
GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial
Networks

Vineeth S. Bhaskara*1 Tristan Aumentado-Armstrong*1,2,3 Allan Jepson1 Alex Levinshtein1

1Samsung AI Centre Toronto 2University of Toronto 3Vector Institute for AI
{s.bhaskara,allan.jepson,alex.lev}@samsung.com, tristan.a@partner.samsung.com

Abstract

Modern generative adversarial networks (GANs) predom-
inantly use piecewise linear activation functions in discrim-
inators (or critics), including ReLU and LeakyReLU. Such
models learn piecewise linear mappings, where each piece
handles a subset of the input space, and the gradients per
subset are piecewise constant. Under such a class of discrim-
inator (or critic) functions, we present Gradient Normaliza-
tion (GraN), a novel input-dependent normalization method,
which guarantees a piecewise K-Lipschitz constraint in the
input space. In contrast to spectral normalization, GraN
does not constrain processing at the individual network lay-
ers, and, unlike gradient penalties, strictly enforces a piece-
wise Lipschitz constraint almost everywhere. Empirically, we
demonstrate improved image generation performance across
multiple datasets (incl. CIFAR-10/100, STL-10, LSUN bed-
rooms, and CelebA), GAN loss functions, and metrics. Fur-
ther, we analyze altering the often untuned Lipschitz constant
K in several standard GANs, not only attaining significant
performance gains, but also finding connections between
K and training dynamics, particularly in low-gradient loss
plateaus, with the common Adam optimizer.

1. Introduction
Generative adversarial networks (GANs) [12] are a class

of generative models that have been shown to be very ef-
fective, especially for unsupervised high-resolution image
generation [30, 13, 18, 19]. GANs usually consist of two
networks, a generator G(z) that generates synthetic data con-
ditioned on a noise vector z (sampled from a known noise
distribution, usually standard normal) and a discriminator
(or critic) D(x) that classifies real data from the generated
synthetic data. G and D are generally parametrized as deep
neural networks and optimize a mini-max objective. A Nash
equilibrium of the zero-sum game is attained when G models
the real data distribution and D is maximally uncertain in

*Equal contribution.

(a) WGAN-GP (FID: 13.6)

(b) SNGAN (FID: 13.2)

(c) GraND-GAN (FID: 10.8)

Figure 1: Images generated by WGAN-GP, SNGAN, and
our method (GraND-GAN) on 128× 128 LSUN-Bedrooms
(zoom in for better viewing). Lower FID is better.

discriminating the real from synthetic samples.
Despite the effectiveness of GANs in modeling high-

dimensional data distributions, they are hard to train. The
quality of the images output by G is dependent on the magni-
tude of the input gradients of the generator loss LG, written

∇xLG(D(x)) = ∇DLG(D(x))∇xD(x), (1)

where x = G(z). The characteristics of the input gradient
of LG, in general, are determined both by the architecture of
the discriminator D(x) as well as the loss function LG used
in formulating the mini-max objective. In turn, ∇xD(x) is a
function of the parameters θD of the discriminator (or critic)
that is trained to minimize a loss LD to separate real samples
xr from the synthetically generated ones xf = G(z) for a
given G. Therefore, in contrast to image classification, the

1

role of D is not only to accurately discriminate real data
from fake or synthetic data, but also to have a well-behaved
input gradient ∇xD(x), which is the primary signal that G
relies on for learning. Designing such a discriminator is a
major objective for GAN research.

Towards this goal, in this paper, we present a novel input-
dependent normalization method called Gradient Normal-
ization or GraN, which guarantees bounded gradients and a
piecewise Lipschitz constraint almost everywhere. GraN can
be applied to neural networks with piecewise linear activa-
tion functions, a prominent class of function approximators
within deep learning, and we use the normalized output for
discriminators (or critics). Fig. 1 shows a qualitative compar-
ison of our method on the popular dataset LSUN-Bedrooms.

Other works have considered constraining D for stabiliz-
ing GAN training. In contrast to spectral normalization [30],
our method does not restrict processing at the individual
layers and achieves a tight, piecewise Lipschitz bound on the
class of functions that D can model. Unlike gradient penal-
ties [13], which softly penalize gradient norms at samples
from the input space, our method strictly enforces piecewise
constant gradients over the entire input space and ensures
the gradient norms within each piece are strictly bounded
by a single Lipschitz constant. However, our normalization
introduces discontinuities in the discriminator itself, and it is
only piecewise continuous and piecewise Lipschitz. Never-
theless, we show that our method achieves empirical results
that are competitive with or better than existing methods.

Our main contributions are as follows:
• We present Gradient Normalization (GraN) for piece-

wise linear networks f(x) that strictly constrains f to
be piecewise K-Lipschitz, where the input space x is
partitioned into convex polytopes in each of which f(x)
is linear with ∥∇xf(x)∥ = K.

• We show that normalizing discriminators (or critics)
with GraN bounds the gradients received by the genera-
tor G almost everywhere, stabilizing GAN training.

• Unlike spectral normalization (SN), GraN does not re-
strict processing at the individual layers and does not
suffer from gradient attenuation. Further, in contrast
to both SN and gradient penalties, GraN enforces the
piecewise Lipschitz property as a hard constraint.

• Empirically, GraN performs better or competitive to ex-
isting methods on multiple datasets (CIFAR-10, CIFAR-
100, STL-10, LSUN bedrooms, and CelebA), and two
loss functions (discriminators with a non-saturating
cross-entropy loss and critics with a soft hinge loss).

• While GraN only enforces a local, piecewise Lipschitz
constraint, we find the finite-difference gradient norm is
empirically well-behaved across large step sizes, likely
including jumps across the polytopes modeled by f .

• We also investigate the effect of the Lipschitz con-
stant K on standard baseline models, finding (a) con-
strained discriminators (trained with cross-entropy loss)
outperform constrained critics, (b) K influences train-
ing dynamics when using Adam, especially on loss
plateaus, and (c) tuning K can significantly improve
performance.

2. Related Work
2.1. Stabilizing GANs

Most previous works on stabilizing GANs take one of the
following approaches: (1) proposing novel loss functions
(e.g., [27, 4]), (2) devising improved architectures (e.g., [19,
43, 44, 31, 11, 9, 17]) or (3) introducing new constraints on
D (e.g., [2, 3, 34, 38]). Herein, we continue along the latter
line of research, constructing an architectural regularization
on D that improves training without sacrificing network
capacity.

One of the earliest works on constraining D to stabilize
GAN training is the Wasserstein GAN (WGAN) [3]. They
propose a novel loss function and present weight-clipping as
a way to regularize D(x) to be 1-Lipschitz in x. However,
subsequent work [13] showed gradient penalties to be more
effective, as they do not impede optimization or severely
reduce network capacity.

2.2. Gradient Penalties

Recent research has found gradient penalties (GPs), of the
form Pδ(x) = (||∇xf(x)||2 − δ)2, to be useful for GANs.
Building on WGAN, among the most popular GAN variants
is WGAN-GP [13], which forgoes weight clipping by ap-
plying P1 along random convex combinations of reals and
fakes, since any C0 function with unit-length gradient is
necessarily 1-Lipschitz. Later research considered one-sided
GPs [33], as well as alternate sampling methods [39].

Part of the motivation for turning to optimal transport dis-
tances is the reduction of gradient uninformativeness, which
is a problem for most f -divergence-based GANs when the
real and fake distributions do not sufficiently overlap [34].
However, Zhou et al. [45] show that Lipschitz continuity
can combat gradient uninformativeness in GANs more gen-
erally. Separately, Roth et al. [34] showed that increasing
distributional overlap via noise is approximately equivalent
to a zero-centered GP. This was simplified to the popular
“R1” GP (defined as P0 on real data) [28], used in recent
state-of-the-art GANs (e.g., [19, 7]).

Clearly, gradient regularization has seen empirical suc-
cess in improving GANs. Yet, a downside of soft GPs is that
they may not enforce exactly the desired value at a given
position; furthermore, they are only applied to a subset of the
input domain, which may shift over time. In contrast, GraN
enforces unit gradients almost everywhere by construction.

2

2.3. Weight Normalization

Weight normalization (WN) [36] reparametrizes layers
in a manner conducive to better conditioned optimization,
used in early GAN work [35]. In WN, for each individual
layer i of the network, the corresponding weight vectors are
rewritten as w̃i = wiρi/||wi|| ∀ i, where the learned scalar
ρi controls the norm and wi/||wi|| represents the direction.

For piecewise linear networks, each x is linearly mapped
to f(x) = w · x+ b, where w is locally constant around x,
is implicitly input-dependent, and may be interpreted as the
effective weight vector of a (local) linear model (see §3.2 for
details). In a manner reminiscent of WN, GraN essentially
normalizes f by the norm of its gradient, i.e., ∇xf = ||w||.
In contrast, however, GraN acts on the full network, rather
than a single layer at a time, and enforces piecewise constant
gradients, rather than reparametrizing the network.

