
Improving Fractal Pre-training

Connor Anderson
Brigham Young University
connor.anderson@byu.edu

Ryan Farrell
Brigham Young University

farrell@cs.byu.edu

Abstract

The deep neural networks used in modern computer vi-
sion systems require enormous image datasets to train them.
These carefully-curated datasets typically have a million or
more images, across a thousand or more distinct categories.
The process of creating and curating such a dataset is a
monumental undertaking, demanding extensive effort and
labelling expense and necessitating careful navigation of
technical and social issues such as label accuracy, copy-
right ownership, and content bias.

What if we had a way to harness the power of large im-
age datasets but with few or none of the major issues and
concerns currently faced? This paper extends the recent
work of Kataoka et al. [15], proposing an improved pre-
training dataset based on dynamically-generated fractal
images. Challenging issues with large-scale image datasets
become points of elegance for fractal pre-training: perfect
label accuracy at zero cost; no need to store/transmit large
image archives; no privacy/demographic bias/concerns of
inappropriate content, as no humans are pictured; limit-
less supply and diversity of images; and the images are
free/open-source. Perhaps surprisingly, avoiding these diffi-
culties imposes only a small penalty in performance. Lever-
aging a newly-proposed pre-training task—multi-instance
prediction—our experiments demonstrate that fine-tuning a
network pre-trained using fractals attains 92.7-98.1% of the
accuracy of an ImageNet pre-trained network. Our code is
publicly available.1

1. Introduction

One of the leading factors in the improvement of com-
puter vision systems over the last decade has been the access
to ever-expanding datasets that can be used for pre-training
deep learning models. Nearly all state-of-the-art systems
these days have been trained on millions, tens-of-millions,
or even hundreds-of-millions of images. Collecting, label-
ing, managing, and distributing these datasets requires mon-

1catalys1.github.io/fractal-pretraining/

umental effort—indispensable effort—to achieve the power
found in today’s models. However, the list of challenges
and concerns around using these datasets is growing as well.
Along with technical challenges and high costs, there have
been questions of privacy, ownership, inappropriate content,
and unfair bias (for example, see [3, 32]). Clearly there are
complex issues that still need to be overcome, and many of
them elude simple solutions.

What if we had a way to harness the power of large image
datasets with few or none of the major issues and concerns
currently faced? In this paper, we discuss the possibility
of using abstract, computer-generated fractal images to pre-
train modern computer vision models. We expand on the
work of Kataoka et al. [15], from whom we take our inspi-
ration. There are several distinct advantages to using fractal
images for pre-training:

• Fractals are complex geometric structures that often
emerge from a very small set of parameters or equa-
tions; thus, as images, they are highly compressible—
often a handful of bytes is sufficient to describe them,
along with a generic program for rendering them.
Therefore, the need to store and transmit large
datasets of image files can be circumvented.

• Since the data is synthetic, we get labels for free: no
massive manual labeling effort is required.

• Since fractals are abstract geometric objects, there are
no issues surrounding the depictions of people: con-
cerns about privacy, inappropriate content, and biases
related to gender, race, or any other human factor can
be laid to rest as far as the pre-training data is con-
cerned.

• Fractals are “free and open-source”: they are defined
by fairly simple mathematics and anyone can produce
the images with only a few dozen lines of code. Thus,
there are no issues surrounding copyrights and own-
ership of images. Anyone can use fractal-generated
data to train models for any purpose, commercial
or otherwise.

• Fractals provide a near-limitless supply of diverse
images. Small changes to selected parameters can re-
sult in entirely new datasets.

catalys1.github.io/fractal-pretraining/

• In some cases, fractal images can be very efficient to
render. In fact, with the right approach, fractal im-
ages can be generated on-the-fly, fast enough to keep
up with the throughput of neural network training—
even when using fairly large batch sizes and distributed
training on multiple GPUs. This both eliminates the
need to generate and store a fixed set of data up
front, and removes the disk-IO bottleneck that sub-
sequently can become a problem while reading large
volumes of data from persistent storage.

A few of the preceding claims are obviously true by
virtue of the nature of the data. We show the remaining
claims to be true by analysis and experimental evaluation
in this paper. The remaining question, then, is how well
do fractal-image pre-trained models perform on real-world,
natural-image tasks? We show that, while not yet as good as
ImageNet pre-training in most cases, the gap is not as large
as you might expect.

We emphasize that we are not the first to propose pre-
training with fractal images. Kataoka et al. [15] recently
introduced the idea, and showed that it was a viable ap-
proach. Our work builds on some of the core ideas from
their paper—particularly, the use of a large set of randomly
sampled affine Iterated Function Systems (IFS) for gener-
ating training data. We make several fairly significant de-
viations from their approach, however, and show that these
deviations make a significant difference in the results ob-
tained. Figure 1 gives a high-level view of our approach.

The core contributions of our paper can be summarized
as follows:

• We propose a novel, principled approach for sam-
pling IFS codes (see Section 3.2). Our approach
leads to highly efficient sampling of large numbers of
codes (fractal parameters), simultaneously improving
the quality of the resulting fractal images, leading to
more effective representation learning.

• We introduce large-scale multi-instance (multi-label)
prediction as a pre-training task/method (see Sec-
tion 4.1), and show that it is more effective for fractal
pre-training than normal multi-class classification, as
evaluated on a set of natural-image recognition tasks.

• We show that using fractal images generated with color
and backgrounds (see Section 3.1) for pre-training
leads to better transfer learning (fine-tuning).

• We show that fractal-image pre-training can be quite
effective when transferred to tasks with limited train-
ing data, such as fine-grained visual categorization and
medical image segmentation (see Section 5).

• We show that we can use “just-in-time” image gener-
ation during training, without ever needing to create
and store a database of images beforehand (see Sec-
tion 4.2).

2. Related Work

Over the past decade, “ImageNet pre-training” has be-
come an integral part of training computer vision mod-
els. The default process is to train a model to per-
form supervised classification on the 1,000-class ImageNet
dataset [30] and then fine-tune the model on a different
dataset, which has proven to be very effective [14, 18].
Recent work has attempted to probe the limits of this “su-
pervised classification for pre-training” approach, showing
that huge amounts of data can improve the pre-training
transfer performance [33]—even when the labels are only
weakly associated with the image content [25]. Large-scale
domain-specific datasets, such as iNaturalist [36], have also
proven effective for pre-training [5]; large-scale, weakly-
labeled data [19] has also proven surprisingly effective.
Other work has suggested that pre-training isn’t the best ap-
proach in some domains, such as COCO [24] object detec-
tion [12, 39]; for many problems, particularly those with
limited data, however, pre-training provides a substantial
performance boost.

