
Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation

John Yang1*, Yash Bhalgat2, Simyung Chang3, Fatih Porikli2, Nojun Kwak1†

1Seoul National University, Seoul, Korea
2Qualcomm AI Research, Qualcomm Technologies, Inc., San Diego, CA, US‡

3Qualcomm AI Research, Qualcomm Korea YH, Seoul, Korea
{yjohn, nojunk}@snu.ac.kr, {ybhalgat, simychan, fporikli}@qti.qualcomm.com

Abstract

While hand pose estimation is a critical component of
most interactive extended reality and gesture recognition
systems, contemporary approaches are not optimized for
computational and memory efficiency. In this paper, we pro-
pose a tiny deep neural network of which partial layers are
recursively exploited for refining its previous estimations.
During its iterative refinements, we employ learned gating
criteria to decide whether to exit from the weight-sharing
loop, allowing per-sample adaptation in our model. Our
network is trained to be aware of the uncertainty in its cur-
rent predictions to efficiently gate at each iteration, estimat-
ing variances after each loop for its keypoint estimates. Ad-
ditionally, we investigate the effectiveness of end-to-end and
progressive training protocols for our recursive structure on
maximizing the model capacity. With the proposed setting,
our method consistently outperforms state-of-the-art 2D/3D
hand pose estimation approaches in terms of both accuracy
and efficiency for widely used benchmarks.

1. Introduction
Hand pose estimation (HPE) is an essential task for aug-

mented reality and virtual reality (collectively called as
“extended reality (XR)”) systems. For instance, to enable
hand-based interactions with objects in XR environments,
accurate real-time estimates of the positions of hand joints
in 3D world coordinates are needed. Since hand gestures
reflect elementary human behavioral patterns, hand pose
tracking enables several downstream AI applications such
as gesture recognition [22, 34, 41] and human-computer in-
teractions [7, 20]. Although many state-of-the-art HPE ap-

*Work done as an intern at Qualcomm Technologies, Inc.
†Corresponding Author
‡Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc.

proaches [5, 6, 28, 45, 49, 55] achieve high accuracy, they
rely on large and complex model architectures, which in-
cur a substantial computational cost. Therefore, such mod-
els are often unsuitable for relatively low-power computing
systems, like wearables or hand-held XR devices [1, 8, 35].

To meet the constraints of resource-limited devices,
[17, 12, 46, 47] have proposed neural network architec-
tures with dynamic inference graphs that are conditional
on the input. Recently, [9] introduced an analogous ap-
proach for 3D HPE that exploits a Gaussian-kernel-based
gating mechanism to adaptively combine the predictions of
coarse and fine pose encoders, thus achieving a reduction in
the GFLOPs for inference. While it alleviates the run-time
complexity, the memory size required to deploy both pose
encoders makes the method still infeasible for memory-
constrained real-world applications. In this work, we tackle
both the run-time efficiency and memory usage challenges
of 3D HPE with a modular network whose capacity can be
dynamically amplified through recursive exploitation of the
network’s parameters.

Recursive usage of layers with shared parameters has
been proposed by various works [13, 27, 37, 50] as a tool to
match the performance of deeper networks with fewer pa-
rameters. Considering the distinctive semantic encoding at
each layer in a neural network [51], recursively exploited
layers must manage gaps between higher-level features and
lower-level ones. Thus, rather than directly re-feeding the
output features to the consecutive recursive layers, we em-
ploy ‘refinements’ of original input features using novel
attention-augmentation (more details in Sec. 3.1). This al-
lows the recursive component of the deep network to focus
on a distinct level of semantic information in each iteration.

With the above points in mind, we present Dynamic It-
erative Refinement Network (DIR-Net), a modular weight-
sharing network of which the capacity is adaptively ampli-
fied through dynamic recursive use of partial layers. DIR-
Net is composed of a few components: Refiner that handles

Figure 1: Dynamic Iterative Refinement Network (DIR-Net). DIR-Net is composed of an Iterative ResNet9 (IR9) backbone
network, an Uncertainty Estimation module and a Gating function. The backbone IR9 consists of a Feature Extractor (FE),
a Refiner (RF) and an Attention Map Generator (AMG). For an image input, DIR-Net predicts 2D/3D hand joint locations.
The model then refines its predictions with a repeated use of RF and AMG. Such re-use of RF + AMG is continued until
the gating function tells to exit the loop. DIR-Net’s inference is efficient in terms of both computation and memory due to its
lightweight design.

distribution shifts in the attention-augmented input feature
maps and produces refined predictions, Attention Map Gen-
erator that refines the input features, and Gating Function
that dynamically controls the number of iterations. Along
with the localized keypoint (joint) estimations, our back-
bone network is also trained to estimate the uncertainty in
its own predictions. At every iteration, the gating function
relies on these uncertainty estimations to decide whether
the network should refine its current keypoint estimations
or exit. This leads to per-sample adaptive inference in our
model.