2.4. Spectral Normalization and Gradient Attenu-
ation under Global Lipschitz Constraints

Building on prior regularizations, such as GPs and weight
clipping, Miyato et al. [30] present spectral normalization
(SN) as an alternative method of ensuring D is 1-Lipschitz,
without an additional penalty in the objective for D. This
is enforced by a layer-wise weight normalization technique,
dividing by an estimate of the maximal singular value from
each weight matrix. Empirically, SN is an effective stabilizer
for GANs during training, independent of the loss function
employed. As a result, it is a major component in recent
large-scale GANs [6, 37]. We discuss SN further in §5.

At an architectural level, balancing network capacity and
regularization is difficult for globally Lipschitz-constrained
networks. Indeed, Anil et al. [1] showed that standard net-
works struggle to solve simple tasks when globally Lipschitz
constrained, and that smooth SNed ReLU networks with unit
gradients become globally linear, which they solve by enforc-
ing gradient norm preservation and weight matrix orthonor-
mality. We avoid this in GraN by permitting discontinuities
in D with respect to the input space and by only constrain-
ing the Lipschitz constant K locally in a piecewise manner.
Later work [23] combated the gradient attenuation induced
by Lipschitz constraints with a novel orthogonal convolution
operator. In contrast, GraN can be applied on top of any
piecewise linear network without globally constraining K,
while doing so locally in a piecewise sense.

3. Background
3.1. Generative adversarial networks

Let Pr represent the distribution of real data and Pg be the
distribution of generated data at a given state of the generator
G. Let LG and LD represent the loss functions for the
generator G and the discriminator (or critic) D, respectively.
Let z ∼ N (0, 1) be a |Z|-dimensional noise vector sampled

from an i.i.d. standard normal distribution. Let f : Rd → R
represent a deep neural network encoding a scalar field. For
image generation, Rd = R3×H×W .

Goodfellow et al. [12] originally propose a cross-entropy
(CE) loss-based objective for training G and D as follows:

LD = Ex∼Pr
[− logD(x)] + Ex∼Pg

[− log(1−D(x))] ,
(2)

LG = Ex∼Pg
[log(1−D(x))] , (3)

where the discriminator D(x) = σ(f(x)) ∈ [0, 1] represents
the probability of a sample x coming from the real distri-
bution Pr and σ(·) is the sigmoid function 1/(1 + e−(·)).
Hence, f computes a logit mapped to a probability by σ(·).
The gradient of LG with respect to the inputs x is then

∇xLG = Ex∼Pg [−D(x)∇xf(x)] . (4)

Notice that, when D(x) → 0 for some generated x ∼ Pg,
the contribution to ∇xLG from such points will necessarily
be small and have little influence on updating G. This is
particularly probable early in training, when Pg and Pr are
easily separated. To overcome this problem, in the same
work, the authors suggest using an alternative objective for
G that is non-saturating, given as

LG = Ex∼Pg
[− logD(x)] , (5)

for which the gradient is

∇xLG = Ex∼Pg
[−(1−D(x))∇xf(x)] . (6)

In this case, note that when D confidently rejects fakes (i.e.,
D(G(z)) ≈ 0), they can still contribute to ∇xLG. For future
convenience of notation, we use “NSGAN” to refer to the
non-saturating (NS) version of training a discriminator via
a GAN, where LD is given by Eq. (2) and LG is given by
Eq. (5). Note that although LG in Eq. (5) is relatively non-
saturating early in the training compared to Eq. (3), it may
still saturate later in training as Pg gets closer to Pr.

Subsequently, the WGAN model [3] attempted to address
two issues with the original GAN formulation. First, due to
the use of the Jensen-Shannon divergence, disjoint support
for Pg and Pr leads to poor gradients (as a confident D
rapidly saturates, leading to vanishing gradients). Second,
for fixed D, the optimal G samples a sum of Dirac deltas at
points with the highest value of D(x), leading to gradients
that encourage mode collapse [29]. Using an approximate
Wasserstein distance in WGANs mitigates these issues.

This WGAN objective for G and critic D may be written

LD = −Ex∼Pr
[D(x)] + Ex∼Pg

[D(x)] , (7)
LG = −Ex∼Pg

[D(x)] , (8)

3

where D(x) = f(x), and f(x) is constrained to be 1-
Lipschitz in x, denoted by ∥f∥Lip = 1. We now have

∇xLG = Ex∼Pg
[−∇xf(x)] , (9)

which does not saturate, unlike NSGAN (Eq. (6)).
Another commonly used variant of the critic loss LD is

the hinge loss [24, 30]:

LD = Ex∼Pr [ReLU (1−D(x))] +

Ex∼Pg [ReLU (1 +D(x))] , (10)

where ReLU(x) = max{0, x} is the rectified linear unit. It
is straightforward to define a smooth analogue of the hinge
loss in Eq. (10) by using a smooth approximation of ReLU
defined as SoftPlus(x) = log(1 + ex), which we refer to
as the soft hinge loss. For convenience of notation, we
call D a critic with D(x) = f(x), when LD is any of the
Wasserstein, hinge, or soft hinge loss, and a discriminator
with D(x) = σ(f(x)), when LD is a variant of the cross-
entropy loss (as in NSGANs).

For GANs, several methods have been proposed to effec-
tively constrain D, generally to 1-Lipschitz function spaces.
WGAN uses weight clipping, which compromises optimiza-
tion ease and capacity, while WGAN-GP imposes a soft
gradient penalty to improve upon this (see §2.1 and §2.2).
More recently, SNGAN tries to impose a 1-Lipschitz con-
straint by enforcing unit spectral norm of every layer. In
§5, we show that a composition of such constrained func-
tions typically results in the overall Lipschitz constant being
bounded loosely by 1, and discuss empirical results in §7.

While constraining D to be 1-Lipschitz is necessary for
training WGANs, Miyato et al. [30] empirically show that
such a constraint is also beneficial when training NSGANs.
One may immediately see why such smoothness constraints
might help. Consider the norm of ∇xLG for NSGANs (Eq.
(6)) and WGANs (Eq. (9)) as follows

∥∇xLG∥NSGAN = ∥Ex∼Pg [−(1−D(x))∇xf(x)] ∥
≤ Ex∼Pg [∥(1−D(x))∇xf(x)∥]
≤ Ex∼Pg [∥∇xf(x)∥] (11)

∥∇xLG∥WGAN = ∥Ex∼Pg [−∇xf(x)] ∥
≤ Ex∼Pg [∥∇xf(x)∥] . (12)

When f is constrained to be K-Lipschitz, clearly,
∥∇xLG∥NSGAN and ∥∇xLG∥WGAN are both bounded above
by K. This ensures that the gradients received by G through-
out the training are well-behaved and do not explode, thereby
improving training stability.

In this paper, we introduce an alternative way to strictly
bound the gradients by enforcing a piecewise K-Lipschitz
continuity almost everywhere (as opposed to a global K-
Lipschitz constraint). In a similar spirit to Miyato et al.

[30], we empirically show that our method benefits both
discriminators and critics.

In the next section, we introduce a notation for the class
of functions implemented by deep neural networks with
piecewise linear activations, and subsequently, in §4, we
present gradient normalization for discriminators and critics.

3.2. Deep piecewise linear networks

Modern deep neural networks predominantly use piece-
wise linear activation functions such as ReLU and
LeakyReLU. Such activation functions do not admit regions
with saturation, and, hence, allow training very deep net-
works effectively without vanishing gradients.

Let f(x) : Rd → R represent a (deterministic) deep
neural network with piecewise linear activation functions.
Denote the network parameters by θ. Then one may write

f(x, θ) = w(x, θ) · x+ b(x, θ), (13)

where w(x, θ) and b(x, θ) are piecewise constant in x. We
denote w(x, θ) · x as the scalar dot-product of flattened ten-
sors. Thus, w(x, θ) and b(x, θ) being piecewise constant in
x means that ∃ input sub-sets Sk ∈ {Sj}j ⊆ Rd, where

w(x ∈ Sk, θ) = wk(θ) and b(x ∈ Sk, θ) = bk(θ),

such that wk and bk are independent of x within the sub-set
Sk. Hence, ∀x ∈ Sk, we have

f(x ∈ Sk, θ) = wk(θ) · x+ bk(θ), (14)

which is linear in x ∈ Sk. Then f(x, θ) is the composi-
tion of continuous, piecewise linear functions, and is there-
fore itself a continuous and piecewise linear function of x.
That is, there exist disjoint open input subsets Sk, such that
∪K
k=1Sk = Rd, where Eq. 14 holds. I.e., f(x, θ) is a linear

function of x ∈ Sk, with coefficients wk and bk that only de-
pend on θ. One can interpret wk(θ) and bk(θ) as the effective
weights and bias of a linear functional (given by Eq. (14))
that equals the predictions of the deep neural network, f(x),
∀ x ∈ Sk. Note that, unlike a linear hyperplane in logistic
regression, the effective weights wk(θ) and bias bk(θ) are
only applicable for x ∈ Sk.