For some domains, it can be challenging or impossible
to collect and/or annotate enough images to sufficiently pre-
train a model. One way to address this issue is to use syn-
thetically generated data [28]. Such data can be generated
using 3D models [34] or generative models [4, 35]. Usu-
ally the data is modeled after natural images and real-world
objects.

In contrast to using synthetic data modeled after real-
world images, Kataoka et al. [15] recently proposed the use
of fractal images for pre-training. Fractal images are both
synthetic and abstract, though they have some similarity to
fractal structures in nature. Fractals have been admired for
their visual complexity and beauty, and can be used to create
beautiful artwork [6]; but they have also found practical ap-
plication in image compression [10], and have even inspired
neural network architectures [23]. Farmer [9] provides a
detailed treatment of applications of fractals in computer vi-
sion. Dym et al. [7] contributed a recent study of piecewise-
linear functions generated by fractal IFSs and their similar-
ity to those generated by deep neural networks. In another
interesting recent contribution, Marasca et al. [27] utilize
fractals to assess dataset classification complexity. Early
work used fractal principles for texture segmentation [17],
and Kocic [17] discussed how fractals could be used to
model natural forms.

In this work, we build on [15] and use fractal images to
pre-train visual recognition models.

3. Fractal Images

Fractal images are generally produced by iteration of
a simple formula. For example, the well known Man-
delbrot and Julia sets can be generated from the equation

Figure 1. Fractal pre-training. We generate a dataset of IFS codes (fractal parameters), which are used to generate images on-the-fly for
pre-training a computer vision model, which can then be fine-tuned for a variety of real-world image recognition tasks.

zk+1 = z2k+c, for z, c ∈ C, by treating pixel coordinates as
points in the complex plane and iterating until z “escapes”
toward infinity or remains bounded for some number of iter-
ations. Information about whether or not the point escaped,
and how long it took to do so, can be used to color the pix-
els, revealing rich complexity.

An Iterated Function System (IFS) can also be used to
generate fractal images. An IFS consists of a set of two or
more functions and an associated set of probabilities. The
set of functions, which we refer to as a system or a code,
have an associated attractor—a set of points with a partic-
ular geometric structure—such that iterative application of
the functions in the system will bring points in the associ-
ated space onto the attractor. Sec. 3.1 describes how fractal
images can be rendered from IFS codes. These images ex-
hibit complex patterns and self-similarity.

As proposed in [15], we use affine Iterated Function Sys-
tems to create a dataset of fractal images for pre-training
computer vision models. In an affine IFS, the functions
in the system are affine transformations: they consist of a
linear function, represented by a matrix A, and a transla-
tion vector b, so that w(x) = Ax + b. Affine functions
have several advantages: particularly, it is easy to evaluate
whether they are contractive functions (which is generally
necessary for IFS) and they are simple and fast to evaluate
numerically.

Iterated Function Systems We now provide a more for-
mal definition of Iterated Function Systems. An IFS code S
defined on a complete metric space X (we will assume that
the metric space is X = (R2, ∥ · ∥2)) is a set of transfor-
mations wi : X → X and their associated probabilities pi:

S = {(wi, pi) : i = 1, 2, . . . , N}, (1)

which satisfy the average contractivity condition

N∏
i=1

spi

i < 1, (2)

where si is the Lipschitz constant for wi. The attractor AS
is a unique geometric structure [2], a subset of X defined by
S. The shape of AS depends on the functions wi and not the
probabilities pi; however, the pi do affect the distribution
of points across AS

2. We choose pi ∝ |detAi|, as done in
[15]. We provide a visual comparison between determinant-
proportional and uniform pi in Appendix D.4.

3.1. Rendering Fractal Images

We can render an approximation of AS to obtain a fractal
image. The random iteration method, or “chaos game”, can
be used to to generate a subset of AS as follows: choose an
initial point x0 ∈ X ; randomly choose wi with probability
pi and apply it to x0 to get x1 = wi(x0); repeat this process
for a sufficiently large number of iterations K to get the set
of points Â = {x0,x1, . . . ,xK} ⊆ AS . The larger K is,
the closer the approximation will be to AS .

The next step is to render the points in Â to an image X .
We map a rectangular region R ∈ R2, nominally defined by
the min and max x and y values in Â, to an M ×M pixel
grid. Pixels can be rendered as binary values, indicating
that at least one point in Â maps to that pixel; or they can
be rendered as continuous values, indicating the density of
points that map to each pixel.

3.2. Sampling Iterated Function Systems

3.2.1 What Makes a “Good” IFS Code?

So far we have defined Iterated Function Systems and how
we use them to render fractal images. We now turn our
attention to the question of how to get the IFS codes in
the first place. Let N = |S|, the number of functions
in the code S. In [15], they choose codes by sampling
N ∼ U({2, 3, . . . , 8})3, and then sampling the six val-
ues (Ak,bk) for each of the N affine transformations from

2See [1] for a more thorough introduction to Iterated Function Systems.
3Throughout the paper, we use U(a, b) to mean a continuous uniform

distribution on the interval [a, b], and U({·}) to mean a discrete uniform
distribution over elements of the set {·}.

2 3 4 5 6 7 8
N

60

70

80

90

100

%
 o

f s
ys

te
m

s

max > 1
N

i = 1
spi

i > 1

Figure 2. For systems with N = 2, . . . , 8 transforms, we show
the percentage of systems (out of 100,000 randomly sampled) that
have their largest singular value greater than 1 (in red), and also
those which violate average contractivity (in blue: pi ∝ det (Ai),
where Ai is the linear part of the affine transform).

U(−1, 1). Repeating this process thousands of times pro-
duces a dataset of IFS codes. Each code can then be treated
as a “class”, for the purpose of doing supervised multi-class
pre-training.

There are a few problems with the sampling approach
taken in [15]. First, in order to be a true IFS, the system
must be a contraction (Eq. 2). Sampling random transforms
with values between −1 and 1 does not guarantee a contrac-
tion. In fact, the majority of codes thus sampled will not be.
To demonstrate this, we sampled 100,000 random systems
with parameters in U(−1, 1) for each of N = 2, . . . , 8. Fig-
ure 2 shows (i) in blue, the percentage of those systems that
had at least one singular value greater than 1—an affine
transform must have singular values less than 1 to be a con-
traction, as we describe shortly—and (ii) in red, the percent-
age that violate the average contractivity condition. Clearly,
a naive sampling approach is quite inefficient, as the major-
ity of systems will not be contractions, and when a system
is not contractive it will, under iteration, produce sequences
that diverge to infinity. Such sequences cause numerical
difficulties and yield unsatisfactory images.

The second problem is that even when a system is a
contraction, it might not produce fractals with “good” ge-
ometric properties. What do we mean by “good” geometric
properties? Consider the fractal images shown in Figure 3.
Those on the left are very sparse, consisting of mostly blank
space and perhaps a few small structures (note that this is
similar to the idea of “filling rate” as discussed in [15]).
Those on the right look like blurry smudges. The ones in
the middle, however, contain complex and varied structure.
This set is the most visually interesting; we hypothesize
(and experimentally validate in Section 5.2) that it is the
most useful for representation learning.