Overall, our main contributions in this work are:
• We introduce a lightweight architecture, DIR-Net,

parts of which are utilized recursively while incorpo-
rating attention-augmentation and gating for dynamic
refinement of the hand pose estimations.

• We propose a variance-based and also a reinforcement
learning approach for dynamic gating that directly and
indirectly exploits the uncertainty predictions of the es-
timated 2D/3D pose.

• We investigate the effectiveness of progressive and
end-to-end training protocols for the inference-time ef-
ficiency of our recursive structure.

• With a comprehensive set of experiments and ablation
studies, we show that our method achieves state-of-
the-art performance in terms of both accuracy and ef-
ficiency on two widely used HPE benchmarks.

2. Related Work

Adaptive Neural Computing. While going deeper in neu-
ral networks has helped achieve state-of-the-art perfor-
mance on several image recognition tasks, early research
works [44, 32] have pointed out that the task-specific com-
plexity varies widely across input samples, and only a small
fraction of inputs require processing by the entire network.

For enabling energy-efficient implementations of deep net-
works, [17, 29, 31] have proposed selecting different infer-
ence paths conditional on the input to optimize the over-
all trade-off between efficiency and accuracy. Residual net-
works [14, 15] have been a common choice as the backbone
architecture for many dynamic inference approaches either
through adaptive block removals [48] or skips [25, 46, 47].
Such dynamic gating turns on-and-off some of the blocks
so that a network outputs its predictions through shortened
forwarding paths.

Similar to the idea of shortening the inference paths,
early-exiting methods adaptively exit from neural networks
before the inference reaches its final layer [26, 44]. For
classification tasks, multiple classifiers are added along the
feed-forward path. There is an early exit mechanism from
the main inference path if the confidence of the earlier clas-
sifiers satisfies a pre-defined exiting criterion. These meth-
ods typically require heuristic values of confidence [26] or
entropy [44]. Adaptive Neural Trees [43] perform both dy-
namic gating and early exiting as its inference path is deter-
mined by the decisions at the leaves of a neural tree.

Recurrent architectures for Image Recognition. Recur-
rent use of network layers with shared parameters has
shown superior efficiency in a few recent works. Yoo et
al. [50] propose an iterative feature map generation method
in which feature maps in different resolutions are itera-
tively generated by recurrently passing a network structured
with inverted residual blocks. RNNPool [37] also uses a re-
cursive inference for efficient downsampling of the feature
maps. Their method and ours share the notion of effectively
bringing the higher-level feature information to the lower-
level to overcome the limited semantic information in the
lower-level features due to the shallow overall structure.
However, their recurrent use of parameters does not work in
an adaptive manner, operating with a fixed inference graph
for all inputs.

2

As an early work, adaptive and iterative use of a net-
work is proposed in [12] with the condition of a ponder
cost. The recurrent inference is adaptively repeated based
on computation cost allowance. The later adaptive and iter-
ative inference methods are proposed mainly with blocks of
deep residual networks [13, 27]. While the original resid-
ual block is recursively exploited in [13], a neural recursive
module that is inspired by residual blocks is introduced in
[27]. Our work is similar to the works of [13, 27] where
parts of a model are recursively iterated to maximize the
capacity of the parameters.

Adaptive 3D HPE. 3D hand pose estimation problems have
been actively studied during the last decade [5, 19, 30, 49,
55], including pre-deep-learning methods [33, 52]. How-
ever, despite its importance, 3D hand pose estimation meth-
ods have been rarely considered with adaptive computing.
Recently, ACE-Net is proposed for efficient hand tracking
[9]. It is largely composed of two modular networks: one
shallow, coarse pose encoder and another with a deeper, fine
pose encoder. ACE-Net adaptively selects either encoder to
feed-forward an input image. While this reduces computa-
tional cost during test time, the memory requirement for de-
ploying a network with two separate encoders is infeasible
for resource-constrained scenarios.

3. Iterative Refinement Network

In this section, we introduce our Iterative Refinement
network, a modular weight-sharing neural model with it-
erative exploitation of parameters that yield refined 3D
hand pose estimations in every iteration via attention-
augmentation. As illustrated in Figure 1, our proposed over-
all architecture mainly consists of Feature Extractor (FE),
Refiner (RF), Attention Map Generator (AMG), Gating
Function (G), an uncertainty estimation module and the
2D/3D hand pose predictor. During inference, a monocular
RGB image of a hand is passed through the FE and sequen-
tially to RF. The outputs of RF are then fed to (1) 2D/3D
hand pose predictor, (2) uncertainty estimator, and (3) AMG
(conditional on the gating function’s output).

