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Abstract

Effective space domain awareness requires positive iden-
tification of artificial satellites. Current methods for ex-
tracting object identification from observed data require
spatially resolved imagery which limits identification to
objects in low earth orbits. Many artificial Earth satel-
lites, however, operate in geostationary orbits at distances
which prohibit ground based observatories from resolving
spatial information. This paper demonstrates an object
identification solution leveraging modified residual convo-
lutional neural networks to map distance-invariant spec-
troscopic data to object identity. We report classification
accuracies exceeding 80% for a simulated 64-class satel-
lite problem—even in the case of satellites undergoing con-
stant, random re-orientation. An astronomical observing
campaign driven by these results returned accuracies of
~72% for a nine-class problem with an average of 100 ex-
amples per class, performing as expected from simulation.
We demonstrate the application of variational Bayesian
inference by dropout, stochastic weight averaging (SWA),
and SWA-focused deep ensembling to measure classifica-
tion uncertainties—critical components in space domain
awareness where routine decisions risk expensive space as-
sets and carry geopolitical consequences.

1. Introduction

The ideal data type for identifying resident space ob-
jects (RSOs; artificial satellites) is resolved imagery. An-
alysts can easily interpret the information content of im-
ages and recent work has demonstrated that deep neural
networks provide efficiency enhancements to signal extrac-
tion [15} 16, 22]]. In addition, data collection is passive —
RSOs always reflect incident sunlight, and ground based
telescopes collect without interfering with the target.

Unfortunately, smaller and more distant RSOs require

*jonathan.gazak.1.ctr@us.af.mil
Tjustin.fletcher.14.ctr@us.af. mil

4012

Figure 1: Pristine renders of three satellites, Hubble, DI-
RECTYV, and Almaz [21]. Satellite spectral energy distri-
butions are complex and vary strongly with orientation and
illumination angle.

increasingly large telescopes to resolve, placing the major-
ity of RSOs beyond the limits of current imaging technol-
ogy. For positive identification of objects beyond low earth
orbit (LEO; altitude < 1000 km), new approaches are as
necessary as they are elusive.

One promising technique, spectroscopy, is both passive
and distance-invariant, having been used to study the most
distant objects in the universe for well over 50 years [14].
In the field of space domain awareness, spectroscopy has
lagged behind its potential for three reasons. First, the in-
accuracy of material reflection models (bi-directional re-
flection functions, or BRDFs) does not allow attribution of
spectroscopic features to satellite materials and geometries.
Second, spectroscopic data is not easy to interpret (see Fig-
ure [2)—out of reach of human analysts even after extensive
expert data reduction. Third, underlying truth data on mate-
rial and geometry are difficult to obtain as spectra are highly
variable based on orientation (Figure[I). These hurdles pre-
clude transition of spectroscopic solutions beyond labora-
tory settings.

In this work we demonstrate learned spectroscopic pos-
itive identification by modeling a high yield, low cost sen-
sor and training convolutional neural networks (CNNs) on
simulated output. By eliminating reliance on both physics-
based priors and exquisite data reduction, our technique
(SpectraNet) identifies RSOs with accuracy exceeding 80%
under the most difficult condition of random axis orienta-
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Figure 2: Top panel: A simulated raw FPA observation
of 18 Scorpii, a star which is a close analog of our Sun
[3], such that this spectrum and FPA frame are typical of
resident space objects reflecting solar radiation. These raw
frames are used to train models in this paper. Bottom: The
1-D reduced spectrum of 18 Scorpii after a raw FPA frame

is fully calibrated [2].
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tion and for large numbers of satellite classes.

We verify simulated results by collecting on sky spec-
tral observations of RSOs in geostationary (GEO; altitude
> 35000 km) orbits. SpectraNet learns to classify objects
in our on sky dataset with accuracy of ~72%, in agreement
with simulated results given the limited (~100 examples per
class) dataset. In this paper we contribute:

* A novel method capable of identifying spatially un-
resolved artificial satellites—a critical technology for
space domain awareness—by allowing deep Bayesian
residual networks to learn spectroscopic features from
raw scientific imagery. These models can produce well
calibrated softmax probabilities, enabling practical ap-
plications of SpectraNet at low sample counts.