3.2.2 Effectively Sampling IFS Codes

We will now describe an approach to sampling IFS codes
that addresses the two concerns just raised (contractivity
and good geometry). Our approach is based on the Sin-

gular Value Decomposition (SVD) of Ak, the linear part of
the affine transform. First, in order to ensure that an IFS is
contractive, it is sufficient to ensure that each function wi is
a contraction; that is, it satisfies

∥wi(x1)− wi(x2)∥ ≤ ∥x1 − x2∥, ∀ x1,x2 ∈ X (3)

For affine functions wi(x) : R2→ R2 = Ax+b, we require

∥Ax1 + b−Ax2 − b∥2 ≤ ∥x1 − x2∥2

⇒ ∥A(x1 − x2)∥2
∥x1 − x2∥2

≤ 1

⇒ σmax(A) ≤ 1

(4)

where σmax(A) denotes the maximum singular value of A 4.
Thus, it is sufficient to ensure that the singular values of A
are less than 1, which we can do by construction. Recall that
by the Singular Value Decomposition, A = UΣV T , where
U and V are orthogonal matrices and Σ is a diagonal matrix
containing the singular values of A, σ1 and σ2, ordered by
decreasing magnitude. Since U and V are orthogonal, they
act as rotation matrices (with possible reflection, i.e. the de-
terminant can be ±1). Let U = Rθ be a rotation by angle θ,
and let V T = Rϕ be a rotation by angle ϕ. Let D be a diag-
onal matrix with diagonal elements d1, d2 ∈ {−1, 1}. Then
A = UΣV T = RθΣRϕD. We can sample A by appro-
priately sampling (θ, ϕ, σ1, σ2, d1, d2), composing the cor-
responding matrices, as above, and then multiplying them
together to obtain A. By sampling σ1 and σ2 in the range
(0, 1), we ensure that the system is a contraction.

Sampling the SVD parameters directly guarantees a con-
traction mapping, however, it does not address the ques-
tion of good geometry. It’s not immediately clear what
the relationship between the fractal geometry and the sys-
tem parameters is, nor whether there is a simple and con-
cise relationship at all. Intuition, however, hinted that the
singular values might play an important role. The magni-
tudes of the singular values define how quickly an affine
contraction map converges to its fixed point under itera-
tion; small singular values would lead to quick collapse,
while singular values near 1 would be more likely to re-
sult in “wandering” trajectories which don’t converge to
a clear geometric structure. Closer investigation revealed
that there is indeed a correlation between some property of
the singular values and whether the resulting fractal pos-
sesses good geometry. To probe this relationship, we la-
beled by hand several hundred size-2 systems according to
whether they had good geometry or not (subjectively), and
fit a linear Support Vector Machine (SVM) classifier to the
labels using the singular values of the system as features.
The SVM was able to distinguish between the systems with

4The final line of Eq. 4 follows from the definition of the spectral norm,
or l2 operator norm: ∥A∥2 = supx̸=0

∥Ax∥
∥x∥ = σmax(A)

0 1
2 (5 + N) 1

2 (6 + N) 3N

-factor

Figure 3. Fractal systems by σ-factor (see Eq. 5). IFS codes with a σ-factor in the range [1
2
(5 + N), 1

2
(6 + N)] (where N is the size of

the system) tend to yield images with good geometry, while many codes with a σ-factor outside this range yield images with degenerate
geometry. Images were generated randomly at each σ-factor, with N = 2

nearly perfect accuracy. We repeated this experiment sev-
eral times for different system sizes. As we then investi-
gated the decision boundaries learned by the classifiers, we
discovered a simple and general pattern. Let σi,1 and σi,2

be the singular values for Ai, the ith function in the system,
and let xσ =

[
σ1,1 σ1,2 . . . σN,1 σN,2

]T
, and wσ =[

1 2 . . . 1 2
]T

. We find that a large majority of the
systems with good geometry satisfy αl ≤ wT

σ xσ ≤ αu;
in other words, confining the weighted sum of a system’s
singular values

α =

N∑
i=1

(σi,1 + 2σi,2) (5)

to the appropriate range (αl, αu) will produce systems with
mostly good geometry, while systems outside of that range
tend to have less desirable geometry. We refer to the quan-
tity α in Eq. 5 as the σ-factor of the system. The appro-
priate range (αl, αu) depends on N , the size of the system;
but empirically, we discovered that setting αl =

1
2 (5 +N)

and αu = 1
2 (6 + N) works very well for N = 2, . . . , 8—

although a wider range might also work. Figure 3 shows the
effect of sampling images at different σ-factors.

We now know that we can confidently tell whether a
system will have good geometry by looking at its σ-factor.
We next describe an algorithm to randomly sample a set of
singular values, (σ1,1, σ1,2, . . . , σN,1, σN,2) that satisfy the
conditions

0 ≤ σi,2 ≤ σi,1 ≤ 1 (6)

and Eq. 5 for some 0 ≤ α ≤ 3N . We take an iterative
approach, sampling one singular value at a time and updat-
ing the constraints on the next one accordingly. We start
with σ1,1; it could achieve its smallest possible value if ev-

ery other were maximized. Assume that every other singu-
lar value was maximized according to Eq. 6, then we have
α = σ1,1 + 2σ1,2 + 3(N − 1), and the lower bound on
σ1,1 is max(0, 1

3 (α − 3(N − 1))). Similarly, σ1,1 could
achieve its maximum value when all others are minimized,
so we set them to 0 and get that the upper bound on σ1,1 is
min(1, α). We then sample σ1,1 uniformly according to the
bounds just established, and it becomes a constant in all fur-
ther bounds calculations. We follow this same process for
all but the last two singular values, calculating upper and
lower bounds for—and then sampling—each singular value
in turn, and updating the constraints on future values. For
the last pair, it is more convenient to first sample σN,2, at
which point σN,1 becomes fixed in order to satisfy Eq. 5.

The sampling constraints given by Eqs. 5 and 6 lead to
a problem that resembles a Linear Program, except that in-
stead of trying to find a minimizing point, we need to sam-
ple a point on the surface of the resulting 2N -polytope. The
algorithm described above does this by iteratively sampling
a value independently in each dimension, restricting the
available sampling volume for the remaining dimensions.
This approach does not necessarily sample points uniformly
across the volume, but it is fast and should be sufficient to
sample a diverse set of IFS codes.

We now have a process, described formally as
sample-svs in Alg. 1 (in Supplementary Material, Ap-
pendix A), for sampling singular values so that the result-
ing systems exhibit good geometry. Our algorithm using
this process to sample IFS codes via SVD is described as
sample-system in Alg. 2 (in Supplementary Material,
Appendix A).

