd-order spatial derivative (Laplacian). Lower Lapla-
cian values indicate smoother kernels. Layer-wise average
Laplacian values are listed in Figure [/} which corroborate
our visual assessment.

To better understand whether the smoothness of the
hyper-convolution kernels is due to learning dynamics or
limited expressiveness, we experimented with mapping
the learned regular convolution kernels directly to hyper-
convolution kernels. To achieve this, we train a hyper-
network to reconstruct each learned UNet kernel by min-
imizing L2 loss on kernel weight values. As we can see
from Figure [8] both the low (N = 8) and high capacity
(N1, = 24) hyper-networks can well approximate the CNN
kernels shown in Figure[7[a) and achieve similar Laplacian
values. While the high capacity yields a more accurate rep-
resentation, the low capacity hyper-network is surprisingly
close too, even though it has less than half of the parameters
of the regular 5 x 5 convolution.

These results show that the smooth kernels learned by the
Hyper-CNN (Figure [/)) are not due to the limited capacity
of the hyper-network, but rather learning dynamics.

The benefits of smooth kernels have been studied in pre-
vious research. Feinman and Lake [8] proposed to use a
smooth kernel regularizer to encourage the kernel weights
to be spatially correlated. They demonstrated that smooth

084 T A L8NS T bk T ™
o82 I I 8 I I B T
0.77 f*."i.'li'!':?ir.-:
075 [iy k=l b= ol e o 0
0.66 ¥ hur g v i B TI Y
063 I o o P - PG
055-1%!1' FELNR

052 jr i1 1:-‘F‘
(@)

o6 sl 4™ "R (AT BT b L [
o A HEFFr oo Lkl da"s
o20 [sWR. W, g o MELFLAF#
o2 Tl BN dS5W oo FF ™ 1a™] o
2T JEEAETE caddr T aws "
s = gl e o wE JdiE qrr™
WY BT E L L | dVEAatal [1aF | T
o2s IF ™y il @P oo &l d* @R dRE

(b) ©

Figure 7. Visualization of 5 X 5 convolutional kernels and their Laplacians in different layers of the networks for (a) UNet baseline. (b)
Hyper-UNet (N1, = 8). (c) Hyper-UNet (N1, = 24). Each row corresponds to one network layer, with the average Laplacian value listed.

076 18k T e T
os7] B bl A

052 T 0 2 Tl P
om0 by 4 55 5 A e

065 o i E MEN T K
0.2 [g et et ol " K
048 " Ko 1 1 O I 2
o4 IR ML T MR
o4s P FELCSET

073 ol it o ol < - 37 15
070 [% 5y fad Ll ol 0 28 50
0.60 ™5 s il el s 3 L1 15
o8 W 5 ek il WP 2= MR e
o2 o Wy I LI R

040 B T TN o i g TR N

(a)

)

Figure 8. Visualizations of reconstructed 5 x 5 regular UNet kernels from Figure[7[a) using a Hyper-CNN with (a) Nz, = 8. (b) N1, = 24.
Each row corresponds to one network layer with the average Laplacian value listed.

kernels show better generalization performance. Recently,
Wang et al. [34] also suggested that models with smooth
convolutional kernels, especially in the earlier layers, tend
to have better adversarial robustness. They argued that a
smooth kernel can ignore the high-frequency component of
an image which is usually invisible to the human eye and
can be disruptive for predictions. We believe that this spa-
tial smoothness explains the smaller gap between the train
and test performance we observe with Hyper-CNNss.

We also find that deeper layer kernels in the Hyper-CNN
are less smooth than the first layer, as evidenced by higher
Laplacian values. For the convolution that is directly oper-
ated on the input image, smooth kernels can eliminate the
noise and make the model more robust. We include a more
detailed analysis of this in the Supplementary Material.

5. Conclusion

In this paper, we presented hyper-convolution, a novel
building block that can be used with any convolutional neu-
ral network architecture. The hyper-convolution represents
kernel weights as an implicit function of grid coordinates,

as opposed to regular convolutions that treat each kernel
weight independently. Hyper-convolutions decouple the to-
tal number of learnable parameters in a kernel from its size,
enabling us to use larger filters with greater receptive field
without having too many learnable parameters. It can also
be used to reduce the total number of parameters without
modifying the receptive field but allowing for regulariza-
tion. We observe that the learned hyper-convolution kernels
are smoother than their regular counterparts, which can help
combat overfitting and improve generalization and robust-
ness.

We conducted experiments on two challenging biomed-
ical tasks: liver lesion segmentation and MS-lesion seg-
mentation. We test the performance of hyper-convolution
against other competing methods including dilated convo-
lution and non-local network. We demonstrated that hyper-
convolutions can boost performance by increasing the re-
ceptive field, reducing the number of learnable parame-
ters, and/or regularizing the kernels. We believe hyper-
convolutions will be an important building block for future
neural network architectures, enabling researchers to fur-

ther explore the trade-offs between capacity and generaliza-
tion.

Acknowledgement

This work was supported by NIH grants RO1LM012719,
RO1AG053949, the NSF NeuroNex grant 1707312, and the
NSF CAREER 1748377 grant.

References

(1]

[2

—

3

—

(4]

[5

—

[6

—_

[7

—

[8

—_—

[9

—

(10]

(11]

[12]

(13]

Shahab Aslani, Michael Dayan, Loredana Storelli, Massimo
Filippi, Vittorio Murino, Maria A Rocca, and Diego Sona.
Multi-branch convolutional neural network for multiple scle-
rosis lesion segmentation. Neurolmage, 196:1-15, 2019.
Matan Atzmon and Yaron Lipman. Sal: Sign agnos-
tic learning of shapes from raw data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2565-2574, 2020.