Both real and synthetic datasets representing the spec-
troscopic satellite identification application domain
and baseline analysis of classifier performance on
those datasets as a function of observation count
(dataset size)ﬂ

A framework for designing spectroscopic positive
identification systems by experimenting across number
of classes, observation quality (signal to noise), and
number of examples needed to achieve suitable classi-
fication performance.

In §|Z| we discuss topics related to this work, followed
by our specific problem formulation in §3] We describe the
datasets used for training in §4} and the experiments con-
ducted in §5] before summarizing results in §6]

2. Related Works
2.1. Deep Learning for Space Domain Awareness

To our knowledge no practical methods have demon-
strated positive identification of spatially unresolved RSOs,
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and thus any identification of objects in geostationary orbits
are, at best, random.

More generally, convolutional neural networks have
been applied to object detection, detection of closely spaced
objects, pose estimation, reconstruction of high resolution
imagery, and segmentation of satellites [6l [10} [19, 23] 26].
In these examples, solutions learned from high contrast sci-
entific imagery solve problems faster and more effectively
than physics based methods.

2.2. Residual Networks

The batch normalization and skip connections of Resid-
ual Networks (ResNets) have long been applied to increase
the training speed and stability of deep neural networks
[L1]. We adopt the ResNet-152 backbone from that work
with adjustments (see §3) to the initial convolutional layer
to account for our non-standard input data shape described

in §4
2.3. Bayesian Neural Networks

Advantages of neural networks formulated to deliver
probabilistic inference are tantalizing in problems with lim-
ited data. Such Bayesian formulations, first introduced in
1992 by [4], have become an active area of research as
teams attempt to overcome difficult problems such as prior
choice [25], with evidence supporting both the need for de-
scriptive priors in shallow networks [[7] and suggesting such
computationally restrictive prior choices can be substituted
for simple approximations when working with larger back-
bones [5].

Deep networks trained on small datasets are over
specified, such that many parameter combinations pro-
vide high performance. In contrast to classic point esti-
mate deep networks—which optimize to a static parameter
set—probabilistic Bayesian formulations rely on marginal-
ization; the combination of many parameter settings scaled
by posterior likelihoods. We roughly categorize these tech-
niques into single- and multi-basin ensembles to distinguish
those which marginalize within a basin of attraction of one
model, and those which marginalize over multiple trained
instances of a model.

The simplest implementations introduce dropout after
every network layer during training and inference [9]. Such
implementations are computationally efficient and mathe-
matically equivalent to placing Bernoulli priors over every
convolutional weight [8]. By decreasing active neurons,
though, the capacity of a model is decreased. We adopt this
single-basin technique for large 64 class datasets to capital-
ize on training efficiency.

For smaller nine class datasets we adopt the perspective
of [24]] that deep ensembles represent Bayesian marginal-
ization. In a single basin of attraction, [12] find that
Stochastic Weight Averaging (SWA) shifts a deep network
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Figure 3: Distribution of signal to noise proxy DN,,,.q for
the observed dataset in this work. While lower values of-
fer enticingly short exposure times and higher yield obser-
vations, this work demonstrates that classifier performance
suffers dramatically below DN, .4 of 50 (@.

200 25

away from the highest performing training loss towards the
center of the wider loss valley. That center, offset from op-
timal training loss, should generalize better due to steep
increases in loss near basin edges in stochastic gradient
descent [12]. Unlike SWA, in which a running mean of
small batch model parameters is stored for inference, SWA-
Gaussian (SWAG) samples multiple solutions from a SWA
model by perturbing the SWA weights using a low rank
and diagonal covariance approximation accumulated during
training [[17]. SWAG defines a Gaussian posterior over net-
work weights, while SWA implies that posterior by training
with constant learning rate.