4. Pre-training Procedures
4.1. Pre-training Tasks

We are focused on using fractal images to learn good rep-
resentations which will benefit natural-image recognition
tasks via fine-tuning. There are several pre-training tasks
that could be used to learn these representations. We could
use unsupervised/self-supervised pre-training strategies as
described earlier in related work (Section 2), however, these
seem less compelling when labels are both accurate and
abundant. Supervised multi-class classification is routinely
used for pre-training on ImageNet, and is the pre-training
task adopted in [15]. We too utilize this widely-accepted ap-
proach; we additionally propose a new pre-training method
which is uniquely suited to synthetically-generated data
such as fractal images, a task which we call multi-instance
prediction. Multi-instance prediction is a type of large-scale
multi-label classification, where each image may contain
examples of multiple classes. We describe each of these
approaches in greater detail below.

4.1.1 Multi-class Classification

For multi-class classification, we follow the same basic ap-
proach taken in [15]. We choose a fixed number of classes
C, and assign IFS codes to each class. We use the stan-
dard cross-entropy objective function to train the model to
predict the corresponding class for each image.
Assigning classes to IFS codes Kataoka et al. [15] assign
each IFS code its own class label, and then augment each
class by scaling each of the six parameters in (Ak,bk) in-
dividually, essentially yielding a set of codes for each class.
In principle, these codes will be related, since there is a
smoothness to the space of fractals defined by IFS. Small
perturbations to the parameters can still yield large differ-
ences in the resulting fractals, however (see example in Ap-
pendix D); and simply scaling the parameters of the affine
transformations may additionally cause the singular values
of the system to become too large or too small, producing
sparse or degenerate images.

Our approach is to sample more systems according to
Algorithm 2, and assign a single class label to a group of
IFS codes. In our experiments, we show that this approach
outperforms the parameter-scaling method of [15]. How-
ever, we also experiment with some parameter augmenta-
tion methods and find that they can still help performance.

4.1.2 Multi-instance Prediction

Multi-instance classification is a supervised classification
task; like multi-class classification, we define a fixed num-
ber of classes C and assign one or more IFS codes to
each class. But unlike multi-class classification, the im-
ages we use in the multi-instance setting may contain mul-

tiple fractal instances from multiple classes—hence “multi-
instance”. During training, the model performs multi-label
prediction, trying to determine the presence or absence of
each of the C classes in each image. In other words, each
class can be considered as an attribute, and the model tries
to predict which attributes are present.

Multi-instance prediction is significantly more challeng-
ing than multi-class classification, as evidenced in our ex-
periments. Each image contains a variable number of frac-
tals, yielding a vast space of possible image configurations.
In training, the model must learn to pay attention to each
fractal “attribute” that is present. Our experiments show
that this added task complexity leads to pre-trained features
that generalize significantly better for downstream tasks.

The images for training multi-instance classification
models looks different than for regular multi-class, the pro-
cess for generating them is different, and there are some
special considerations that need to be accounted for. We
discuss this in Section 4.2.2.

We train multi-instance models using a binary cross-
entropy loss, averaged across all the classes. Since the num-
ber of positive examples in each image is so small com-
pared to number of classes (e.g. 5 out of 1000), we apply
a large weight to the positive examples to balance the loss.
For instance, when using 1000 classes and a maximum of
5 instances per image, we multiply the loss of the positive
classes in each image by 200. Without applying this weight-
ing factor, the model fails to learn.

4.2. Pre-training Datasets

Each pre-training task operates on different types of im-
ages: single-fractal images for multi-class classification,
and multi-fractal images for multi-instance prediction. For
both tasks, images are not generated or stored up-front; im-
ages are generated “just-in-time”, as needed during training.

With the correct procedure, we are able to generate all
images “on the fly” as they’re needed for training. This is
significant, as we circumvent the typical need to store or
transmit a huge quantity of data. The entire dataset can be
generated from the set of IFS codes, which can be stored in
tens or hundreds of megabytes (depending on the number
and size of the systems). For example, an ImageNet-sized
(1.28M images) fractal dataset requires only 184.5MB to
store its parameters instead of the 150GB of storage needed
to store ImageNet (ILSVRC 20212). We leverage an effi-
cient Numba [22] implementation, along with a rendering
cache of recently generated images, in order to achieve the
necessary throughput during training. Please see Appendix
B.2 in the Supplementary Material for details.

Binary Patch-based Color Color and background

Figure 4. Rendered fractal images.

Figure 5. Rendering multi-instance images. A cache of fractals
and backgrounds is regularly updated with new samples. Each
training image is composed of a random selection of fractals from
the cache, randomly augmented and composited on top of a ran-
dom background image. Best viewed digitally, zoom in for details.

4.2.1 Single-instance Images

To generate a given fractal image, we start with the process
described in Section 3.1. We then add three additional ele-
ments: patch-based rendering, as described in [15]; adding
color to the fractal; and adding a randomly generated back-
ground using the “diamond-square” algorithm [11]. Full
details are provided in Appendix B.1 in the Supplementary
Material. In addition, we randomly scale and translate the
region R (see Section 3.1), which scales and translates the
resulting fractal. We also apply random flips and 90◦ rota-
tions, and random Gaussian blur to the final image.

4.2.2 Multi-instance Images

We create multi-instance images by compositing one or
more fractals and a background into a single image. For
each image, we randomly sample the number of fractals, n,
uniformly from {1, . . . , Nmax}. Then we randomly sample
n classes and generate their fractal images; we generate the
fractals at a lower resolution (such as 128 instead of 224),
for efficiency and because of how we composite them. We
do not apply scaling or translation at this stage. We also
generate a random background. In our experiments, we set
nmax = 5, to produce images which aren’t overly cluttered.

Once we have the n fractals and a background, we com-
posite them together. We randomly rescale each fractal and
add it to the image at a random location. Fractals may end
up partially occluded by other fractals, or partially outside
the image, resulting in complex, varied, and challenging im-
ages for recognition (see Figure 5, bottom).

Rendering multiple fractals for every training image will
almost certainly be too slow; in this case, a rendering cache
becomes particularly useful. Every kp training images (we
set kp = 2), we generate a new grayscale fractal image and
new background, and update the cache. To generate a train-
ing image, we choose n random fractals and a background
from the cache; we randomly flip and colorize each fractal,
and add it to the background image as described previously.
This allows us to create multi-instance images with roughly
the same computation as in the single-instance case. This
process is illustrated in Figure 5.