Given this structure, for points off of ∂Sk (the boundary
of Sk), the gradient takes a simple form:

∇xf(x, θ) = wk(θ), (15)

which is a constant vector ∀ x ∈ Sk.

4. Gradient Normalization
In this section, we present gradient normalization (GraN),

which strictly constrains piecewise linear networks to be 1-
Lipschitz almost everywhere.

4

As in §3.2, let f(x) : Rd → R represent a piecewise
linear neural network with parameters θ. We then define the
gradient normalized function g(x) as

g(x) = f(x)Rϵ(∥∇xf(x)∥) =
f(x) ∥∇xf(x)∥
∥∇xf(x)∥2 + ϵ

, (16)

where ϵ > 0 is a fixed constant for numerical stability and
Rϵ(n) = n/(n2 + ϵ) is the normalization factor, with n =
∥∇xf(x)∥. Any bounded R(n), with R(n) = (1/n)(1 +
o(1)) as n → ∞, could be tried. We briefly experimented
with R(n) = 1/(n + ϵ), which produced similar although
slightly worse results than Rϵ. The choice of R(n) could
benefit from further study. We remark that a concurrent work
[41] to ours independently explores a similar technique to
regularize D, but with a different normalization factor.

Given this normalization, if f is an arbitrary piece-
wise linear function then g is piecewise linear such that
∥∇xg(x)∥ ≤ 1 analytically almost everywhere in x ∈ Rd.
While the gradient ∇xg(x) is bounded, g(x) itself can still
take real values with no bounds, i.e., g(x) ∈ R.

One can better describe this result with the notation devel-
oped in §3.2. Consider an arbitrary input x ∈ Sk (without
any loss of generality) that belongs to the input open subset
Sk and is mapped by the network to a linear piece given
by f(x) = wk(θ) · x + bk(θ) ∀ x ∈ Sk. Then one has
∇xf(x, θ) = wk(θ) ∀ x ∈ Sk (Eq. (15)). Therefore, the
GraNed function g(x), given f(x), for x ∈ Sk becomes

g(x ∈ Sk) = [wk(θ) · x+ bk(θ)]
∥wk(θ)∥

∥wk(θ)∥2 + ϵ
. (17)

Consequently, ∇xg and its norm can be written as

∇xg(x ∈ Sk) = wk(θ)
∥wk(θ)∥

∥wk(θ)∥2 + ϵ
, (18)

=⇒ ∥∇xg(x ∈ Sk)∥ =
∥wk(θ)∥2

∥wk(θ)∥2 + ϵ
< 1. (19)

Since x and Sk were arbitrarily chosen, it follows that
∥∇xg(x)∥ < 1 except at the boundaries, say x ∈ ∂Sk,
where the gradient does not exist. Since ∪k∂Sk is measure
zero, we have ∥∇xg(x)∥ < 1 almost everywhere in Rd.
Further, for ∥wk(θ)∥ ≫ ϵ, we have ||∇xg|| ≈ 1 in Sk.

Note that, since the original piecewise linear function
f(x) does not have a smooth gradient ∇xf(x), the normal-
ization factor Rϵ(∥∇xf(x)∥) will have discontinuities for
x ∈ ∪k∂Sk. Therefore, g is typically discontinuous and
not guaranteed to be globally 1-Lipschitz. However, we em-
pirically find that g(x) has bounded finite-differences over
substantial perturbations (see §7).

Due to this piecewise constant gradient property (with
unit-bounded norm), we remark that g is piecewise 1-
Lipschitz, since g is 1-Lipschitz with respect to any pair
of points within each subset Sk. It is also locally 1-Lipschitz

continuous almost everywhere, since there exists an open
ball around every point x ∈ ∪kSk, within which 1-Lipschitz
continuity holds. Empirically, we find that the tight bound
on ∥∇xg(x)∥ almost everywhere assists with GAN training.

4.1. Gradient Normalized GANs

Given a deep neural network represented by f(x), we
write D(x) = σ(f(x)) when D represents discriminators,
and D(x) = f(x), when D represents critics, respectively,
where σ(·) is the sigmoid function (see §3.1).

When f(x) is piecewise linear in x, we define the gradient
normalized discriminator (GraND) and critic (GraNC) as
D(x) = σ(g(x)) and D(x) = g(x), respectively, where

g(x) =
f(x)

τ

∥∇xf(x)∥
∥∇xf(x)∥2 + ϵ

, (20)

and τ is a positive constant that constrains g to be K-
Lipschitz, with K = 1/τ . For GraNDs, τ takes a role
analogous to the temperature of a sigmoid, and, hence, we
term it as the “temperature” hyperparameter.

Like spectral normalization [30], the Lipschitz constant
K = 1/τ is the only additional hyperparameter that needs to
be tuned for our method. Moreover, in practice, our method
achieves a tight bound on the Lipschitz constant, unlike
spectral normalization, which imposes a loose upper bound
with ∥g∥Lip ≤ K. See §5 for details.

Finally, note that since the gradients in Eqs. (11) and (12)
are computed by back-propagation, the step discontinuities
in g(x) are ignored. Therefore, for GANs with GraNDs and
GraNCs, the generator G receives gradients that are always
bounded, i.e., ∥∇xLG∥ ≤ K.

5. Comparison to Layer-wise Norms
Spectral Normalization As noted in §2.2, GPs softly

encourage Lipschitz continuity in a data-dependent manner.
Improving on this, the spectrally normalized GAN (SNGAN)
[30] achieves it at the architectural level. In particular, a lin-
ear layer ℓ(x) = Wx (ignoring the bias term) with weights
W is normalized via W̃ = W/||W ||2, before being applied
to an input (ℓ̃(x) = W̃x), where ||W ||2 = σ1(W) is the
spectral norm of W , equal to its largest singular value (SV)
σ1. This is a form of WN, but acts on the whole matrix rather
than its individual rows. Notice that ||ℓ||Lip ≤ σ1(W) and
σ1(W̃) = 1, so ||ℓ̃||Lip ≤ 1. As such, SN ensures layer-wise
1-Lipschitz continuity, and thus enforces it across the whole
network, where SVs are estimated via power iteration.1

One downside of SN is the tendency to over-constrain the
network, reducing capacity and attenuating gradients, due
to the layer-wise enforcement mechanism [1, 23]. SN guar-
antees a function is globally 1-Lipschitz by bounding the

1Although note that, at each step, power iteration provides a lower
bound on σ1(W), and thus in practice it is possible that ||ℓ||Lip > 1.

5

Lipschitz constant (LC) of every layer, as this then bounds
their composition: ||f ◦ g||Lip ≤ ||f ||Lip||g||Lip. However,
this upper-bound is often loose, over-constraining the net-
work and attenuating gradients (expanded upon below). In
comparison, GraN acts upon the network as a whole, leaving
weights per layer free to vary, and ensuring that gradients
with respect to the input are always of unit norm.

The Looseness of Layerwise Constraints For illus-
tration, consider the simple case of two SNed linear lay-
ers without biases, ignoring non-linear activations (though,
for instance, this occurs in the positive domain of ReLU):
z = f(g(x)), where f(y) = By and g(x) = Ax. Assuming
sufficient power iterations under SN, the largest singular
values (SVs) of A and B are one, assigning each layer an
LC of one. We next examine the conditions for which the
composition of the layers, f ◦ g, also has a LC of one.

In this case, z = f(g(x)) = BAx, and so f ◦ g has
a sharp LC of one if and only if the maximal SV of BA,
namely σ1(BA), is also one. Let Γσ(A) denote the span
of the right singular vectors of A with corresponding SVs
equal to σ. We show in appendix D, that σ1(BA) = 1 if
and only if the first principal angle [10, 46] between the
subspaces Γ1(A

T) and Γ1(B) is zero. This only occurs if
they intersect in at least one dimension. However, if even
one SV of A and B is less than one, then Γ1(A

T) and Γ1(B)
will be measure zero, meaning the network must solve a high
dimensional “alignment” problem of two measure zero sets.
The only scenario avoiding this is when every SV of either
A or B are one, which is also a measure zero event.

Importantly, since the SN framework does not directly en-
courage these subspaces to align, or all the SVs of the weight
matrices to be one, in practice it is likely that σ1(BA) < 1.
This issue is exacerbated for deeper networks, as the overall
LC equals the product of σ1(BA) for every adjacent pair
of layers. In addition, though training may encourage the
network to utilize its capacity by avoiding small SVs, em-
pirically it struggles to do so [1]. In contrast, GraN not only
guarantees the function is locally 1-Lipschitz, but does so
without constraining individual layers (avoiding subspace
alignment issues) and enforces exactly unit gradient almost
everywhere as well (attaining the sharp LC bound within
every Sk). Fig. 3 displays this exactness for GraN; note that
SNGAN, due its residual architecture, actually has an LC of
1024, showcasing the looseness of the bound.