Note that, in Sec. 4, we describe two possible ways to
perform the gating - (1) using a simple heuristic based on
the uncertainty outputs, or (2) an RL agent (G) trained us-
ing a reward function that optimizes the accuracy-efficiency
trade-off. Only the latter case is illustrated in Figure 1.

3.1. Iterative ResNet9 Backbone

Recursive inference allows for the usage of higher-level
features to refine lower-level features in order to exploit the
capacity of network parameters maximally. Such utilization
of the network parameters enables a network with a much
smaller size to have similar prediction accuracy as that of
a more complex network [13, 27, 37, 53]. Our tiny back-

(a) ResNet18 (b) Iterative ResNet9

Figure 2: Iterative ResNet9 (IR9) follows a modular struc-
ture similar to ResNet18. The intention of the Refiner and
Attention Map Generator is to reduce the overall size and
complexity of ResNet18 while preserving the task-specific
performance. IR9 uses distinct BatchNorm layers to handle
distribution shifts in every iteration.

bone network, where the default model capacity is low, is
amplified with each iteration of recursive use.

Inspired by ResNet18 [14], we design a modular net-
work, ResNet9, with reasonably low complexity while
keeping the downsampling characteristic of its original
structure. Such modularization can be made with any net-
work to exploit our proposed recursive refinement ap-
proach. We opted for a residual architecture due to its eas-
ily separable structure of block units, as done in relevant
works [13, 25, 27, 50]. As shown in Figure 2b, the outputs
of the ResNet9 backbone are refined by an iterative usage of
the last few layers of the network. With such a mechanism,
the proposed Iterative ResNet9 (IR9) requires much lesser
memory to be deployed in systems due to its overall small
model size. The components of this iterative backbone ar-
chitecture are described in more detail below.
Feature Extractor (FE): This component of the backbone
network is responsible for encoding low-level image fea-
tures. Since Feature Extractor is not operated recursively,
its feature encoding involves heavy down-sampling of the
feature maps to reduce the cost of the recursive computa-

3

Figure 3: Images in the top row are the inputs and ones in
the bottom row are normalized features that are computed
with attention maps.

tion that follows. In our best1 model, FE reduces the spatial
dimensions of image inputs from 224× 224 to 28× 28.
Refiner (RF): This part is recursively “looped” in our pro-
posed architecture. In every loop iteration (except the first),
the attention-augmented feature maps are fed to this mod-
ule, which refines the predictions of the previous iteration.
Due to attention-augmentation, the distribution of the in-
put feature map changes in each iteration. Hence, a sepa-
rate Batch Normalization layer [18] is used in each iteration
to handle the statistic shifts in input feature maps that are
attention-augmented [13, 27].
Attention Map Generator (AMG): This module has an
upsampling decoder architecture that outputs an attention
map tensor with values in the range [0, 1] and of the same
size as the feature map output of FE. To effectively up-
scale the outputs of RF without any significant computa-
tional cost, the decoder is mainly composed of pixel-shuffle
layers [39], which transfer the channel-wise information to
the spatial domain with a negligible cost. The main purpose
of AMG is to merge information across different depths of
the backbone network by spatially re-projecting the higher-
level features to the lower-level feature maps. In doing so,
the attention map tensor is element-wise multiplied with the
output feature maps of FE. This allows dense connectivity
that spatially links higher-level features and lower-level 2D
feature planes [17, 39]. Figure 3 shows the effect of the at-
tention maps on FE’s output feature maps. The images in
the bottom row shows the Hadamard product of FE feature
output and attention map, averaged over channel axis and
normalized.

3.2. Pose Predictor

The structure of our pose predictor mainly follows the
works of [4, 49], consisting of two fully connected layers
and a MANO hand mesh deformation model [36]. MANO
model takes low-dimensional pose and shape embeddings,
respectively θ and β, as inputs for controlling the 3D hand
mesh outputs: J(θ, β) = Rθ(J(β)). The location of joints
J(β) can be globally rotated based on the pose θ, denoted
as Rθ, to obtain a final hand model with corresponding 3D

1In Sec. 6.2, we provide a detailed ablation study of other downsam-
pling ratios and their respective computation vs accuracy trade-offs.

coordinates of 21 joints of a hand.
Our method takes cropped hand images as inputs x. The

output of FE (denoted by F(x)) is fed to RF R(.) along with
an attention map Ml generated at each recursive iteration
l ∈ {0, 1, 2, ..., lmax}. Our pose predictor takes R(F(x)) as
input when l = 0 and R(F(x),Ml) as input when l > 0,
and predicts a rotation matrix R ∈ SO(3), a translation
t ∈ R2 and a scaling factor s ∈ R+ along with its pose θ
and shape β:

θ, β,R, t, s =

{
Ψpose(R(F(x))), l = 0

Ψpose(R(F(x),Ml)), l > 0,
(1)

where Ψpose(·) represents a neural network with two fully-
connected layers. 3D locations of joints J(θ, β) are ob-
tained from MANO, and the 2D keypoint estimates are ob-
tained by re-projecting these 3D locations to the 2D image
plane with a weak-perspective camera model using the esti-
mated camera parameters {R, t, s}:

Ĵ3D = J(θ, β)

Ĵ2D = sΠRJ(θ, β) + t
(2)

where Π represents orthographic projections.
With the re-projected 2D joint location estimations, the

network can implicitly learn 3D joint locations with 2D la-
bels [4, 49]. To train the pose predictor, we use L1 and L2
losses for 2D and 3D predictions respectively:

L2D = ||Jgt
2D − Ĵ2D||1,

L3D = ||Jgt
3D − Ĵ3D||2.

(3)

Since the error for 2D estimations is calculated at pixel-level
in image planes, L2D is desired to be more robust. The com-
bination of using L1-norm for L2D and L2-norm for L3D

has been found to be the best [4, 11, 16]. We do not use
the vertices of MANO hand mesh for training because their
ground truths are not available during experiments. For the
final loss, we also include objective terms that regularize
pose and shape parameters, as done in [4].

4. Dynamic Exiting Mechanisms

Although a maximum number of loop iterations is set in
our Iterative Refinement network, not all input images re-
quire that many iterations of refinement. We propose alter-
native gating policies to determine when to stop iterating for
each sample. The resulting architecture is called Dynamic
Iterative Refinement Network (DIR-Net). Overall, two gat-
ing policies are proposed: (1) based on heuristic variance
thresholds and (2) decisions of a reinforcement learning
agent.

4

Figure 4: Heatmaps generated based on uncertainty for its
2D joint localization estimations.

4.1. Uncertainty Based Exiting

To decide whether to proceed to a next loop of recur-
sive inference of the model, the model should be aware how
certain its current predictions are. To this end, the model
estimates variances for its 2D/3D keypoint predictions, by
estimating a probability distribution instead of only joint lo-
cations. We simplify the problem and assume coordinates of
joints are independent so we can use univariate Gaussians:

PW (J) =
1√
2πσ2

e
(J−Ĵ)2

2σ2 (4)

where W refers to the trainable weights used to estimate σ2.
J denotes a joint location coordinate and Ĵ represents the
estimated joint location. The smaller the standard deviation
σ is, the more confident the model is with its own estima-
tion. The ground truth coordinates are assumed to follow a
Dirac-Delta distribution (i.e. σ −→ 0):

PD(J) = δ(J − Jgt). (5)

Our model aims to minimize KL-Divergence between
PW (J) and PD(J) to learn confidence estimation [16, 38]:

Lconf = DKL(PD(J)||PW (J))

∝ e−α

2
(Jgt − Ĵ)2 +

1

2
α

(6)

where α ≜ log(σ2).
In practice, our network predicts the α’s using a two-

layer neural network Ψvar(·) = Ψ2
var(Ψ

1
var(·)) (shown as

pink blocks in Figure 1):

α2D, α3D =

{
Ψvar(R(F(x))), l = 0

Ψvar(R(F(x),Ml)), l > 0
(7)

Following Eq. (6), the loss for variance estimation of 3D
predictions is defined as:

Lvar3D =
e−α3D

2
L3D +

1

2
α3D. (8)

Since we regress 2D joint locations with a smooth L1 loss,
we can define the loss for variance of 2D joint estimations
as done in [11, 16]:

Lvar2D = e−α2D (L2D − 1

2
) +

1

2
α2D. (9)

Algorithm 1: Progressive Training Protocol
Inputs: maximum number of loops lmax, training data
S = {si} = {(x, Jgt

2D, Jgt
3D)i} and learning rate Lr

for lprog = 0 to lmax do
Initialize DIR-Net DIRw,lprog
with lprog + 1 batch-norm layers
if lprog > 0 then

DIRw,lprog ←− DIRw,lprog−1

Detach FE from training
Reduce Lr by 1

10
except AMG

end
while NOT stop criterion do

for si ∈ S do
for l = 0 to lprog do

Ĵ l
2D, Ĵ l

3D, αl
2D, αl

3D = DIRw,l(x)
end
Calculate Ltotal using Eq. 12
Update w based on Ltotal by Lr

end
end

end

The total uncertainty loss (Lvar) is defined as the sum of
Lvar2D and Lvar3D . Using Lvar, we allow the network to
learn and estimate variances as a vector, while conventional
3D hand pose estimators use decoders with deconvolutional
layers to directly estimate Gaussian heatmaps for estimat-
ing the confidence scores [2, 4, 5, 19, 30]. Notably, the ex-
ponential terms in the objective function work as adaptive
weights between L2D and L3D during training [24, 54].