5. Experiments
Our basic fractal pre-training dataset consists of 1,000

IFS codes, each representing a class. The IFS codes are
sampled uniformly for N ∈ {2, 3, 4}, and the parameters
are sampled as described in Section 3.2.2. We also employ
a parameter augmentation method, which randomly selects
one of the transforms (Ak,bk) in the system and scales it by
a factor γ ∼ U(0.8, 1.1) (while making sure not to overflow
the singular values) to get (γAk, γbk). We found this to
be more effective than the other augmentation methods we
explored and plan to investigate why in future work.
Note: In the conference version of this paper, we stated that
we used 50,000 IFS codes grouped into 1,000 classes. A
bug in the code made this untrue, and only 1,000 IFS codes
were ever actually used, despite our configuration files. We
became aware of this after the camera-ready submission. In
this updated version, we have removed the erroneous results
that were meant to probe the effect of the number of systems
versus parameter augmentation, as they didn’t actually test
what we intended. The other results are still valid, as they
weren’t based on assumptions about the number of systems
per class.

Setup/Implementation

Our experiments use a ResNet50 [13] CNN model. We
pre-train each model for 90 epochs, with 1,000,000 train-
ing samples per epoch, and with an image resolution of
224 × 224. Most models are pre-trained using 8 NVIDIA
GTX 1080 Ti GPUs, with a total batch size of 512. Some
of the ablations were run using 4 Tesla P100 GPUs and a
batch size of 256.

We evaluate the effectiveness of the pre-trained repre-
sentations by fine-tuning on several different tasks. For
image classification, we use CUB-2011 [37], Stanford

50 55 60 65 70 75

60.4
57.5

69.3
73.5

77.1

CUB
Pre-training

Scratch
FractalDB
Multi-class
Multi-instance
ImageNet

75 80 85 90

81.5
83.8

88.1
89.0

90.7

Stanford Cars

55 60 65 70 75 80
Accuracy

64.1
61.7

67.6
69.4

81.7

Stanford Dogs

65 70 75 80 85

74.5
74.5

80.6
81.4

84.8

Aircraft

70 75 80 85

78.0
78.9

80.4
81.0

87.4

CIFAR-100

50 55 60 65
Mean IoU

59.7
65.1

63.5
63.7

67.2

GlaS

Figure 6. Fine-tuning evaluation results (classification accuracy) using different pre-training methods. The five datasets to the left are image
classification datasets; the rightmost dataset, GlaS, is a medical image segmentation dataset.

Cars [20], Stanford Dogs [16], FGVC Aircraft [26] and
CIFAR-100 [21]. We also fine-tune models for medical im-
age segmentation on the GlaS dataset [31]. For classifica-
tion, we fine-tune for 150 epochs with a batch size of 96—
we found that longer fine-tuning led to better performance.
For segmentation, we fine-tune for 90 epochs with a batch
size of 8.

We compare our proposed methods with three base-
lines: training from scratch (no pre-training); fine-tuning
from ImageNet [30] pre-trained weights (available through
PyTorch [29]); and, fine-tuning from FractalDB [15] pre-
trained weights, which we obtained using the dataset and
code made available by the authors5.

Our experiments use PyTorch [29] and the PyTorch-
Lightning framework [8], with Hydra [38] for configura-
tion. To facilitate reproducible research, all code and con-
figuration files will be made publicly available.

5.1. Fine-tuning Results

Fig. 6 shows the fine-tuning performance on each evalu-
ation task using different pre-training methods, along with
training from scratch. Fractal pre-training provides a clear
and consistent boost over both training from scratch as well
as pre-training with FractalDB. Using multi-instance pre-
diction as the pre-training task is also consistently better
than using multi-class classification. In fact, multi-instance
prediction models can provide more than 90% of the ac-
curacy achieved by ImageNet pre-training—and in some
cases, such as for Stanford Cars, the model obtains over
98% of the ImageNet performance.

5.2. Ablation Experiments

This section provides ablation experiment results isolat-
ing the impact of different parts of the proposed pre-training
method. Additional results can be found in the Appendix.
Impact of σ-factors First, we consider the effects of us-
ing different ranges of σ-factors. Figure 7 shows the results
of pre-trainng models using three different σ-factor ranges
(see figure caption for details) and evaluating performance
when fine-tuning for the CUB, Stanford Cars and CIFAR-
100 datasets. Across all three datasets, the high σ-factors

5hirokatsukataoka16.github.io/Pretraining-without-Natural-Images

50 55 60 65

62.9
67.0

58.6

CUB
-factors

Low
Proposed
High

70 75 80 85
Accuracy

86.2
85.4

79.0

Stanford Cars

70 75 80

78.9
80.6

76.9

CIFAR-100

Figure 7. Performance from pre-training on systems with differ-
ent σ-factor ranges: (low) [1, 1

2
(5 + N)]; (proposed) [1

2
(5 +

N), 1
2
(6 +N)]; (high) [3N−1, 3N].

perform poorly relative to the proposed “good” geometry
range. Similarly, the proposed σ-factor range outperforms
the low σ-factors model on two of the three datasets: CUB
and CIFAR-100.

6. Conclusion
We have shown that by carefully designing the pro-

cesses for sampling and rendering affine IFSs, fractal pre-
training can yield strong representations that are useful
for real-world image recognition tasks. We have also
proposed a pre-training task—multi-instance prediction—
which greatly improves over multi-class classification as a
pre-training task. Finally, we have shown that the fractal
images used for pre-training can be generated “on-the-fly”
in real-time during training, removing the need to generate,
store, or transmit a large volume of data.
Acknowledgments This work was supported by the Na-
tional Science Foundation under Grant No. IIS1651832.
We gratefully acknowledge the support of NVIDIA for their
donation of multiple GPUs used in this research.

References
[1] M.F. Barnsley. Fractal modelling of real world images. In

Heinz-Otto Peitgen and Dietmar Saupe, editors, The Science
of Fractal Images, chapter 5, pages 219–242. Springer Ver-
lang, 1988.

[2] Michael F. Barnsley and John H. Elton. A new class of
markov processes for image encoding. Advances in Applied
Probability, 20(1):14–32, 3 1988.

[3] Abeba Birhane and Vinay Uday Prabhu. Large image
datasets: A pyrrhic win for computer vision? In WACV,
pages 1536–1546. IEEE, 6 2021.

[4] Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul
Bentley, Roger Gunn, Alexander Hammers, David Alexan-
der Dickie, Maria Valdés Hernández, Joanna Wardlaw, and
Daniel Rueckert. Gan augmentation: Augmenting training
data using generative adversarial networks, 2018.

[5] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge
Belongie. Large Scale Fine-Grained Categorization and
Domain-Specific Transfer Learning. In CVPR, pages 4109–
4118, 2018.

[6] Scott Draves and Erik Reckase. The fractal flame algo-
rithm. Citeseerx. Recuperado de http://citeseerx. ist. psu.
edu/viewdoc/summary, 2008.

[7] Nadav Dym, Barak Sober, and Ingrid Daubechies. Expres-
sion of fractals through neural network functions. IEEE
Journal on Selected Areas in Information Theory, 1(1):57–
66, 2020.