Finally, we extend SWA and SWAG by investigating
multi-basin techniques multi-SWA and multi-SWAG, in
which multiple training iterates are ensembled [24]. En-
sembling across multiple models drives increased accuracy
and calibration by sampling not only within basins of at-
traction but also across many unique basins. We note that
SWAG and multi-basin ensembling techniques require sig-
nificantly more training and inference time (or computing
power), and discuss these trade offs in §|ﬂ

2.4. Model Calibration

Deep networks are known to be poorly calibrated and
highly overestimate classification confidence. With limited
data and the significant support of deep neural networks,
many parameterizations provide functionally unique infer-
ence with similar performance; marginalizing over such di-
versity provides increased accuracy and better calibration
[24]. Calibration can be further improved by tempering a
Bayesian posterior (see Equations 2-3 of [24])). In practice
this is achieved by raising output logits to the power T—!
before producing sharper (T< 1) or more diffuse (T>1) soft-
max probabilities.

We adopt expected calibration error (ECE) to measure

0
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Target | DNyjeg >0 >50 > 100
GEO 1 274 235 142
GEO 2 127 54 14
GEO 3 219 119 54
GEO 4 357 128 32
GEO 5 128 67 16
GEO 6 215 85 15
GEO 7 93 90 88
GEO 8 320 161 21
] Total \ 1733 939 382 \

Table 1: Example counts as a function of the SNR proxy
adapted for this work §4.7] Classifier performance im-
proved by ~20% by removing examples with DN,,,.q <50,
while for higher cuts the dataset is too sparse to train. The
distribution of DN, .4 is plotted in Figure@

the base and tempered calibrations of our ensembling stud-
ies [20]. ECE is calculated by binning validation inferences
by softmax probability of the predicted class and summing
the weighted difference between the binned softmax pre-
diction and the percentage of successful inferences in that
bin. That difference, ECE, becomes negligible (~0), when
softmax probabilities are properly calibrated to validation
predictions.

During experiment evaluation, we vary temperature 0.05
< T < 10 and report the best expected calibration error and
temperature required to reach it. T > 1 represents overconfi-
dent trained models, while T < 1 suggests underconfidence.

3. This Work

We modify the initial convolutional layer of ResNet-152
to account for rectangular input data, exchanging kernel
shape of 7x7 with 7x49 and stride from 2x2 to 2x12. Kernel
width showed no measurable effect on training or accuracy,
suggesting a lack of importance in narrow spectral features.
Increasing stride in the spectral direction slightly reduces
the capacity of the model while significantly reducing mem-
ory footprint, allowing larger input batches and increased
training speed and stability.

For large datasets with 64 classes, a dropout rate of 10%
was selected empirically by varying from 0 (no dropout)
to 20% in steps of 2.5%; accuracy slowly decreases above
dropout rates of 15% for this problem and architecture. We
hypothesize that the observed smooth decrease in accuracy
is due to the decrease in effective model capacity with in-
creasing dropout rate. Epistemic uncertainty is measured by
inferring 100 times for each validation inference. This pos-
terior mapping slows inference. In space domain awareness
we have the luxury of slow inference, but note that meaning-
fully descriptive uncertainty requires fewer forward passes.

We implement SWA, SWAG, multi-SWA and multi-
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Figure 4: The effect of dataset size on classifier accuracy
for a nominal, high sensitivity system trained on 64 satel-
lite classes. Blue solid lines represent constant nadir orien-
tation (©,,4q4;-) While red dashed lines represent more dif-
ficult random orientations (©,4,40m ). Lines anchored by
circles represent Top-3 accuracy, while triangles represent
Top-1. At few (~50) observations per target, accuracy be-
tween O,,44: and O,.qndom are upwards of 40%, a gap that
shrinks to less than 10% by 500 observations.

SWAG and perform hyperparameter studies to settle on
ideal model parameters before training ensembles. We al-
low the scale of SWAG perturbations to vary, finding that
values lower than 0.5 of [24] are better suited to the dynam-
ics of our problem. These marginalization technqiues are
applied to on sky and simulated nine class datasets.