The estimated variances can be directly utilized for de-
cisions of exiting. We set a threshold value τvar for the av-
erage variance for current joint estimations. If the average
variance is larger than the threshold τvar, that means the
keypoint estimations can be further refined, therefore an-
other loop of RF + AMG is performed. If average variance
is lower than τvar, we exit the loop. Figure 4 shows exam-
ples of heatmaps generated by the estimated σ2.

4.2. Decision Gating Function

As an alternative to the heuristic uncertainty threshold
value that decides whether to exit or continue, we propose
a decision gating function for the network to learn its op-
timal decisions. This gating function, which is a two-layer
neural network, is trained using a reward that optimizes the
accuracy-efficiency trade-off. For an input x and attention
maps generated at l-th loop Ml, the gating function outputs
a stochastic categorical decision of exiting.

The gating function G takes the feature vector f =
Ψ1

var(·) from the uncertainty estimation module as inputs.
As shown in Figure 1 and Eq. 7, f is a resultant vector cre-
ated by the input x and attention map generated at the loop
Ml while also being the most determinant factor for vari-
ance estimations α. The feature vectors thus consider such
information for exit decisions. To this end, we train the gat-
ing function G(Al|fl) with on-policy vanilla policy gradi-

5

(a) PCK for STB

(b) PCK for FPHA

Figure 5: 3D PCK Curve for STB and FPHA

ent updates for two categorical actions Al ∈ {EXIT, NOT
EXIT}. The gradient update is given by:

∇wH(w) = EG [rl∇w log Gw(Al|αl)] , (10)

where w represents learnable parameters of the gating neu-
ral network, rl represents the immediate reward signal for
the current loop, and H(·) is the total expected reward.

We design the reward signal rl as a combination of the
loss and computational cost (GFLOPs) taken by current it-
erations:

rl = −λ(Ll
2D + Ll

3D)− l · GFLOPs (11)

where λ is a scale constant. With such rewards, the policy
ultimately tries to minimize the error in the pose estimations
while also minimizing the computational cost required.

The gating network is trained separately, after the rest
of the network including the uncertainty estimation compo-
nent has been trained. While training the gating module, the
remaining parts of DIR-Net are detached from training.

During inference, the gating function outputs a
temperature-based softmax distribution [21], from which
the actions are sampled. Using the softmax temperature pa-
rameter, τgate, we can control the ‘harshness’ of the exiting
in our network. If τgate is higher, the model exits in the ear-
lier loop iterations and therefore lesser number of FLOPs
are used. As shown in Figure 7, by varying τgate, we can
obtain different accuracy vs computation trade-offs. the pa-
rameter τgate allows expost-facto control over our model

Table 1: SOTA Efficiency Comparison
STB

Methods AUC(20-50) GFLOPs #Params

Z&B[55] 0.948 78.2 -
Liu et al.[28] 0.964 16 -
HAMR[53] 0.982 8 -
Cai et al.[6] 0.995 6.2 4.53M
Fan et al.[9] 0.996 1.6 >4.76M
Ours 0.997 1.31 1.68M

FPHA
Methods AUC(0-50) GFLOPs #Params

Tekin et al.[45] 0.653 13.62 14.31M
Fan et al. [9] 0.731 1.37 >5.76M
Ours 0.768 0.28 460K

after training, which can be used to adjust the generated ac-
tion probabilities to change the number of loops after train-
ing the model.

5. Progressive Training

In the training of our network, we try to minimize the
sum of losses from all loops with a predefined maximum
number of loops lmax [39]:

Ltotal =

lmax∑
l=0

γ2DLl
2D + γ3DLl

3D + γvarL
l
var. (12)

This can be done in either an end-to-end or progressive
manner. The end-to-end protocol trains once with a prede-
fined maximum number of loops. The progressive protocol
trains the network multiple times while incrementing the to-
tal number of loops progressively.

The progressive training protocol is summarized in
Algorithm 1. We train the network lmax + 1 times,
each time with the maximum number of loops lprog ∈
{0, 1, 2, ..., lmax}. The network is initially trained without
any loop for the case of lprog = 0. This initial training phase
requires one BatchNorm layer at the beginning of RF for a
single inference path. Then, for every lprog > 0, DIR-Net is
initialized with lprog +1 number of BatchNorm layers, and
the parameters that were learned in the lprog − 1 iteration
are loaded into the network (except for the extra BatchNorm
layer). Since the FE component of the network learns mean-
ingful feature encoding layers when trained with lprog = 0,
FE is detached from further learning when lprog > 0. The
learning rate is reduced by a factor of 1/10 in every iter-
ation for the components of the network, except the AMG
which is trained with the original base learning rate. The
progressive training protocol is empirically shown to ensure
maximization of network’s capacity at each loop, yielding
a higher frequency of exits at early loops hence lowering
average computational cost for inference.