[8] WA Falcon et al. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 3,
2019.

[9] Michael E Farmer. Application of chaos and fractals to com-
puter vision. Bentham Science Publishers, 2015.

[10] Y. Fisher. Fractal Image Compression: Theory and Applica-
tion. Springer New York, 2012.

[11] Alain Fournier, Don Fussell, and Loren Carpenter. Com-
puter rendering of stochastic models. Communications of
the ACM, 25(6):371–384, 6 1982.

[12] Kaiming He, Ross Girshick, and Piotr Dollar. Rethinking
ImageNet Pre-Training. In CVPR, pages 4918–4927, 2019.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In CVPR,
pages 770–778, 2016.

[14] Minyoung Huh, Pulkit Agrawal, and Alexei A. Efros. What
makes ImageNet good for transfer learning? ArXiv e-prints,
8 2016.

[15] Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto,
Eisuke Yamagata, Ryosuke Yamada, Nakamasa Inoue, Akio
Nakamura, and Yutaka Satoh. Pre-training without Natural
Images. In ACCV, 2020.

[16] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng
Yao, and Li Fei-Fei. Novel dataset for Fine-Grained Image
Categorization. In CVPR Workshops (FGVC), 2011.

[17] Ljubiša M Kocić. Fractals and their applications in computer
graphics. Filomat, pages 207–231, 1995.

[18] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do
Better ImageNet Models Transfer Better? In CVPR, pages
2661–2671, 2019.

[19] Jonathan Krause, Benjamin Sapp, Andrew Howard, Howard
Zhou, Alexander Toshev, Tom Duerig, James Philbin, and Li
Fei-Fei. The Unreasonable Effectiveness of Noisy Data for
Fine-Grained Recognition. In ECCV, volume 9907 LNCS,
pages 301–320. Springer, Cham, 2016.

[20] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3D Object Representations for Fine-Grained Categorization.
In 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13), Sydney, Australia, 2013.

[21] Alex Krizhevsky, Geoffrey Hinton, and others. Learning
multiple layers of features from tiny images. 2009.

[22] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba:
A LLVM-based Python JIT Compiler. Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in
HPC - LLVM ’15, 2015.

[23] Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. FractalNet: Ultra-Deep Neural Networks
without Residuals. 5 2016.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common Objects in Context.
In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), volume 8693 LNCS, pages 740–755.
Springer, Cham, 2014.

[25] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens van der Maaten. Exploring the Limits of Weakly
Supervised Pretraining. In ECCV, pages 181–196, 2018.

[26] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B
Blaschko, and Andrea Vedaldi. Fine-Grained Visual Clas-
sification of Aircraft. arXiv.org, 2013.

[27] André Luiz Marasca, Dalcimar Casanova, and Marcelo Teix-
eira. Assessing classification complexity of datasets using
fractals. International Journal of Computational Science and
Engineering, 20(1):102–119, 2019.

[28] Sergey I. Nikolenko. Synthetic data for deep learning, 2019.
[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems, vol-
ume 32, 2019.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision 2015 115:3,
115(3):211–252, 4 2015.

[31] Korsuk Sirinukunwattana, Josien P.W. Pluim, Hao Chen, Xi-
aojuan Qi, Pheng Ann Heng, Yun Bo Guo, Li Yang Wang,
Bogdan J. Matuszewski, Elia Bruni, Urko Sanchez, Anton
Böhm, Olaf Ronneberger, Bassem Ben Cheikh, Daniel Raco-
ceanu, Philipp Kainz, Michael Pfeiffer, Martin Urschler,
David R.J. Snead, and Nasir M. Rajpoot. Gland segmen-
tation in colon histology images: The glas challenge contest.
Medical Image Analysis, 35:489–502, 1 2017.

[32] Ryan Steed and Aylin Caliskan. Image Representations
Learned With Unsupervised Pre-Training Contain Human-
like Biases. FAccT 2021 - Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency,
pages 701–713, 10 2020.

[33] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-
nav Gupta. Revisiting Unreasonable Effectiveness of Data in
Deep Learning Era. In ICCV, pages 843–852, 2017.

[34] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark
Brophy, Varun Jampani, Cem Anil, Thang To, Eric Camer-
acci, Shaad Boochoon, and Stan Birchfield. Training Deep
Networks With Synthetic Data: Bridging the Reality Gap by
Domain Randomization. In CVPR, pages 969–977, 2018.

[35] Aleksei Triastcyn and Boi Faltings. Generating Artifi-
cial Data for Private Deep Learning. Proceedings of the
PAL: Privacy-Enhancing Artificial Intelligence and Lan-
guage Technologies, AAAI Spring Symposium Series, 2019.

[36] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The INaturalist Species Classification and
Detection Dataset. In CVPR, pages 8769–8778, 2018.

[37] C Wah, S Branson, P Welinder, P Perona, and S Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical re-
port, California Institute of Technology, 2011.

[38] Omry Yadan. Hydra - a framework for elegantly configuring
complex applications. Github, 2019.

[39] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanx-
iao Liu, Ekin Dogus Cubuk, and Quoc Le. Rethinking Pre-
training and Self-training. In NeurIPS, volume 33, pages
3833–3845, 2020.

Algorithm 1 sample-svs(N,α): Sample singular val-
ues.
Input: N ≥ 2, the size of the system; and 0 ≤ α ≤ 3N , the

target σ-factor of the system.
Output: Σ, the N × 2 array of singular values, satisfying 0 ≤

Σk,2 ≤ Σk,1 ≤ 1 (∀ k = 1, . . . , N) and
∑N

i=1(Σi,1 +
2Σi,2) = α.

1: Initialize: Σ← 0N×2, the array of singular values
2: Initialize: bl ← α− 3N + 3, sampling lower bound
3: Initialize: bu ← α, sampling upper bound
4: for k = 1 to N − 1 do
5: Sample σk,1 ∼ U(max(0, 1

3
bl),min(1, bu))

6: Update bl ← bl − σk,1 and bu ← bu − σk,1

7: Sample σk,2 ∼ U(max(0, 1
2
bl),min(σk,1,

1
2
bu))

8: Update bl ← bl − 2σk,2 + 3 and bu ← bu − 2σk,2

9: Update Σk,1 ← σk,1 and Σk,2 ← σk,2

10: end for
11: {Note the use of bu in both places below}
12: Sample σN,2 ∼ U(max(0, 1

2
(bu − 1)), 1

3
bu)

13: Set σN,1 ← bu − 2σN,2

14: Update ΣN,1 ← σN,1 and ΣN,2 ← σN,2

15: return Σ

Appendix

A. Algorithms
Described in the main paper in Section 3.2.2, we here

provide precise descriptions for the sample-svs and
sample-system algorithms, respectively in Algs. 1 and
2. We use these algorithms in our experiments to sample
the IFS codes used in our fractal dataset.