4. Datasets
4.1. Simulated Data

We simulate a spectrograph designed using commercial
off the shelf optics components to enable realistic simula-
tions of focal plane array (FPA) output and demonstrate the
application of ResNets to affordable, standardized optical
systems. We utilize a proprietary radiometry code and adopt
the Cerro Paranal Advanced Sky Model [13}[18]] to provide
atmospheric transmission and emission based on parame-
ters including precipitable water vapor (PWV), airmass, and
observatory altitude. Resulting images are 200x1340x1 in
height, width, and channels (Figure [2). Simulated images
show a characteristic horizontal strip of exposed pixels; this
strip is the result of an unresolved point spread function
smeared along the horizontal image axis as a function of
photon wavelength. In this way, a single channel FPA re-
solves rich spectral—or color—information. Our simulated
instrument design captures a spectral energy distribution be-
tween 630 and 980 nanometers.

We generate two families of datasets, one with all satel-
lites maintaining nadir orientations (0,,44:--) in Which the
spacecraft are pointed directly towards Earth’s surface. This
approximates normal operations for most space assets. We
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Classifier Accuracy
Nobs /RSO @nadir @Tandom

Top-1 | Top-3 | Top-1 | Top-3

50 60.6 86.3 22.5 48.1

100 73.0 91.7 43.3 65.3
200 75.5 94.5 61.6 87.6
500 81.2 96.9 72.6 92.5
1000 85.4 99.0 77.2 95.0

Table 2: Tabulated accuracies for the modified ResNet-152
64 class point estimate neural network described in §3| We
use 80% of data for training and hold out 10% each for val-
idation and testing. Baseline (random guessing) accuracy
for a 64 class dataset is 1.56%.

also produce a more difficult dataset, in which every ob-
ject randomly reorients between each exposure (O,.qndom)-
This is an unrealistically challenging dataset, except for ex-
tremely high frame count datasets where the neural network
is learning based on a complete sampling of the target ori-
entation. Reality falls somewhere in between—most space
assets maintain a fixed orientation, but maneuvers and re-
orientations do occur and are critical to identify through.

Two observing modes, a nominal, dedicated instrument
(64 classes at high signal to noise), and realistic early gen-
eration spectroscopic positive ID (nine classes at moderate
signal to noise) are simulated, such that both current and fu-
ture iterations of SpectraNet can be discussed. Low signal
to noise datasets are representative of the real data discussed
in the following section.

4.2. Observed Data

We repeatedly observed eight RSOs over six nights be-
tween March and May of 2021 using the spectrograph sim-
ulated for §4.1] Observing conditions ranged from photo-
metric to scattered thin cloud cover. We limited our obser-
vations to high altitudes and sunlit RSOs to maximize col-
lected flux and minimize observing time. Exposure times
vary between five seconds and five minutes.

A critical metric for applications of deep learning to sci-
entific imagery is signal to noise ratio (SNR), a measure of
the level of source signal compared to the observation noise.
For problems such as object detection [6]], decreasing SNR
makes detections inherently more difficult as source signals
are eventually overwhelmed by noise. Spectroscopic SNR
is generally measured as a function of wavelength after ex-
pert data calibration (e.g. [L1]), but the implication is the
same — for decreasing spectral SNR, individual spectral fea-
tures become increasing difficult to detect. In this work, we
adopt a proxy for SNR, median count (DN,,,.4), which pro-
vides a single signal measurement for a spectroscopic ob-
servation instead of a SNR spectrum,

We calculate DN,,,.4 by taking the median count level
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Figure 5: Bayesian inference showing the top-5 classifica-
tions for two validation set observations. Black dots show
single forward pass inferences repeated 100 times for the
observation. Shaded boxes denote the median softmax in-
ference and surrounding quartiles; Dark blue denoting truth
class, light red denoting incorrect classes. Left panel: High
confidence classification. Right panel: a lower confidence
classification.

across pixel rows in the dispersion direction, subtracting a
polynomial fit to the background and bias levels, and sum-
ming the resulting counts,

DNmed = Z DNspectral - Dkag,spectTal (1)

DN,,.e.q removes wavelength dependency on spectral
SNR and is robust against outliers (hot pixels, cosmic rays),
and spectral energy distribution.