6

6. Experiments

Datasets.2 STB dataset has real hand images sequentially
captured in 18,000 frames with 6 different lighting condi-
tions and backgrounds. Each frame image is labeled with
3D annotations of 21 joints. Along with the training set of
STB, our model is trained with PANOPTIC datasets [40]
and evaluated on the testing set of STB, as done in [4].
PANOPTIC dataset is re-engineered from data from mul-
tiple views of Panoptic studio [23]. The dataset is made of
14,847 image samples along with 2D joint annotations, and
provides general views of hands and skin tones.

FPHA dataset [10] consists of RGB video sequences of
6 subjects performing 45 types of hand activities with daily
objects in egocentric views (e.g. pouring a bottle, charging a
phone) that follow with heavy (self-)occlusions. Each sam-
ple is annotated with 2D and 3D labels both of which are
used for training. We follow the official split of the dataset.

Metrics. For evaluation results, we measure the percentage
of correct keypoints (PCK) for estimated 2D/3D joint loca-
tions and the area under the curve (AUC) of various error
thresholds. In addition, we provide average Euclidean dis-
tance error for all 2D/3D joints for absolute comparisons.

Implementation Details. Following our main comparison
[9], we also present two models that are structured dif-
ferently for the datasets. Since our work not only im-
proves computational efficiency but also decreases the over-
all model size, we believe it is more objective to see our
models in their smallest size possible that follow with com-
petitive performance. Within IR9, 32 and 16 base channels
(i.e. # output channels in first layer) are used respectively
for STB and FPHA dataset. For the fully connected layers,
the number of nodes for each layer is 512 for STB and 256
for FPHA. The initial learning rate is 10−3 for both pro-
gressive and end-to-end trainings. For the progressive pro-
tocol, the network is initially trained with neither looping
nor use of AMG for 50 epochs. For loops l > 0, the net-
work is reset with new learning rates as described in Sec. 5
and trained for 20 epochs for each lprog case. For end-to-
end training protocol, the network is trained for the same
amount of epochs for equivalent maximum loop training
setting (e.g. 90 = 50 + 20 + 20 epochs for lmax = 2).

6.1. Comparison Against SOTA Methods

Our methods without/with dynamic gating are respec-
tively labeled as ‘IR-Net’ and ‘DIR-Net’ for comparison
against relevant contemporary methods in Figure 5. For
STB dataset, entries include deep-learning based works of
[4, 5, 9, 30, 42, 49, 53, 55] and approaches from [33, 52].
Figure 5a shows that our method without adaptive gating
performs the best of the entries with 3D AUC of 0.998. With

2Datasets are acquired via requests with a university domain.

Figure 6: Qualitative results for STB and FPHA datasets

Figure 7: Efficiency and accuracy trade-off for STB with
various variance thresholds τvar and temperature parame-
ters τgate.

adaptive gating, our method performs with AUC of 0.997
which outperforms the recent adaptive 3D HPE method [9].

For FPHA, our method is compared against contempo-
rary methods including [9, 10, 45], and outperforms them
as plotted in Figure 5b. We believe large performance
enhancement comes from our effective architecture with
residual structure and kinematic fitting of predefined hand
model, especially for FPHA dataset, yet our method allows
to preserve the accuracy though of large reduction in model
size and complexity. Qualitative results for both datasets are
depicted in Figure 6 and the Supplementary.

Our model’s overall performance is compared to SOTA
methods in Table 1. The work of Fan et al. [9] is a recent
efficient method with attempts of reducing the model com-
plexity for 3D HPE tasks, the size of which is reported par-
tially instead of their whole model. Their coarse and fine
pose encoders add up to what is reported in the table, which
makes their overall model size even larger. The average of
loops required for our method during validation is 4.2 for
STB and 2.25 for FPHA.

Computational Efficiency. In Figure 7, we show the ef-
ficiency and accuracy trade-off of our iterative refinement
model trained for STB dataset. Plots of 3D AUC for for
various τgate represent the temperature parameter of our

7

(a) STB (b) FPHA
Figure 8: Range of losses of validation samples after various
different numbers of recursive inferences.