B. Fractal Pre-training Images
Here we provide additional details on the proposed frac-

tal pre-training images, including details on how the images
are rendered as well as our procedures for “just-in-time“
(on-the-fly) image generation during training.

B.1. Rendering Details

In order to add additional diversity to the rendered frac-
tal images—to encourage the neural network to learn better,
more robust representations—we supplement the rendering
process (described in Section 3.1) in three ways. First, we
follow the example of [15] and apply patch-based render-
ing, which was shown to perform better than simple point
rendering. Second, we color the points on the fractal instead
of rendering them as grayscale. And third, we add randomly
generated backgrounds. Fig. 4 shows an example rendered
fractal image with these properties (far right).

Patch-based Rendering Instead of mapping each point
in Â to a single pixel, we follow the approach taken in [15]

Algorithm 2 sample-system(N,b): Sample a system
composed of N 2D affine transforms {(Ak,bk) : k =
1, . . . , N}.
Input: N ≥ 2, the size of the system; and b, a bound on the

values of bk such that −b ≤ bk,i ≤ b
Output: A set of N affine transformation parameters (Ak,bk)

1: Initialize: S ← {}, empty set of transforms
2: Sample α ∼ U(1

2
(5 +N), 1

2
(6 +N))

3: Σ←sample-svs(N,α), N × 2 array of singular values
4: for k = 1 to N do
5: Sample θk, ϕk ∼ U(−π, π)
6: Sample dk,1, dk,2 ∼ U({−1, 1})
7: Sample bk,1, bk,2 ∼ U(−b, b)

8: Rθk ←
[
cos θk − sin θk
sin θk cos θk

]
9: Rϕk ←

[
cosϕk − sinϕk

sinϕk cosϕk

]
10: Ak ← Rθk

[
Σk,1 0
0 Σk,2

]
Rϕk

[
dk,1 0
0 dk,2

]
11: bk ←

[
bk,1
bk,2

]
12: Insert (Ak,bk) into S
13: end for
14: return S

55 60 65

63.6
67.0

CUB
Rendering

No patch
Patch

80 85
Accuracy

86.3
85.4

Stanford Cars

70 75 80

77.9
80.6

CIFAR-100

Figure 8. Fine-tuning results using models pre-trained with or
without patch-based rendering.

and map each point to a patch centered on that pixel. For
each image, a patch is sampled uniformly from the set of
3 × 3 binary patches {0, 1}3×3. This patch is applied for
each point in Â.
Note: Kataoka et al. [15] found that patch rendering pro-
vided a fairly significant performance boost to fine-tuning.
We trained a model without patch-based rendering in order
to validate their findings—the results are shown in Figure 8.
Our findings are consistent with [15], although for Stanford
Cars the results were slightly better without patch-rendering
for some reason.

Colored Fractals We adopt a simple approach for ran-
domly coloring a fractal. First, we render the fractal in
grayscale, using density-based rendering (instead of bi-
nary). Then we choose a random reference hue value, h,
and assign a hue to each pixel by treating its (normalized
density) grayscale value as an offset from h. We randomly
sample saturation s ∼ U(0.3, 1) and value v ∼ U(0.5, 1)
and apply them globally to each pixel to get an HSV im-
age Xhsv , where the color for pixel i is set to be Xhsv

i =

FractalDB Multi-class Multi-instance ImageNet

Figure 9. First layer filters learned by different pre-training methods.

((h + Xi) (mod 256), s, v). We then convert Xhsv to its
RGB representation Xrgb.

Random Backgrounds Adding backgrounds to the frac-
tal images increases the diversity of images, and should
cause the neural network model to learn to ignore back-
grounds when making classification decisions. We use
the midpoint-displacement, or “diamond-square” algo-
rithm [11], to efficiently generate background textures. A
parameter γ controls the roughness of the resulting texture.
To generate a background, we first sample γ ∼ U(0.4, 0.8)
and generate a grayscale texture image using the diamond-
square algorithm. Then we colorize the texture using a pro-
cess similar to the one previously described for colorizing
the fractals. The final image is formed by compositing the
colored fractal image on top of the random background.

B.2. Just-In-Time Image Generation

With the correct procedure, we are able to generate all
images “on the fly” as they’re needed for training. This is
significant, as we circumvent the typical need to store or
transmit a huge quantity of data. The entire dataset can be
generated from the set of IFS codes, which can be stored
in tens or hundreds of megabytes (depending on the num-
ber and size of the systems). For context, the ILSVRC2012
subset of ImageNet that is typically used for pre-training
comprises 1.281M images and occupies 150GB of disk
space. While in practice, we use dozens of systems per
class and their augmentations (approximately 7.2MB for
1000 classes), even if 1.28M images were stored systemat-
ically as unique IFS parameters on disk, that only occupies
184.5MB, an 800× reduction in storage.

Three things are necessary in order for image genera-
tion to keep up with model throughput: the first is compute-
efficient fractal images; the second is efficient code; and
the third is retaining a cache of recently-computed ob-
jects. Affine Iterated Function Systems are computation-
ally efficient—a good approximation of the attractor can
be achieved with a few tens or hundreds of thousands of

Figure 10. Examples of the effect that small perturbations in pa-
rameters can have on the resulting fractal images. In each of the
two examples shown, the value of a single parameter in the IFS
code was shifted by 0.1.

iterations, and don’t require any operations beyond basic
arithmetic. We are able to get highly-efficient code by
carefully writing our algorithms and compiling them with
Numba [22].

Even with fast code and efficient fractals, it may not be
possible to generate images fast enough to match model
throughput, particularly when training on multiple GPUs.
As a solution, we keep a cache of recently-computed frac-
tal images, which gets updated on a fixed schedule. For
example, when training a multi-class classification model,
we keep a cache of the last 512 generated images. Half of
each training batch consists of images drawn from the cache
and augmented using standard data augmentation practices.
The other half of the batch consists of newly-generated im-
ages, which are then used to update the cache. This cuts in
half the number of images that need to be generated from
scratch at each iteration of training, greatly easing the com-
putational load. Using a cache is even more critical when
generating multi-instance images, as we describe in Sec-
tion 4.2.2.

Note: Our target in this work is to generate images fast
enough to keep up with training a ResNet50 model us-
ing distributed training on a workstation with 8 GPUs.
Different hardware setups and different models may re-
quire adjustments—such as different cache sizes or update
intervals—but with proper tuning the approach should work
in a wide variety of circumstances.