For this work, DN,,,.4 serves two additional roles. First,
the singular value per example illuminates classifier accu-
racy as a function of SNR, informing target limitations as
a function of RSO size, distance and instrument collecting
area. Second, a single efficient proxy for SNR allows au-
tonomous systems to quickly adjust exposure time to max-
imize the utility of collected spectra during unmanned ob-
servations.

The RSO observation statistics are tabulated in Table [T}
and include dataset sizes after a cut at DN,,,.4 > 50 which
significantly enhanced classifier performance, and > 100, a
limit which future experimentation will probe but for which
we collected too few examples to exercise here.

We add 100 examples of an additional class in which the
science instrument was exposed against no target. Frames
of this type are denoted as flats in the astronomy commu-
nity and we adopt this nomenclature. The addition of flats
to this work bolsters dataset size and protects the classi-
fier from improperly inferring a RSO class if observational
conditions (misaligned instrument, cloud cover, instrument
malfunction) result in an empty frame.
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Threshold | %uncertain | Top-1 Acc | Top-3 Acc
200 obs 64 class ©,,4qir
0.4 16.2 75.0 96.1
0.6 28.6 80.4 97.2
0.8 43.2 87.1 98.1
200 obs 64 class O,.4ndom
0.4 31.6 51.0 73.6
0.6 45.5 56.6 77.5
0.8 60.0 64.1 81.8

Table 3: Tabulated accuracies for Bayesian models at vary-
ing thresholds of class probability. Tuning up required soft-
max probability increases model accuracy by flagging infer-
ences below the threshold value as uncertain classifications.
In high risk scenarios, knowing to ignore an inference is as
critical as the prediction itself.

5. Experiments

We split this section into three experiments. The first
(§5.1)) explores simulated datasets with 64 classes and ob-
servations at high signal to noise. This experiment repre-
sents an expectation of performance for a high quality, ded-
icated sensor powered by SpectraNet. In this set of experi-
ments, we rely on Bayesian marginalization by dropout due
to large dataset sizes and the need for training efficiency.

In the second experiment, §5.2] we describe results on
simulated datasets of nine classes and moderate signal to
noise observations, in line with our initial on sky dataset.
This section provides a theoretical baseline for our third ex-
periment, described in which contains results from ac-
tual spectroscopic data of artificial satellites at geostation-
ary orbit. For §5.2]and §5.3| we adopt multiple variations of
Stochastic Weight Averaging (SWA), which are well suited
to boost performance on small datasets [12} 17, [24]].

We divide each section into two points of discussion,
first, we discuss the impact of number of examples per class
such that performance needs can be balanced against ob-
serving baselines for deployed SpectraNet systems. Sec-
ond, we discuss the performance of Bayesian marginaliza-
tion against the datasets of each experiment.

5.1. Many Classes with High Signal to Noise

In this experiment we simulate 64 class problems for ran-
dom and nadir orientations. The large number of classes
allows reporting of Top-1 and Top-3 classifier accuracies.
While Top-1 results are impressive in their own regard in a
field lacking performant positive identification techniques,
the Top-3 results—in which the correct class is in a model’s
three most likely —are even more promising. In space traffic
applications, two additional sources of information make
top-N classification useful. First, the nature of the top-N
satellites is critical: A Top-3 set of friendly assets is a dif-
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Figure 6: The effect of dataset size on classifier accuracy
for a moderate sensitivity system trained on nine satellite
classes on sky (left panel) and in simulation (right panel).
Red solid lines represent the accuracy performance bounds
of 20 point estimate models. Blue solid lines represent the
bounds of the SWA models, and black solid lines bound the
SWAG model accuracies. Blue triangles mark the accuracy
of Multi-SWA ensembles, and black dots show the accuracy
of Multi-SWAG ensembles.

ferent situation to unexpected or hostile assets. In the latter
case, followup observations or action can be taken. Second,
additional observational context is available for narrowing
the top-N field. For example, assets in a Top-3 set can be
eliminated if known to be in orbits inconsistent with the ob-
serving geometry.