Figure 9: Possible loop points within IR9 structure, which also
affects the structure/complexity of FE, RF and AMG.

softmax policy gating outputs. Higher values of τgate cause
softer distribution of softmax. Various heuristic values of
τvar are explored for the performance trade-offs. Our gat-
ing function reaches higher overall performance than that of
heuristic thresholds. Meticulous control over τvar is needed
to reach competitive performances gained with τgate values.

6.2. Ablation Studies

For the recursive path of IR9, four possible points can be
selected to perform iterative inference as depicted in Figure
9. Since output feature maps vary in sizes among the points,
the structure of AMG also changes to generate correspond-
ing spatial maps, which yields different computation cost
for each loop point. We provide pose estimation results of
our proposed structure with various loop points in Table 2.
Here, the results after the final recursive inference of DIR-
Net are reported. Although we got the best 3D AUC with the
second loop point for FPHA dataset, competitive 2D/3D es-
timations are achieved with the third loop point with lesser
computation, hence providing the best trade-off.

The iterative refinement is evaluated with different struc-
tures in Table 3. The baseline is set with our network with-
out any iteration but just forwarding inference. For itera-
tions without AMG, the 7×7 output features after 4th phase
of IR9 (see Figure 2b) are spatially enlarged with pixel-
shuffle [39] and up-sampling. This method represents direct
recursive use of higher-level features as done in [13, 27, 37].
Performances of our network are reported with and without
dynamic exits. Results show that recursive refinements ef-

Table 2: Ablation studies on looping points Prediction results
based on 5th recursive inference of DIR-Net trained with lmax =
5 are reported.

STB

Loop AUC (20-50) Err (px/mm) GFLOPsPoints 2D 3D 2D 3D

(1) 0.751 0.993 7.81 8.26 2.22
(2) 0.791 0.994 6.12 7.86 1.63
(3) 0.806 0.998 5.93 6.88 1.51
(4) 0.780 0.996 6.69 7.39 0.86

FPHA

Loop AUC (0-50) Err (px/mm) GFLOPsPoints 2D 3D 2D 3D

(1) 0.716 0.764 8.68 11.79 0.6
(2) 0.713 0.775 8.77 11.26 0.5
(3) 0.717 0.772 8.64 11.54 0.45
(4) 0.716 0.767 8.65 11.68 0.29

Table 3: Ablation studies on recursive refinement structure
STB FPHA

3D AUC GFLOPs #Params 3D AUC GFLOPs #Params

No Iter. 0.987 0.46 1.44M 0.768 0.14 408K
Iter. w/out AMG 0.991 1.06 1.44M 0.769 0.30 408K
Iter. w/ AMG 0.998 1.51 1.68M 0.772 0.45 460K
Iter. w/ AMG + G 0.997 1.31 1.68M 0.768 0.28 460K

fectively fuse higher-level features with lower-level ones for
the overall best performance.

Figure 8 presents the distribution of losses computed at
each iteration, implicitly showing the performance differ-
ence made by our model trained in progressive and end-
to-end manners. End-to-end training of recursive structure
carry the conventional gradient vanish problem [3], as also
mentioned in a relevant work [13]. Such implication is pro-
vided with more comparison results of the progressive and
end-to-end training protocols in the Supplementary.

7. Conclusion
In this work, we propose DIR-Net, a lightweight network

parts of which are utilized recursively for prediction refine-
ments with adaptive scoping and dynamic gatings. For gat-
ing criteria, we introduce an objective function that allows
our method to estimate uncertainty of its own 2D/3D pose
estimations. This allows dynamic exits for computation ef-
ficiency based on pre-defined heuristic thresholds for vari-
ance or the decision of the gating function. We also investi-
gate the effectiveness of progressive and end-to-end training
protocols for our recursive structure. Training a recursive
network in a progressive manner with an increasing number
of loop allowance is empirically shown to perform better
than training in an end-to-end manner, maximizing capacity
of parameters that are recursively exploited. The proposed
method reaches the SOTA performance in terms of both ac-
curacy and efficiency.

Acknowledgement This work was supported by the Na-

8

tional Research Foundation of Korea (NRF) grant funded
by the Korea government (2021R1A2C3006659).