N

2 3 4 5 6 7 8
Sample-svs 11.7± 0.49 17.3± 0.76 22.4± 0.28 28.2± 0.38 33.1± 0.17 38.3± 0.48 43.3± 0.43

Sample-system 42.8± 1.04 49.2± 0.75 55.4± 0.25 60.5± 0.40 67.0± 0.43 72.7± 0.55 80.7± 2.86

Table 1. Average time (in microseconds) for sampling IFS codes of different size (N), using our Python implementation. The first row
shows times for sampling singular values alone, and the second row shows times for sampling the full system (including sampling singular
values).

Operation Time (ms)
Iterate (105) 4.39± 0.034

Render (256× 256) 1.46± 0.017

Colorize 0.23± 0.002

Background (256× 256) 0.77± 0.001

Table 2. Average time (in milliseconds) for various stages of
the fractal image rendering process, using our implementation
(Python and Numba [22]). (Iterate) produces coordinates on the
attractor through random iteration (100,000 iterations); (Render)
maps the coordinates to a 256× 256 grayscale image using patch-
based rendering; (Colorize) converts the grayscale image to a
color image; (Background) renders a random background. See
B.1 for details.

C. Computational Requirements

Fractal Sampling and Rendering For reference, we re-
port compute time for sampling systems and rendering frac-
tal images. Compute time was measured using an Intel
Xeon E3-1245 3.7GHz CPU. In Table B.2, we report the av-
erage time for sampling IFS codes for systems of size 2 up
to size 8, along with the time for sampling just the singular
values. In Table 2, we report the average time required for
various stages of the image rendering process. The memory
requirements for rendering a single image are low, requiring
little more than the size of the output array.
Training In Table 3, we report training time under two
different hardware settings. The first is a single node with 8
1080-Ti GPUs and 48 CPU cores. The second is two nodes,
each with 4 Tesla P100 GPUs and a total of 56 CPU cores.
We report the time required to train a model for 90 epochs,
or 90,000,000 iterations (1,000,000 images per epoch, com-
parable to ILSVRC 2012), for both single-instance multi-
class classification and multi-instance prediction.

D. Additional Data Examples

D.1. Small Changes to Parameters

Section 4.1.1 pointed out that small perturbations to IFS
codes can sometimes result in large visual differences in the
corresponding fractal images. We show examples of this in
Figure 10.

Task 1×8 1080-Ti 2×4 P100

Multi-class 23h (15.3m) 18h (12m)
Multi-instance 25h (16.6m) 19.5h (13m)

Table 3. Representative pre-training times for both multi-class
classification and multi-instance prediction, for two different hard-
ware stacks: one node with 8 1080-Ti GPUs, and two nodes with
4 P100 GPUs each. The time in hours to train for 90 epochs is
shown, with the approximate per-epoch training time (in minutes)
shown in parentheses.

Figure 11. Examples of degenerate FractalDB images, caused by
IFS parameter augmentation leading to non-contractive systems.

D.2. Problems in FractalDB

Since the data augmentation process used for Frac-
talDB [15] doesn’t enforce contractivity in the resulting
IFS codes, some of the resulting images are degenerate.
Figure 11 shows some sample images from the FractalDB
dataset that exhibit this degeneracy, leading to small clouds
of points or mostly empty images.

D.3. Example Images

Figure 15 shows images of 500 (out of 50,000) Iter-
ated Function Systems sampled according to Algorithms 1
and 2, and used to pre-train the models for which we re-
port results in the paper. We show just the binary-rendered
fractal images (without color or background) to give a clear
picture of the fractal geometry.

R = 0.8994 R = 0.4448

R = 0.1487 R = 0.0646

Figure 12. Rendered IFS codes using different probabilities
(determinant-based on the left, uniform on the right of each pair).
Uniform probabilities don’t work well when the determinants of
the system have significantly different magnitudes. R is the ratio
of the smaller to the larger determinant.

D.4. System Probabilities pi

An affine IFS code consists of a set of affine func-
tions, each with an associated sampling probability (see
Section 3). The sampling probabilities pi don’t affect the
shape of the underlying attractor, but they do influence the
distribution of points on the attractor that are visited during
iteration. Figure 12 shows several IFS rendered using two
different choices for pi: (1) pi is proportional to the magni-
tude of the determinant of the linear part of the transform,
pi ∝ |detAi|; and (2) pi is uniform, pi = 1

|S| . When one
determinant is significantly larger than the other, there are
parts of the attractor that don’t get visited during iteration
using uniform pi. We use the determinant method for set-
ting pi in all our experiments.

E. First Layer Filters

In Figure 9, we show a comparison of the filters from the
first layer of ResNet50, pre-trained using different meth-
ods. Interestingly, it appears that filters learned from multi-
instance prediction are closest to those learned by pre-
training on ImageNet.

F. Additional Results

Here we include some additional experimental results
that didn’t fit in the main body of the paper. Our main
set of experiments evaluated fine-tuning performance using
image resolution 224 × 224. One common way to achieve
better performance is to use a larger image resolution, such
as 448× 448. We fine-tuned on CUB using this resolution,
and the results are shown in Figure 13. We see better perfor-
mance across the board, with FractalDB now outperforming
training-from-scratch, and with the relative performance or-
der otherwise staying the same. At the higher resolution, we
also see the gap between ImageNet and fractal pre-training

55 60 65 70 75 80 85
Accuracy

63.5
68.4

73.5
75.6

84.9

CUB
Pre-training

Scratch
FractalDB
Multi-class
Multi-instance
ImageNet

Figure 13. Results of fine-tuning on CUB using a larger image
resolution (448× 448). The pre-trained networks are the same as
in Figure 6.

0 1 2 3 4 5 6
0

1

1
2 (5 + N) to 12 (6 + N)0N 3N

N=2 labeled good
N=2 labeled bad
target -factor range

0 2 4 6 8
0.0

0.5

1.0

1
2 (5 + N) to 12 (6 + N)0N 3N

N=3 labeled good
N=3 labeled bad
target -factor range

0 2 4 6 8 10 12
0.0

0.5

1.0

1
2 (5 + N) to 12 (6 + N)0N 3N

N=4 labeled good
N=4 labeled bad
target -factor range

Figure 14. Plot of σ-factor densities of hand-labeled systems with
N = 2, 3, 4. It is important to note that the 1

2
(5 +N) to

1
2
(6 +N) range was chosen well before these plots were gen-

erated; the plots strongly validate the selected range.

get wider, indicating there is still plenty of work to do to
improve the fractal pre-training methods.

G. σ-factor Density for Hand-labeled Systems
In Figure 14, we show the distribution of σ-factors for

the hand-labeled systems discussed in Section 3.2.2. For
each value of N ∈ {2, 3, 4}, several hundred systems were
labeled as to whether or not they had subjectively “good”
geometry. It is critical to point out here that these plots were
generated only after the range of 1

2 (5 +N) to 1
2 (6 +N)

was determined empirically; however, the plots strongly
validate the range selected.

Figure 15. Example images from 500 different systems used in our fractal pre-training.