Patrick Bilic, Patrick Ferdinand Christ, Eugene Vorontsov,
Grzegorz Chlebus, Hao Chen, Qi Dou, Chi-Wing Fu,
Xiao Han, Pheng-Ann Heng, Jiirgen Hesser, et al. The
liver tumor segmentation benchmark (lits). arXiv preprint
arXiv:1901.04056, 2019.

Aaron Carass, Snehashis Roy, Amod Jog, Jennifer L Cuz-
zocreo, Elizabeth Magrath, Adrian Gherman, Julia Button,
James Nguyen, Ferran Prados, Carole H Sudre, et al. Longi-
tudinal multiple sclerosis lesion segmentation: resource and
challenge. Neurolmage, 148:77-102, 2017.

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834-848, 2017.
Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEFE international confer-
ence on computer vision, pages 764-773, 2017.

Reuben Feinman and Brenden M. Lake. Learning a smooth
kernel regularizer for convolutional neural networks. arXiv
preprint arXiv:1903.01882, 2019.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016.

Ryuhei Hamaguchi, Aito Fujita, Keisuke Nemoto, Tomoyuki
Imaizumi, and Shuhei Hikosaka. Effective use of dilated
convolutions for segmenting small object instances in re-
mote sensing imagery. In 20/8 IEEE winter conference on
applications of computer vision (WACV), pages 1442-1450.
IEEE, 2018.

Junjun He, Zhongying Deng, and Yu Qiao. Dynamic multi-
scale filters for semantic segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 3562-3572, 2019.

Andrew Hoopes, Malte Hoffmann, Bruce Fischl, John Gut-
tag, and Adrian V Dalca. Hypermorph: Amortized hyper-
parameter learning for image registration. arXiv preprint
arXiv:2101.01035, 2021.

Zilong Huang, Xinggang Wang, Lichao Huang, Chang
Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross
attention for semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

[14]

[15]

(16]

(7]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Sylwester Klocek, Lukasz Maziarka, Maciej Wolczyk, Jacek
Tabor, Jakub Nowak, and Marek Smieja. Hypernetwork
functional image representation. In International Conference
on Artificial Neural Networks, pages 496-510. Springer,
2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25:1097-1105, 2012.

Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1(4):541-551,
1989.

W Liu, A Rabinovich, and AC Berg. Parsenet: looking wider
to see better. corr abs/1506.04579 (2015). arXiv preprint
arXiv:1506.04579.

Marc Moreno Lopez and Jonathan Ventura. Dilated convo-
lutions for brain tumor segmentation in mri scans. In In-
ternational MICCAI Brainlesion Workshop, pages 253-262.
Springer, 2017.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-
fier nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, page 3. Citeseer, 2013.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In 2016 fourth international
conference on 3D vision (3DV), pages 565-571. IEEE, 2016.

Yuval Nirkin, Lior Wolf, and Tal Hassner. Hyperseg: Patch-
wise hypernetwork for real-time semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4061-4070, 2021.

Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 165-174, 2019.

Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and
Jian Sun. Large kernel matters—improve semantic segmen-
tation by global convolutional network. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4353-4361, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234-241.
Springer, 2015.

Mohamed Samy, Karim Amer, Kareem Eissa, Mahmoud
Shaker, and Mohamed ElHelw. Nu-net: Deep residual wide
field of view convolutional neural network for semantic seg-
mentation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 267—
271, 2018.

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Vincent Sitzmann, Julien NP Martel, Alexander W Bergman,
David B Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. arXiv
preprint arXiv:2006.09661, 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1-9, 2015.
Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise
convolutional kernels. arXiv preprint arXiv:1907.09595,
2019.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Frangois Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6411-6420, 2019.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, £ ukasz Kaiser, and I1-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017.

Alan Q Wang, Adrian V Dalca, and Mert R Sabuncu.
Regularization-agnostic compressed sensing mri reconstruc-
tion with hypernetworks. arXiv preprint arXiv:2101.02194,
2021.

Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P Xing.
High-frequency component helps explain the generaliza-
tion of convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8684-8694, 2020.

Shuhang Wang, Szu-Yeu Hu, Eugene Cheah, Xiaohong
Wang, Jingchao Wang, Lei Chen, Masoud Baikpour, Ar-
inc Ozturk, Qian Li, Shinn-Huey Chou, et al. U-net using
stacked dilated convolutions for medical image segmenta-
tion. arXiv preprint arXiv:2004.03466, 2020.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric continu-
ous convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2589-2597, 2018.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794-7803, 2018.

Zhengyang Wang, Na Zou, Dinggang Shen, and Shuiwang
Ji. Non-local u-nets for biomedical image segmentation.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 6315-6322, 2020.

Fisher Yu and Vladlen Koltun.
aggregation by dilated convolutions.
arXiv:1511.07122, 2015.

Multi-scale context
arXiv preprint

[40]

[41]

[42]

Kaiyu Yue, Ming Sun, Yuchen Yuan, Feng Zhou, Errui Ding,
and Fuxin Xu. Compact generalized non-local network. In
NeurIPS, 2018.

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9308-9316, 2019.
Zhen Zhu, Mengde Xu, Song Bai, Tengteng Huang, and Xi-
ang Bai. Asymmetric non-local neural networks for seman-
tic segmentation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 593-602,
2019.