6. Experiments
Model Architectures and Training We evaluate our

method on unconditional image generation across datasets
of various sizes: CIFAR-10/100 (32 × 32) [21], STL-10
(48 × 48) [8], LSUN bedrooms (128 × 128) [42], and
CelebA (128 × 128) [26]. We use Mimicry [22] with
PyTorch [32] on a single NVIDIA V100 GPU for training
our models. The generator G and discriminator (or critic)

Table 1: Hyperparameters tested in Fig. 2 for GraND-GAN,
SNGAN, and WGAN-GP on CIFAR-10, where α is the
learning rate, β1 and β2 parametrize Adam in Eq. (21), and
ndis is the number of discriminator steps per generator step.

Setting α (LR) β1 β2 ndis

A 0.0001 0.5 0.9 5
B 0.0002 0.5 0.999 1
C 0.001 0.5 0.999 5
D 0.001 0.9 0.999 5
E (default) 0.0002 0.0 0.9 5

WGAN-GP SNGAN GraND-GAN
Model

0

2

4

6

8

in
ce

pt
io

n_
sc

or
e

Settings
A
B
C
D
E

(a) IS ↑

WGAN-GP SNGAN GraND-GAN
Model

0

25

50

75

100

125

150

FI
D

Settings
A
B
C
D
E

(b) FID ↓

WGAN-GP SNGAN GraND-GAN
Model

0.000

0.025

0.050

0.075

0.100

0.125

0.150

KI
D

Settings
A
B
C
D
E

(c) KID ↓

Figure 2: Inception scores (IS), FIDs, and KIDs on CIFAR-
10 image generation across different hyperparameters listed
in Table 1 for GraND-GAN, WGAN-GP, and SNGAN. Re-
sults show superior robustness for GraND.

NSGAN
20

40

60

80

gr
ad

 n
or

m

WGAN-GP
0.8

1.0

1.2

SNGAN

4

5

6

GraND-GAN

0.5

0.0

0.5

1e 6+8.3e 1

GraNC-GAN

0.5

0.0

0.5

1e 6+8.3e 1

Figure 3: Boxplots of gradient norms at real (blue) and fake
(red) samples for different methods at 50K iterations (out
of 100K) on CIFAR-10 during training. Gradient norms for
GraND/C have a very narrow distribution (spanning less than
±10−6) around the piecewise Lipschitz constant K=0.83.

D architectures are identical across methods for a given
dataset with identical number of learnable parameters for
fair comparison. We use the Adam [20] optimizer with
β1 = 0.0, β2 = 0.9, and a batch size of 64 for 100K
iterations, with a dataset-dependent learning rate (LR) α
and number of D steps per G step ndis. NSGANs and
GraND-GAN use the cross-entropy loss for D in Eq. (2) and
the non-saturating loss for G in Eq. (5). GraNC-GAN uses
a soft version of the hinge loss for D in Eq. (10), replacing
ReLU with softplus, and Eq. (8) for G (see §3.1). The soft
hinge loss was found to be more performant and stable than
the (hard) hinge loss with GraNC-GANs: on LSUN, GraNC
diverged with the hard hinge loss, while on CelebA, a lower
FID was obtained. See appendix for further model details,
ablation experiments, and hyperparameter choices.

6

Lipschitz Constant Analysis We find that tuning the
Lipschitz constant K significantly affects the performance
and stability of models when using the Adam optimizer. This
is due to the interdependence of ϵAdam in the update with K:

δθ = − ⟨g⟩β1√
⟨g2⟩β2 + ϵAdam

. (21)

Changing K from its default value of one has an effect of
scaling the gradients of the loss function g by K. This in turn
has an effect of scaling ϵAdam −→ ϵAdam/K. Empirically,
we find that the Adam update for individual parameters
can go ≪ 10−7 in magnitude on the plateaus of the loss
landscape where ϵAdam becomes significant. We find it
helps having smaller K generally when training on larger
image resolutions which has an effect of increasing ϵAdam
from its default value of 1 × 10−8. Intuitively, a larger
ϵAdam suppresses the Adam update when the loss gradient
magnitudes are ≲ ϵAdam. Therefore, ϵAdam determines
the extent of noisy Adam updates at plateaus of the loss
landscape, and so may need tuning. More details on the
choice of K are provided in the appendix.

Baselines and Evaluation To directly compare our nor-
malization method GraN with gradient penalty (GP) and
spectral normalization (SN), independent of the loss function,
we train NSGAN with a gradient penalty P1 loss (NSGAN-
GP), and with SNed layers (NSGAN-SN). We also train
NSGAN-GP† and NSGAN-SN†, which correspond to mod-
els constrained with a tuned Lipschitz constant (instead of
1). WGAN-GP† and SNGAN† are defined analogously.

We quantitatively evaluate the methods by Inception
Score (IS) [35], FID [14], and KID [5] with 50K synthetic
images randomly sampled from G and 50K real images from
the dataset. IS is not used for LSUN and CelebA, as these
comprise a single class, for which IS performs poorly [22].
See appendix A for additional details.

Unconditional Image Generation Table 2 presents
the comparative results on CIFAR-10, CIFAR-100, and
STL-10 image generation. Our methods rank among the top
two across every metric (KID, FID, IS) on CIFAR-10 and
CIFAR-100. On STL-10, our two methods rank the highest
in IS and FID, however, we fall behind on KID by a small
margin compared to SNGAN and SNGAN†.

Table 3 summarizes our results on LSUN bedrooms and
CelebA image generation. The NSGAN model did not con-
verge (i.e., FID > 70) in two random restarts of training
for both LSUN and CelebA. Similarly, WGAN-GP failed
to converge on CelebA in two runs. GraND-GAN achieves
the best results on CelebA, and the second-best on LSUN
bedrooms, falling slightly behind NSGAN-GP†. Among
critics, GraNC-GAN performs best by FID as well.

Figure 2 presents a comparison of GraND-GAN with
WGAN-GP and SNGAN on CIFAR-10 image generation
across various training settings listed in Table 1. For setting

5e-05 2.0
delta

0.50

0.75

1.00

1.25

fin
ite

-d
iff

er
en

ce
 n

or
m

(a) WGAN-GP

5e-05 2.0
delta

2

4

6

fin
ite

-d
iff

er
en

ce
 n

or
m

(b) SNGAN

5e-05 2.0
delta

0.4

0.6

0.8

1.0

fin
ite

-d
iff

er
en

ce
 n

or
m

(c) GraND-GAN

5e-05 2.0
delta

0.6

0.8

1.0

fin
ite

-d
iff

er
en

ce
 n

or
m

(d) GraNC-GAN

Figure 4: Boxplots of estimated finite-difference gradient
norm with increasing L2 perturbation strengths δ around
the real (blue) and fake samples (red) on CIFAR-10 at 50K
iterations (out of 100K) for different methods. Empirically,
GraND/C is fairly Lipschitz bounded across polytopes glob-
ally, close to the piecewise Lipschitz constant of K = 0.83.

B (ndis = 1), our method retains a respectable FID score (and
other metrics) compared to SNGAN and WGAN-GP. For
settings C and D with larger learning rates and momentum
hyperparameters, the performance of WGAN-GP degrades
while our method and SNGAN remain quite robust.

7. Gradient Normalization Empirical Analysis

In this section, we empirically analyze the effect of gra-
dient normalization on (a) the gradient norms and (b) the
finite-difference approximation to the gradient norm at in-
creasing levels of perturbation δ, and compare it with spectral
normalization and gradient penalty.

Figure 3 shows a boxplot of ∥∇xf(x)∥ for the baselines,
and ∥∇xg(x)∥ for our methods, on a CIFAR-10 image gen-
eration task at 50K iterations (out of 100K), where f(x) is
the piecewise linear discriminator (or critic) network and
g(x) is its gradient normalized version. The gradient norms
∥∇xf(x)∥ for NSGAN with an unconstrained discrimina-
tor are substantially larger. For WGAN-GP and SNGAN,
∥∇xf(x)∥ are bounded within a reasonable range. Gradient
normalized discriminators and critics with a piecewise Lips-
chitz constant of K = 0.83, have a narrow distribution with
a gradient norm that is ≈ K (±10−6) across samples.

Unlike spectral normalization or gradient penalty, our
method does not constrain the discriminator or critic to be
globally K-Lipschitz. We investigate this on a CIFAR-10
image generation task by first sampling fake data from G

7

Table 2: Inception scores (IS), FIDs, and KIDs with unsupervised image generation on CIFAR-10, CIFAR-100, and STL-10.
The best and the second best models per evaluation metric and GAN family (i.e., with discriminators or critics) are indicated by
bold red and bold blue fonts. † indicates modified baselines with an altered Lipschitz constant K. The table is split comparing
discriminators (top) and critics (bottom). We write “–” for cases where a model did not achieve a FID < 70.