5.1.1 Number of Observations

Observing time on a ground based telescope is the limit-
ing bottleneck for any data intensive effort. Spectroscopic
datasets grow slowly, at tens to hundreds of frames per
night, even with a dedicated instrument under ideal atmo-
spheric conditions. This creates two considerations for this
work: the accuracy of models trained on few examples, and
the increase in accuracy as number of examples naturally
grow as the technique is applied. In Figure 4] we visualize
effects of dataset size on classifier accuracy (Table [2).

The encouraging accuracy even at 50 observations per
target is not unexpected. While the diversity of class ex-
pression in classic computer vision problems is high, the
spectroscopic images in this work directly encode reflection
physics—in effect, the instrument itself represents a prepro-
cessing step by which material and geometric features are
orderly separated. As dataset size grows, so does accuracy,
especially in the case of random orientation where the net-
work trains on an increasingly complete sampling of ori-
entation distribution. As a result this technique is quickly
applicable and increases in efficacy with time.
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Gnadir Grandom
Bval Acc | ECE| T | Acc | ECE| T
On Sky Observations ~100-300 examples / class
Point 71.6 | 0.10 | 1.25 - - -
SWA 71.6 | 0.08 | 1.50 - - -
m-SWA 71.2 | 0.07 | 1.10 - - -
SWAG 69.8 | 0.10 | 0.90 - - -
m-SWAG | 68.8 | 0.07 | 0.55 - - -
Simulated 50 examples/class
Point 36.3 | 0.06 | 1.60 | 25.9 | 0.07 | 6.60
SWA 313 | 0.04 | 7.85 | 24.0 | 0.05 | 8.00
m-SWA 312 | 0.04 | 1.15 | 209 | 0.03 | 1.05
SWAG 31.1 | 0.04 | 5.60 | 234 | 0.04 | 2.30
m-SWAG | 293 | 0.04 | 1.05 | 20.9 | 0.03 | 0.90
Simulated 100 examples/class
Point 61.0 | 0.03 | 2.20 | 36.4 | 0.04 | 3.35
SWA 62.5 | 0.03 | 3.00 | 33.4 | 0.05 | 6.00
m-SWA 70.2 | 0.03 | 0.55 | 37.6 | 0.07 | 0.45
SWAG 62.3 | 0.05 | 1.05 | 32.6 | 0.06 | 4.10
m-SWAG | 694 | 0.04 | 0.60 | 37.8 | 0.06 | 0.40
Simulated 200 examples/class
Point 70.2 | 0.04 | 2.15 | 494 | 0.05 | 2.05
SWA 72.1 | 0.03 | 2.00 | 45.8 | 0.06 | 3.80
m-SWA 74.8 | 0.03 | 0.80 | 51.6 | 0.06 | 0.25
SWAG 71.6 | 0.04 | 0.50 | 46.2 | 0.06 | 3.45
m-SWAG | 75.2 | 0.03 | 0.65 | 52.1 | 0.05 | 0.20
Simulated 500 examples/class
Point 786 | 0.02 | 1.10 | 64.4 | 0.02 | 1.35
SWA 80.2 | 0.02 | 095 | 659 | 0.03 | 1.25
m-SWA 80.9 | 0.03 | 0.50 | 67.8 | 0.04 | 0.20
SWAG 79.8 1 0.02 | 0.75 | 66.1 | 0.03 | 0.65
m-SWAG | 80.8 | 0.01 | 0.50 | 67.4 | 0.03 | 0.15
Simulated 1000 examples/class
Point 80.3 | 0.03 | 1.00 | 69.7 | 0.03 | 0.95
SWA 81.3 | 0.03 | 1.00 | 70.3 | 0.03 | 0.80
m-SWA 82.7 | 0.03 | 0.50 | 71.7 | 0.04 | 0.15
SWAG 82.1 | 0.03 | 0.50 | 70.7 | 0.03 | 0.60
m-SWAG | 82.6 | 0.02 | 0.50 | 71.2 | 0.04 | 0.15

Table 4: Tabulated accuracies for classifiers trained on
raw spectroscopic frames of nine moderate signal resident
space objects. Each table panel is described by it’s header:
whether or not the data is simulated or on sky, and how
many examples per class the models were trained on. In
each panel, the best performing technique(s) are noted in
bold face.