Method IS ↑ FID ↓ KID (×1000) ↓
CIFAR-10 CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10

NSGAN 7.655 6.611 7.920 23.750 30.842 44.179 14.5 20.5 40.0
NSGAN-GP 8.016 – 8.568 15.813 – 38.848 12.9 – 38.9
NSGAN-SN 7.792 7.258 8.167 20.998 25.564 38.669 15.7 18.4 35.7
NSGAN-GP† 8.019 7.892 8.623 15.911 20.894 40.110 13.1 17.0 39.8
NSGAN-SN† 7.814 7.526 8.135 20.323 24.200 39.013 15.3 17.7 36.7
GraND-GAN (Ours) 8.031 8.314 8.743 14.965 18.978 35.226 12.3 13.7 35.0

WGAN-GP 7.442 7.520 8.492 22.927 27.231 42.170 21.1 23.5 43.0
SNGAN 8.112 7.778 8.385 17.107 20.739 38.218 12.6 14.3 34.3
WGAN-GP† 7.344 7.684 8.466 22.705 25.211 42.595 20.6 21.2 44.7
SNGAN† 7.991 7.959 8.552 16.740 20.104 36.203 12.0 14.3 33.3
GraNC-GAN (Ours) 7.966 8.208 8.957 16.361 19.131 35.770 13.7 14.8 35.4

Table 3: Unsupervised 128 × 128 image generation on
LSUN-Bedrooms and CelebA. We write “–” to indicate the
cases where a model did not achieve a FID < 70 in two ran-
dom training restarts. The best and the second best models
per evaluation metric and GAN family (i.e., with discrim-
inators or critics) are indicated by bold red and bold blue
fonts. † indicates modified baselines with an altered Lips-
chitz constant K. We split the table into discriminators (top)
and critics (bottom), to better highlight the differences per
loss function. GraN performs best or second-best across all
datasets, losses, and performance metrics; in the case of dis-
criminators, GraND-GAN and NSGAN-GP† (our Lipschitz-
tuned GP-based approach) are the top two performers.

Method FID ↓ KID (×1000) ↓
LSUN CelebA LSUN CelebA

NSGAN – – – –
NSGAN-GP – – – –
NSGAN-SN 74.926 14.33 44.8 21.2
NSGAN-GP† 10.483 9.385 7.2 5.8
NSGAN-SN† 12.635 9.644 8.3 5.8
GraND-GAN (Ours) 10.795 9.377 7.3 5.2

WGAN-GP 13.562 – 9.8 –
SNGAN 13.237 13.466 8.0 8.9
WGAN-GP† 16.884 – 12.0 –
SNGAN† 67.346 15.874 32.0 8.7
GraNC-GAN (Ours) 12.533 12.000 9.1 8.1

at a given training iteration and real data from the dataset.
We estimate ∆i = ∥h(xi + δni) − h(xi)∥/δ for each of
the samples, which is the finite difference along a step of
magnitude δ > 0 along the local gradient direction ni =
∇h(xi)/∥∇h(xi)∥, where h denotes f for baselines and g
for our methods, respectively. This provides a probe for the

LC (albeit a lower bound) similar in spirit to prior work [47].
Figure 4 shows a boxplot of the resulting ∆i for in-

creasing perturbation magnitudes δ. Evidently, gradient
normalized discriminators and critics have well-behaved
finite-differences, even for fairly large neighborhoods δ, de-
spite being only piecewise Lipschitz in theory. Moreover,
the variance of the computed ∆i’s across δ for our methods
is comparable to WGAN-GP.

8. Discussion
Limitations We observed instabilities when training gra-

dient normalized critics with the Wasserstein loss (Eq. (7)).
The hinge loss (Eq. (10)) improved this, but still struggled
for larger images; the soft hinge approach was found to work
better. However, training GraND with the NS loss (Eq. (2))
was found to be more stable, especially on larger images.
Also, on such images, our method periodically diverged late
in training, an issue present for the baselines as well.

Future work While GraN does not guarantee a global
Lipschitz constraint due to discontinuities, it does enforce
constant bounded-norm gradients almost everywhere (and
thus piecewise Lipschitz continuity). Moreover, empirically,
it is competitive with, or better than, existing baselines. In-
vestigating global versus local Lipschitz continuity, as well
as gradient regularization, is thus an enticing future direction.

Conclusion We introduced a novel input-dependent nor-
malization for piecewise linear critics and discriminators.
Our method guarantees a bounded input gradient norm al-
most everywhere and is piecewise K-Lipschitz. We em-
pirically showed that our method improves unconditional
image generation using GANs across a range of datasets. Fi-
nally, though our method does not explicitly impose a global
K-Lipschitz constraint, empirically, the finite-difference gra-
dient norm is well-behaved in a large local neighbourhood.

8

References
[1] Cem Anil, James Lucas, and Roger Grosse. Sorting out

lipschitz function approximation. In International Conference
on Machine Learning, pages 291–301. PMLR, 2019.

[2] Martin Arjovsky and Léon Bottou. Towards principled
methods for training generative adversarial networks. arXiv
preprint arXiv:1701.04862, 2017.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasser-
stein generative adversarial networks. In International con-
ference on machine learning, pages 214–223. PMLR, 2017.

[4] David Berthelot, Thomas Schumm, and Luke Metz. Began:
Boundary equilibrium generative adversarial networks. arXiv
preprint arXiv:1703.10717, 2017.

[5] Mikołaj Bińkowski, Dougal J Sutherland, Michael Arbel, and
Arthur Gretton. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401, 2018.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

[7] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. arXiv
preprint arXiv:2012.00926, 2020.

[8] Adam Coates, Andrew Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 215–223. JMLR
Workshop and Conference Proceedings, 2011.

[9] Arnab Ghosh, Viveka Kulharia, Vinay P Namboodiri,
Philip HS Torr, and Puneet K Dokania. Multi-agent diverse
generative adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
8513–8521, 2018.

[10] Gene H Golub and Charles F Van Loan. Matrix computations
(fourth edition). JHU press, 2013.

[11] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang
Wang. Autogan: Neural architecture search for generative
adversarial networks. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3224–3234,
2019.

[12] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. arXiv
preprint arXiv:1406.2661, 2014.

[13] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of Wasser-
stein gans. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pages
5769–5779, 2017.

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In
Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 6629–6640,
Red Hook, NY, USA, 2017. Curran Associates Inc.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-

variate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015.

[16] Animesh Karnewar and Oliver Wang. Msg-gan: Multi-scale
gradients for generative adversarial networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7799–7808, 2020.

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017.

[18] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019.

[19] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[21] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009.

[22] Kwot Sin Lee and Christopher Town. Mimicry: Towards the
reproducibility of gan research. CVPR Workshop on AI for
Content Creation, 2020.

[23] Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B
Grosse, and Joern-Henrik Jacobsen. Preventing gradient atten-
uation in lipschitz constrained convolutional networks. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32, pages 15390–15402. Curran
Associates, Inc., 2019.

[24] Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv
preprint arXiv:1705.02894, 2017.

[25] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural volume ren-
dering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
14556–14565, June 2021.

[26] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), De-
cember 2015.

[27] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen
Wang, and Stephen Paul Smolley. Least squares generative ad-
versarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2794–2802, 2017.

[28] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
International conference on machine learning, pages 3481–
3490. PMLR, 2018.

[29] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-
Dickstein. Unrolled generative adversarial networks. In
5th International Conference on Learning Representations,
ICLR 2017, 2017.

9

[30] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative adver-
sarial networks. In International Conference on Learning
Representations, 2018.

[31] Jeeseung Park and Younggeun Kim. Styleformer: Trans-
former based generative adversarial networks with style vec-
tor. arXiv preprint, arXiv:2106.07023, 2021.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[33] Henning Petzka, Asja Fischer, and Denis Lukovnicov. On
the regularization of wasserstein gans. arXiv preprint
arXiv:1709.08894, 2017.

[34] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and
Thomas Hofmann. Stabilizing training of generative ad-
versarial networks through regularization. arXiv preprint
arXiv:1705.09367, 2017.

[35] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. arXiv preprint arXiv:1606.03498, 2016.

[36] Tim Salimans and Diederik P Kingma. Weight normalization:
a simple reparameterization to accelerate training of deep
neural networks. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, pages
901–909, 2016.

[37] Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. A u-
net based discriminator for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8207–8216, 2020.

[38] Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang, and
Weilong Yang. Regularizing generative adversarial networks
under limited data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7921–7931, 2021.

[39] Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang
Wang. Improving the improved training of wasserstein gans:
A consistency term and its dual effect. In International Con-
ference on Learning Representations (ICLR), 2018.

[40] Maciej Wiatrak, Stefano V Albrecht, and Andrew Nystrom.
Stabilizing generative adversarial networks: A survey. arXiv
preprint arXiv:1910.00927, 2019.

[41] Yi-Lun Wu, Hong-Han Shuai, Zhi-Rui Tam, and Hong-Yu
Chiu. Gradient normalization for generative adversarial net-
works. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 6373–6382, October
2021.