5.1.2 Bayesian Inference

A forward pass through a point estimate classifier provides
a single measurement of probability distribution across
dataset classes which can be highly stochastic for small
training datasets. By inferring repeatedly with dropout, we
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assemble a Monte Carlo ensemble of softmax distributions
which map the uncertainty in classification given the model
architecture and training dataset.

This statistically robust distribution provides inference
uncertainty that is absent in point estimate networks. Fig-
ure [5] visualizes the Top-5 softmax probability distributions
for two inferences. While both inferences are correct, a
Bayesian model describes the uncertainty inherent so that
actions based on inference are properly informed.

In Table[3]we demonstrate the tunable nature of Bayesian
models. By setting a threshold probability for inference, the
model naturally specifies when inference is too uncertain to
match requirements for informed action. This boosts Top-1
and Top-3 accuracy by effectively ignoring suspect obser-
vations. In practice, taking no action in high stakes environ-
ments can be preferred to mistake or accidental provocation.
The threshold value can be chosen per inference based on
mission parameters.

For the challenging ©,.4n40m dataset we find that our
Bayesian implementation (Table[3) produces baseline accu-
racies ~10% below its point estimate counterpart (Table 2).
Additional experimentation is underway to investigate this
drop in performance, but we hypothesize that a dropout rate
of 10 percent has lowered model capacity to below what
is necessary for maximum classifier performance. If this
is the case, expanding model backbone capacity or investi-
gating complex prior distributions over weights will correct
this drop in performance. In the ©,,,4;, €Xperiment, perfor-
mance increases—as expected—by robustly classifying on
median softmax distributions across ensembled classifiers.
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Class Precision Recall F1 | Accuracy
GEO 1 0.851 0.851 0.851 -
GEO 2 1.000 0.455 0.625 -
GEO 3 0.593  0.667 0.627 -
GEO 4 0.548 0.654 0.596 -
GEO 5 0.333  0.143 0.200 -
GEO 6 0.550 0.647 0.595 -
GEO 7 0.850 0.944 0.895 -
GEO 8 0.618 0.636 0.627 -
flat 1.000  1.000 1.000 -
Overall - - - 0.716

Table 5: Classifier Performance Statistics. Overall classifier
accuracy of 71.6% agrees with theoretical expectations in
as training examples vary from 54 to 235 (Table[T)

5.2. Few Classes at Moderate Signal

Here we simulate a nine class dataset embracing more
moderate values of signal to noise than in the previous sec-
tion. This dataset uniformly samples DN,,.q values be-
tween 50 and 1000 to closely match the on sky dataset (see
Figure [3) while providing more complete sampling of the
space. Due to the small number of classes, we report only
Top-1 classifier performances.

We train 20 identical models for each ensembling ex-
periment, selecting model parameters (learning rate, kernel
regularization) from a hyperparameter study performed be-
fore each ensembling training run. Individual models are
trained from scratch for 300 epochs, with SWA mean and
SWAG covariances tracked over the last 20 epochs. Results
for these runs are tabulated in Table [] and presented, for
the ©,,44ir Case, in Figure@ For point estimate, SWA, and
SWAG values, which are calculated per-model, we tabulate
the highest performing iteration and plot the extent of the
model performances. Multi-SWA and Multi-SWAG are en-
sembled techniques—the reported value is a singular mea-
sured performance.

5.2.1 Number of Observations

As in classifier performance improves dramatically
with increased observations, which is apparent in both Ta-
ble[and Figure[6] The performance loss between our many
class work and this experiment is expected, but confounded
between larger overall dataset in the prior, and lower sig-
nal in the latter. For each SpectraNet scenario, inter-class
spectral signature differences—the difficulty of the particu-
lar problem based on satellite similarity—also plays an un-
explored role.

Still, these experiments show that accuracies over 80%
can be expected for deployed SpectraNet systems even
without ideal instruments or observing conditions.
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Figure 8: Model validation accuracy as a function of DN,,,4 in on sky data (left panel) and simulated data at 500 examples
per class (right panel). Even with the limited observed dataset size in this work, a trend between classifier accuracy and
DN,,eq is becoming apparent. This drop off in performance with decreased DN,,,.q agrees with simulation and elucidates
a pareto front optimization between sensor efficiency, target brightness, and observing time critical to designing practical

SpectraNet powered systems.

5.2.2 Bayesian Inference

Once observations per class reach 100, multi-basin
Bayesian marginalization techniques outperform point es-
timate and single-basin formulations. This result is in
line with previous work in the field [12, [17, 24]. We hy-
pothesize that while multiple basins of attraction can yield
similar overall classifier accuracy, unique basins provide
unique perspectives on the problem. Marginalization over
these perspectives both improves classifier accuracy and de-
creases the miscalibrated sharp overconfidence of point esti-
mate models. In fact, we commonly find that point estimate
models are overconfident while ensembled methods are un-
derconfident. In both scenarios, tempering lowers ECE to
reasonable values.

5.3. On Sky Data

We run the same experiment discussed in [5.2] on 90%
of examples from our on sky dataset with DN,,.q > 50,
holding 10% out to measure the validation statistics re-
ported here. In Table [5] and Figure [7] we demonstrate clas-
sifier accuracy statistics and visualize the classifier confu-
sion matrix, respectively. SpectraNet trains on an average
of ~50 to 230 observations per class to an overall accuracy
of 71.6%. We note that this performance is in strong agree-
ment with our simulated experiment on number of obser-
vations in §5.2] where the 100 and 200 example problems
reach accuracies of 70.2% and 75.2%, respectively. Single-
basin techniques outperform multi-basin in this problem.
We assert that this is caused by the low (<100) example
counts for four of the classes.

Classes with fewest examples (GEOs 2 and 5) perform
poorly, while the third (GEO 4) is heavily weighted towards
lower DN,,,.q4. These classes are most often confused with
the highest population classes, GEO 1 and 8§, as seen in Fig-
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ure [/ We have shown in that performance degrades
significantly by ~50 observations per class.

In Figure [§] we measure classifier validation accuracy
across bins of DN,,.4 and argue that increasing accuracy
is correlated with increasing signal to noise. Our simulted
results clearly demonstrate this hypothesis.

6. Conclusions

We demonstrate a learned spectroscopic positive identifi-
cation framework for artificial satellites by modeling a high
yield, low cost sensor and training convolutional neural net-
works on raw simulated output. By avoiding physics-based
priors and data calibration or reduction, we demonstrate the
practicality of this approach.

In this work we demonstrate that Top-1 accuracies of
80-90% and Top-3 of over 99% are achievable for many-
satellite identification models. We show that models are
performant with ~50 observations per class, and that per-
formance increases steadily with continued observations.

We demonstrate the applicability of Bayesian marginal-
ization, and describe the importance of model and data un-
certainty in a field with significant action space risk.

Finally, we collect a spectroscopic dataset of artifi-
cial satellites at geostationary orbit and show that mod-
els trained using on sky data are performant at accuracies
of ~72% after 100 observations per target, in encouraging
agreement with expectations from simulation.

The impact of machine intelligence solutions to the prob-
lems of space domain awareness relying on scientific im-
agery will continue to grow with the proliferation of large
astronomical survey missions and increasing density of or-
bital assets. We present this work on spatially unresolved
positive identification as the baseline on which we hope this
community will build.
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