[42] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong
Xiao. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

[43] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus
Odena. Self-attention generative adversarial networks. In
International conference on machine learning, pages 7354–
7363. PMLR, 2019.

[44] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan train-
ing. In Conference on Neural Information Processing Systems
(NeurIPS), 2020.

[45] Zhiming Zhou, Jiadong Liang, Yuxuan Song, Lantao Yu,
Hongwei Wang, Weinan Zhang, Yong Yu, and Zhihua Zhang.
Lipschitz generative adversarial nets. In International Confer-
ence on Machine Learning, pages 7584–7593. PMLR, 2019.

[46] Peizhen Zhu and Andrew V Knyazev. Angles between sub-
spaces and their tangents. arXiv preprint arXiv:1209.0523,
2012.

[47] Dongmian Zou, Radu Balan, and Maneesh Singh. On lips-
chitz bounds of general convolutional neural networks. IEEE
Transactions on Information Theory, 66(3):1738–1759, 2019.

10

Appendix

A. Training Details
We use Mimicry [22] with PyTorch [32] on a single

NVIDIA V100 GPU for training our models. The generator
G and discriminator (or critic) D architectures are identi-
cal across methods for a given dataset except for models
with spectral normalization that replace convolutional and
linear layers with their normalized variants. The number
of learnable parameters are identical across methods for a
fixed dataset size. Number of parameters for (G,D) are ≈
(4.3M, 1M) for 322, (4.9M, 10M) for 482, and (32M, 29M)
for 1282 image sizes, respectively. G and D are both residual
networks with ReLU activation functions, and G employs
batch normalization [15] while D does not. We train our
models on a single NVIDIA V100 GPU with the Adam [20]
optimizer at a learning rate (LR) of 2 × 10−4, β1 = 0.0,
β2 = 0.9 and a batch size of 64 for 100K iterations. The
number of discriminator updates per generator update ndis is
set to 5 for CIFAR-10/CIFAR-100/STL-10 and 2 for LSUN
bedrooms/CelebA. All models (GraN or baseline) use a
linear LR decay policy except models on CelebA that use
the same learning rate throughout, following Mimicry [22].
However, GraNC-GAN on CelebA required a slight alter-
ation: setting LRs for G and D to be 5×10−5 and 1×10−4,
respectively, and using linear LR decay.

Empirically we find it necessary to have a smaller piece-
wise Lipschitz constant K when training GANs on larger
image resolutions with gradient normalization. We suspect
that a smooth discriminator or critic with smaller gradient
norms is essential for stable GAN training on larger image
resolutions. We choose K = 1/τ = 0.0909 for our models
on LSUN bedrooms/CelebA (except for K = 1/τ = 0.2
with GraNC-GAN on CelebA) and K = 1/τ = 0.83 for our
models on CIFAR-10/CIFAR-100/STL-10.

WGAN-GP uses the Wasserstein distance based loss ob-
jectives for D in Eq. (7) and G in Eq. (8). SNGAN uses
hinge loss for D in Eq. (10) and Eq. (8) for G.

For NSGAN-GP†, we adjust the gradient penalty loss
to constrain the Lipschitz constant to K (instead of 1). For
NSGAN-SN†, we scale the output of the network before the
sigmoid by K to obtain an effective K-Lipschitz constraint
using SN. We also retrain the baselines WGAN-GP and
SNGAN with similar modifications so that the Lipschitz
constraint is identical to the piecewise Lipschitz constraint
for our methods and call them WGAN-GP† and SNGAN†,
respectively.

It is also worth highlighting that our method backpropa-
gates through the GraN normalization term as well and does
not simply treat it as a constant.

Evaluation We quantitatively evaluate the methods by
Inception Score (IS) [35], FID [14], and KID [5] with 50K

synthetic images randomly sampled from G and 50K real im-
ages from the dataset. We report the mean scores computed
across 3 randomly sampled sets of 50K images for a given G.
We note that across all methods and datasets, the standard
deviations across 3 evaluation samplings for IS, FID, and
KID are less than 0.05, 0.085, and 0.0004, respectively, and
we therefore do not include them in our tables. IS is not used
for LSUN and CelebA, as these comprise a single class, for
which IS performs poorly [22].

B. Model Architectures
Figure 5 presents the discriminator model architectures

for inputs of dimensions 322, 482 and 1282, respectively.
Figure 6 presents the generator model architectures for out-
puts of dimensions 322, 482 and 1282, respectively.

Note that for GraN-models, the output of the networks
f(x) is normalized to g(x) as described in Equation (19) of
the main paper and does not contain any additional learnable
parameters.

To modify the Lipschitz constant (LC) of baselines in-
volving spectral normalized linear and convolutional lay-
ers (NSGAN-SN† and SNGAN†), we scale the output f(x)
by K, i.e., f(x) → Kf(x), where K scales LC relative
to the LC of the baseline model since |f |Lip ≤ 1, implies,
|Kf |Lip ≤ K.

For models WGAN-GP† and NSGAN-GP†, we instead
only change the gradient penalty loss term in the objective
for D to

LGP = λ (∥∇xf(x)∥ − K)
2
,

where λ = 10 (following defaults recommended in [13])
and K = 1 corresponds to the default WGAN-GP model.
As in the main paper, we denote † to represent models with
adjusted LC relative to the original baselines.

See also §D and Fig. 8 for discussion and empirical re-
sults concerning the observed LC when using an SNGAN
discriminator with a resnet-based convolutional architecture.

C. Wall-clock timings for a single training up-
date

We summarize wall-clock times for a single training up-
date that consists of one generator update and ndis number
of discriminator updates (including time for loading a batch
of 64 images from the dataset). As can be noticed from
Table 4, our method is roughly similar in wall-clock timings
compared to WGAN-GP on smaller models (322 and 482)
but slower than NSGAN or SNGAN. On 1282 images GraN
is 40% slower than WGAN-GP.

This is because gradient normalized discriminator (or
critic) D requires computing the gradient norms on both the
real and the fake samples when updating the parameters of
D. In contrast, WGAN-GP only computes gradient norms
on half the total number of real+fake samples which are

11

(a) x ∈ R322 (b) x ∈ R482 (c) x ∈ R1282

Figure 5: Discriminator architectures for a) 32 × 32, b)
48× 48 and c) 128× 128 image sizes, respectively. The ar-
chitectures for Input DBlock, DBlock and Down2X DBlock
are described in Figure 7. All models use Global Spatial Av-
erage Pooling except SNGAN that uses Global Spatial Sum
Pooling before the last Linear layer. For SNGAN only, the
Linear and convolution Conv2D layers are the spectral
normalized versions with 1 power iteration.

Table 4: Wall-clock timings (in seconds ×10) for a single
training update across different dataset of different resolu-
tions. Note that ndis = 5 for CIFAR-10/100 and STL-10
while ndis = 2 for LSUN/CelebA, following Mimicry [22].

Method CIFAR-10 CIFAR-100 STL-10 LSUN CelebA
sec (×10) sec (×10) sec (×10) sec (×10) sec (×10)

NSGAN 3.80±0.04 3.72±0.03 4.89±0.06 10.93±0.10 10.98±0.10
WGAN-GP 5.86±0.46 6.12±0.13 8.19±0.18 18.78±0.10 18.61±0.10
SNGAN 4.17±0.05 4.17±0.04 5.57±0.11 11.62±0.11 11.56±0.09
GraND-GAN (Ours) 5.66±0.04 5.69±0.04 8.83±0.07 26.34±0.08 26.13±0.10
GraNC-GAN (Ours) 5.69±0.04 5.65±0.04 8.83±0.08 26.11±0.10 26.18±0.18

random interpolates between the reals and fakes. Moreover,
when updating G, computing generator loss LG requires
computing the gradient norm of D for GraN models, unlike
WGAN-GP where gradient penalty affects only the param-
eter updates for D at a given training iteration. GraN and
WGAN-GP are both slower relative to NSGAN or SNGAN

(a) G(z) ∈ R322 (b) G(z) ∈ R482 (c) G(z) ∈ R1282

Figure 6: Generator architectures for a) 32× 32, b) 48× 48
and c) 128× 128 image sizes, respectively. The architecture
for Up2X GBlock is described in Figure 7. Generator archi-
tectures are identical across all models for a given dataset
resolution.

because they involve computing the gradient norm and back-
propagating through it. We remark that further advances in
the efficiency of back-propagation through network gradients
could ameliorate this issue (e.g., AutoInt [25]).

However, we note that, since the generator G architecture
is identical across methods for a given dataset, at inference
all methods fare equally in wall-clock timings for image
generation.

D. The Looseness of Layerwise Constraints
We consider the simple case of the composition of two

linear layers, z = f(g(x)) = B(Ax + a) + b, where both
f and g, have a sharp Lipschitz constant (LC) of one. The
question is under what conditions does f ◦ g also have a
sharp LC of one?

We first introduce some notation. Let M be an m × n
matrix. We denote the singular value decomposition of M
as M = UMΣMV T

M , where we take UM and VM to be
square matrices (of sizes m ×m and n × n, respectively).
Here ΣM is a diagonal m× n matrix, with the non-negative

12

(a) Input DBlock (b) Down2X DBlock

(c) DBlock (d) Up2X GBlock

Figure 7: Residual block architectures for a) Input DBlock,
b) Down2X DBlock, c) DBlock and d) Up2X GBlock in
Figures 5 and 6. inc and outc denote the input and
output number of channels, respectively. Note that when
inc ̸= outc, the skip connection in DBlock includes
a 1 × 1 Conv2D appropriately. For SNGAN, the lin-
ear and convolution layers in Input DBlock, DBlock and
Down2X DBlock are the spectral normalized versions.

singular values sorted in decreasing order down the diagonal
[10]. Define σ1(M) to be the maximal SV of the matrix M .
Moreover, define Γσ(M) to be the projection from Rn to
the subspace spanned by the right singular vectors of M for
SV’s equal to σ. That is,

Γσ(M) = VMDσ(M)V T
M , (22)

where Dσ(M) is defined to be a diagonal n × n matrix
where the ith diagonal element is 1 when the correspond-
ing element of ΣM equals σ, and zero otherwise. It then
follows that Γσ(M

T) is the projection of Rm to the sub-
space spanned by the left singular vectors of M for the SV
σ. Finally, from the form of Γσ(M) in (22) we can conclude

σ1(Γσ(M)) = 1, (23)
Γσ(M)Γσ(M) = Γσ(M), (24)

so long as σ is an SV for M .
We can express the conditions that f , g, and f ◦g all have

sharp LC of one in terms of this notation. Specifically, the
tight Lipschitz bounds for f , g and f ◦ g are σ1(B), σ1(A),
and σ1(BA), respectively. Assuming SN has rescaled A and

4 5 6
gradient norm

0.0

0.5

1.0

pr
ob

ab
ilit

y
de

ns
ity

50K iters
real
fake

(a) Gradient norm (SNGAN
with sum pooling)

5e-05 2.0
delta

2

4

6

fin
ite

-d
iff

er
en

ce
 n

or
m

(b) FD gradient norm (SNGAN
with sum pooling)

1 2
gradient norm

0

2

4

pr
ob

ab
ilit

y
de

ns
ity

50K iters
real
fake

(c) Gradient norm (SNGAN
with average pooling)

5e-05 2.0
delta

0.0

0.5

1.0

fin
ite

-d
iff

er
en

ce
 n

or
m

(d) FD gradient norm (SNGAN
with average pooling)

Figure 8: Gradient norms and finite-difference (FD) ap-
proximation to the gradient norms at increasing perturbation
length delta along the gradient for SNGAN with global
sum pooling ((a) and (b)) and global average pooling ((c)
and (d)) at 50K iterations of training on CIFAR-10.

B appropriately, then the LC of g and f are both one and we
have σ1(B) = σ1(A) = 1. Moreover, we see f ◦ g will have
a sharp LC of one iff σ1(BA) = 1. We examine this latter
condition.

Theorem 1. For A and B as above (with dimensions such
that their product BA can be formed), with maximal SV’s
equal to one, the maximal SV of BA satisfies σ1(BA) ≤ 1.
Further, equality of this bound holds if and only if

σ1(Γ1(B)Γ1(A
T)) = 1. (25)

Proof of Theorem 1. Let m1 = dim(Γ1(A)) and n1 =
dim(Γ1(B)) be the number of singular values equal to one
in A and B, respectively. The assumption that σ1(A) =
σ1(B) = 1 implies m1, n1 > 0.

Recall that the spectral norm of a matrix M , which is
induced by the L2 vector norm, can be defined via the largest
singular value: ||M ||2 := σ1(M), equivalently computed as

||M ||2 = sup
||x||=||y||=1

|yTMx| = sup
x ̸=0

||Mx||
||x||

. (26)

It follows from (26) that ||BA||2 ≤ ||B||2||A||2 (the sub-
multiplicativity property), and hence

σ1(BA) ≤ σ1(B)σ1(A) = 1. (27)

13

First we prove σ1(BA) = 1 implies (25). Assume
σ1(BA) = 1. Then it follows from (26) that there exists
a vector x such that ||x|| = 1 and z := BAx satisfies
||z|| = 1. Let y = Ax. There are two cases to consider,
either ||y|| < 1, or ||y|| = 1. However, since z = By and
||B||2 = σ1(B) = 1 we have ||z|| <= ||B||2||y|| = ||y||.
Therefore the assumption ||y|| < 1 leads to the contradiction
||z|| < 1, and instead we must have

||y|| = ||Ax|| = ||x|| = 1, (28)
||z|| = ||By|| = ||y|| = 1. (29)

Equation (28) ensures x ∈ range(Γ1(A)) and therefore
y = Ax ∈ range(Γ1(A

T)). Also, equation (29) en-
sures y ∈ range(Γ1(B)). Therefore it follows that y
is a unit vector such that Γ1(B)y = y, and Γ1(A

T)y =
y. And thus, Γ1(B)Γ1(A

T)y = y. By (26) we then
have σ1(Γ1(B)Γ1(A

T)) ≥ 1. But, from (23), it fol-
lows that σ1(Γ1(B)) = σ1(Γ1(A

T)) = 1 and therefore
σ1(Γ1(B)Γ1(A

T)) ≤ 1. As a result we have shown (25), as
desired.

For the reverse direction, assume σ1(Γ1(B)Γ1(A
T)) = 1.

Then (26) implies there exists a y such that ||y|| = 1 and
z = Γ1(B)Γ1(A

T)y with ||z|| = 1. But, since Γ1(B) and
Γ1(A

T) are projection matrices (see (24)), it can be shown
that we must have Γ1(A

T)y = y, Γ1(B)y = y, and z = y.2

Moreover, since y is a right singular vector of AT for singular
value one, it follows that x := AT y = VAΣAU

T
Ay is a

left singular vector of AT for the SV at one and ||x|| = 1.
Therefore x = Γ1(A)x = VAD1(A)V T

A x. That is, x is in
the right singular space of A for the SV at one and it follows
that y = Ax. Taken together, we have BAx = By and
y = Γ1(B)y, so ||By|| = 1. Hence ||BAx|| = ||By|| =
1 = ||x|| . That is, from (26), it follows that σ1(BA) ≥ 1.
Finally, from (27), we conclude σ1(BA) = 1, as desired. □

Relation to Layerwise Spectral Normalization As de-
scribed in the text, (Eq. 25) is a subspace alignment condition
where σ1(Γ1(B)Γ1(A

T)) equals the cosine of the first prin-
cipal angle between the two subspaces Γ1(B) and Γ1(A

T)
[10, 46]. It is therefore unlikely to be satisfied by chance, al-
though during training the model may reduce this angle and
approach σ1(Γ1(B)Γ1(A

T)) = 1. Thus, with training, we
might expect the norm of the gradients of f(x) to increase
towards an upper bound.

However, we note additional features of f(x) for the
architectures described in Figures 5 and 7. Specifically, the
global sum pooling in Fig. 5 and the skip connections in Fig.
7 are both capable of amplifying the gradient norms through
these stages by a factor greater than one. Thus, while the
subspace alignment conditions can be expected to shrink the
gradient magnitudes, these specific components can expand

2The basic idea here is that if z = Py for a projection P and ||z|| =
||y|| then ||y||2 = ||Py||2+||(I−P)y||2 can be used to show (I−P)y =
0. Moreover, from (22), it then follows that Py = y.

Table 5: Mean ± standard deviation of IS, FID and KID
across 3 training runs with random restarts on CIFAR-10.
† indicates modified baselines with the Lipschitz constant
K = 0.83 that our methods use.

Model IS ↑ FID ↓ KID(×1000) ↓

NSGAN 7.35±0.25 26.85±5.16 17.81±3.79
WGAN-GP 7.42±0.02 22.44±0.35 20.67±0.31
SNGAN 8.06±0.04 17.22±0.16 12.44±0.25

NSGAN-GP† 8.01±0.04 15.69±0.15 12.95±0.21
NSGAN-SN† 7.72±0.06 21.12±0.59 15.79±0.42
WGAN-GP† 7.37±0.02 22.75±0.05 21.12±0.36
SNGAN† 7.98±0.01 16.86±0.40 12.16±0.38

GraND-GAN 8.00±0.01 15.60±0.47 12.80±0.42
GraNC-GAN 7.96±0.02 16.15±0.21 13.30±0.32

Table 6: Ablation of our method (GraND-GAN) on CIFAR-
10 image generation under different values of the Lipschitz
constant K = 1/τ with ϵ = 0.1.

1/τ IS ↑ FID ↓ KID(×1000) ↓

0.1 7.709 18.303 15.4
0.5 7.919 15.689 12.8
0.83 8.031 14.965 12.3
1.0 8.011 15.469 12.2
1.33 8.111 14.561 10.9

them. The consequence of these two opposing effects is not
clear a priori.

The empirical results shown in Fig. 8a indicate that, for
the cases tested, the net effect is for f(x) to have a gradient
norm larger than one. Moreover, when average pooling is
used in place of the sum pooling, the norm of the gradient is
predominantly less than one (see Fig. 8c). Similar properties
are seen for the magnitudes of finite differences (FD) of f(x)
over steps of length δ (see Fig. 8b, 8d), as described in the
paper.

Indeed, we can compute the LC for the 32 × 32 resnet-
based convolutional discriminator (used on, e.g., CIFAR-10),
shown in §B and Fig. 5, as follows. First, note that the four
DBlocks have a skip connection, meaning the LC increases
two-fold across each block, resulting in an LC of 24 = 16
before pooling (assuming the SN keeps the convolutional
layer LCs at one). The first two blocks also have spatial
downsampling, resulting in an 8 × 8 feature map that is
sum-pooled. This pooling, along with the preceding skip
connections, increases the final LC to 8 × 8 × 16 = 1024,
as mentioned in the main paper.

14

Table 7: Ablation of our method (GraND-GAN) on CIFAR-
10 image generation under different values of ϵ with K =
1/τ = 0.83.

ϵ IS ↑ FID ↓ KID(×1000) ↓

1e-08 8.065 15.076 11.9
0.0001 7.924 16.695 13.7
0.001 8.035 16.322 13.5
0.01 7.900 15.726 13.0
0.1 8.031 14.965 12.3
1.0 7.981 15.194 12.2

Table 8: Frequency of runs diverging (i.e., FID ≥ 40)
on CIFAR-10 on three random restarts for GraND-GAN,
GraNC-GAN, SNGAN, WGAN-GP, and NSGAN-GP† on
CIFAR-10 for settings B, C and D.

Model Setting α β1 β2 ndis #(FID ≥ 40)

WGAN-GP B 0.0002 0.5 0.999 1 3/3
C 0.001 0.5 0.999 5 3/3
D 0.001 0.9 0.999 5 3/3

SNGAN B 0.0002 0.5 0.999 1 3/3
C 0.001 0.5 0.999 5 0/3
D 0.001 0.9 0.999 5 0/3

NSGAN-GP† B 0.0002 0.5 0.999 1 3/3
C 0.001 0.5 0.999 5 3/3
D 0.001 0.9 0.999 5 0/3

GraND-GAN B 0.0002 0.5 0.999 1 2/3
C 0.001 0.5 0.999 5 0/3
D 0.001 0.9 0.999 5 0/3

GraNC-GAN B 0.0002 0.5 0.999 1 2/3
C 0.001 0.5 0.999 5 0/3
D 0.001 0.9 0.999 5 0/3

E. Variance of IS, FID and KID metrics across
random training restarts for CIFAR-10

We report the mean and the standard deviations of the
metrics reported (IS, FID, KID) across 3 different training
runs with random restarts for CIFAR-10 in Table 5.

F. Ablations on ϵ and τ

We also run ablations on our methods by varying the
piecewise Lipschitz constant K = 1/τ and ϵ for GraND-
GAN on CIFAR-10 image generation. Tables 6 and 7 show
that our method is fairly robust to a range of K and ϵ, re-
spectively, on CIFAR-10. The role of hyperparameter ϵ is
mainly numerical stability when the gradient norm becomes
vanishingly small. Irrespective of ϵ used, we empirically find
that the weights of the network scale up sufficiently large
such that the input gradient norm of the GraNed output g(x)
is close to the upper bound K, i.e., ∥∇xg(x)∥ ≈ K. This
is evident in Figure 3 of the main paper where the gradi-
ent norms for our methods have a very narrow distribution

around K despite using ϵ = 0.1.

(a) ϵAdam = 1× 10−8 (b) ϵAdam = 1× 10−7

Figure 9: Qualitative comparison of generated CIFAR-10
samples under two different ϵAdam hyperparameter settings.
Tuning ϵAdam affects GAN training. Zoom in for better view-
ing.

G. Frequency of runs diverging on CIFAR-10
on three random restarts

We repeat the experiment in Figure 2 of the main paper for
settings B (α = 0.0002, β1 = 0.5, β2 = 0.999, ndis = 1),
C (α = 0.001, β1 = 0.5, β2 = 0.999, ndis = 5) and D
(α = 0.001, β1 = 0.9, β2 = 0.999, ndis = 5) that have
aggressive training settings over 3 random restarts. We call
a run “diverging” when the FID ≥ 40 on CIFAR-10. Table
8 summarizes the number of diverging runs out of 3 random
restarts.

Evidently, GraND-GAN and GraNC-GAN have the least
number of runs that diverged in 3 random restarts across
settings B, C and D. SNGAN comes close but diverges 3/3
times for setting B when ndis = 1. WGAN-GP performs
poorly across random restarts for B, C and D. NSGAN-GP†
diverges 3/3 times for settings B and C.

H. Qualitative Results
Figures 12, 13, 14, 10 and 11 present a sample of im-

ages generated by different methods for CIFAR-10, CIFAR-
100, STL-10, LSUN-Bedrooms and CelebA, respectively.
We compare the results of our methods qualitatively with
the baselines (NSGAN, WGAN-GP, SNGAN) and the best
model of the modified baselines (NSGAN-GP† where † rep-
resents an adjusted Lipschitz constraint to match the piece-
wise Lipschitz constant of our methods).

I. Soft versus Hard Hinge Performance
We tested GraNC-GAN on both soft and hard hinge losses

(recalling that the soft hinge loss is obtained by replacing the
ReLU non-linearity in the standard hard hinge loss with the
softplus activation). On LSUN, GraNC-GAN struggles to

15

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 10: Qualitative results on LSUN-Bedrooms across different models, including baselines (NSGAN, WGAN-GP,
SNGAN), the best performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in
for better viewing.

converge with hard hinge, while it outperforms SNGAN with
soft hinge loss. Moreover, if one lowers the LRs on LSUN
(to be those used by GraNC-GAN on CelebA; see §A), the
soft hinge version performs better by ∼6 FID (specifically,
20.2 vs. 26.3). On CelebA, using hard hinge resulted in
an FID of 14, two points higher than that obtained via soft
hinge (12), as displayed in the main paper. Altogether, these
suggest the soft hinge loss is generally more performant
and stable than the standard hard hinge function, at least
for GraN. Previous works, such as SNGAN, also note such
instabilities across different loss functions, and, therefore,
switch from the Wasserstein loss to the (hard) hinge loss in
their work. In our case, soft hinge loss was found to work
the best.

J. Effect of ϵAdam in the Adam update on GAN
training

To illustrate a qualitative effect of tuning ϵAdam in the
Adam update on training GANs, we train GraNC-GAN on
CIFAR-10 with Hinge loss for 1000 iterations, fixing the
Lipschitz constant K = 1. We train two models, one with
ϵAdam = 1 × 10−8 (default value) and another model with
ϵAdam = 1× 10−7 (i.e., 10× larger than the default). Figure
9 show the qualitative results of a few examples sampled
from the generators.

As noted in the main paper, tuning the Lipschitz constant
K has an effect that is equivalent to changing ϵAdam. Figure 9
qualitatively demonstrates that tuning ϵAdam (or K, in effect)
affects GAN training considerably.

16

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 11: Qualitative results on CelebA across different models, including baselines (NSGAN, WGAN-GP, SNGAN), the
best performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in for better
viewing.

K. Stability of Modern GANs

Recent families of GANs, including those based on Big-
GAN [6] and StyleGAN [18], have achieved unprecedented
synthesis results; yet, they are not immune from instability
issues. BigGAN devotes a significant portion of their paper
to understanding stability (see, e.g., Sections 4.1 and 4.2
on “characterizing instability”). Furthermore, they note that
“it is possible to enforce stability by strongly constraining
D, but doing so incurs a dramatic cost in performance.” In-
stability persists even within more recent methods that are
based on BigGAN, such as U-net GAN [37], which expe-
riences ∼40% of its runs failing. While StyleGAN does
not present a stability analysis, their network relies heav-
ily on progressive growing [17] for stability, which induces
artifacts (and additional training complexity) addressed in
follow-up work (StyleGANv2 [19]). Similarly, MSG-GAN
[16] demonstrates improved stability of its technique over

progressive growing. In other words, despite steady improve-
ments, GAN stability remains a significant challenge, even
for modern architectures. See also [40] for a recent survey
of stabilization techniques.

17

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 12: Qualitative results on CIFAR-10 across different models, including baselines (NSGAN, WGAN-GP, SNGAN), the
best performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in for better
viewing.

18

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 13: Qualitative results on CIFAR-100 across different models, including baselines (NSGAN, WGAN-GP, SNGAN),
the best performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in for better
viewing.

19

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 14: Qualitative results on STL-10 across different models, including baselines (NSGAN, WGAN-GP, SNGAN), the
best performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in for better
viewing.

20