References
[1] Kazuyuki Arimatsu and Hideki Mori. Evaluation of machine

learning techniques for hand pose estimation on handheld
device with proximity sensor. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems,
pages 1–13, 2020. 1

[2] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Push-
ing the envelope for rgb-based dense 3d hand pose estimation
via neural rendering. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1067–1076, 2019. 5

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learn-
ing long-term dependencies with gradient descent is difficult.
IEEE transactions on neural networks, 5(2):157–166, 1994.
8

[4] Adnane Boukhayma, Rodrigo de Bem, and Philip HS Torr.
3d hand shape and pose from images in the wild. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10843–10852, 2019. 4, 5, 7

[5] Yujun Cai, Liuhao Ge, Jianfei Cai, and Junsong Yuan.
Weakly-supervised 3d hand pose estimation from monocu-
lar rgb images. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 666–682, 2018. 1, 3, 5,
7

[6] Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham,
Junsong Yuan, and Nadia Magnenat Thalmann. Exploit-
ing spatial-temporal relationships for 3d pose estimation
via graph convolutional networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 2272–2281, 2019. 1, 6

[7] Hyung Jin Chang, Guillermo Garcia-Hernando, Danhang
Tang, and Tae-Kyun Kim. Spatio-temporal hough forest for
efficient detection–localisation–recognition of fingerwriting
in egocentric camera. Computer Vision and Image Under-
standing, 148:87–96, 2016. 1

[8] Ruofei Du, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo
Duarte, Jason Dourgarian, Joao Afonso, Jose Pascoal, Josh
Gladstone, Nuno Cruces, et al. Depthlab: Real-time 3d in-
teraction with depth maps for mobile augmented reality. In
Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology, pages 829–843, 2020. 1

[9] Zhipeng Fan, Jun Liu, and Yao Wang. Adaptive computa-
tionally efficient network for monocular 3d hand pose esti-
mation. In European Conference on Computer Vision, pages
127–144. Springer, 2020. 1, 3, 6, 7

[10] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul
Baek, and Tae-Kyun Kim. First-person hand action bench-
mark with rgb-d videos and 3d hand pose annotations. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 409–419, 2018. 7

[11] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 4, 5

[12] Alex Graves. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016. 1, 3

[13] Qiushan Guo, Zhipeng Yu, Yichao Wu, Ding Liang, Haoyu
Qin, and Junjie Yan. Dynamic recursive neural network. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5147–5156, 2019. 1, 3,
4, 8

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2, 3

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016. 2

[16] Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides,
and Xiangyu Zhang. Bounding box regression with un-
certainty for accurate object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2888–2897, 2019. 4, 5

[17] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q Weinberger. Multi-scale dense
networks for resource efficient image classification. arXiv
preprint arXiv:1703.09844, 2017. 1, 2, 4

[18] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 4

[19] Umar Iqbal, Pavlo Molchanov, Thomas Breuel Juergen Gall,
and Jan Kautz. Hand pose estimation via latent 2.5 d heatmap
regression. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 118–134, 2018. 3, 5

[20] Alejandro Jaimes and Nicu Sebe. Multimodal human–
computer interaction: A survey. Computer vision and image
understanding, 108(1-2):116–134, 2007. 1

[21] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 6

[22] Youngkyoon Jang, Seung-Tak Noh, Hyung Jin Chang, Tae-
Kyun Kim, and Woontack Woo. 3d finger cape: Clicking
action and position estimation under self-occlusions in ego-
centric viewpoint. IEEE Transactions on Visualization and
Computer Graphics, 21(4):501–510, 2015. 1

[23] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe,
Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser
Sheikh. Panoptic studio: A massively multiview system for
social motion capture. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 3334–3342,
2015. 7

[24] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482–7491,
2018. 5

[25] Sangho Lee, Simyung Chang, and Nojun Kwak. Urnet: User-
resizable residual networks with conditional gating module.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 4569–4576, 2020. 2, 3

9

[26] Sam Leroux, Steven Bohez, Tim Verbelen, Bert Vankeirs-
bilck, Pieter Simoens, and Bart Dhoedt. Resource-
constrained classification using a cascade of neural network
layers. In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1–7. IEEE, 2015. 2

[27] Sam Leroux, Pavlo Molchanov, Pieter Simoens, Bart
Dhoedt, Thomas Breuel, and Jan Kautz. Iamnn: Iterative and
adaptive mobile neural network for efficient image classifi-
cation. arXiv preprint arXiv:1804.10123, 2018. 1, 3, 4, 8

[28] Jun Liu, Henghui Ding, Amir Shahroudy, Ling-Yu Duan,
Xudong Jiang, Gang Wang, and Alex C Kot. Feature boost-
ing network for 3d pose estimation. IEEE transactions on
pattern analysis and machine intelligence, 42(2):494–501,
2019. 1, 6

[29] Lanlan Liu and Jia Deng. Dynamic deep neural networks:
Optimizing accuracy-efficiency trade-offs by selective exe-
cution. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018. 2

[30] Franziska Mueller, Florian Bernard, Oleksandr Sotny-
chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and
Christian Theobalt. Ganerated hands for real-time 3d hand
tracking from monocular rgb. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 49–59, 2018. 3, 5, 7

[31] Ravi Teja Mullapudi, William R Mark, Noam Shazeer, and
Kayvon Fatahalian. Hydranets: Specialized dynamic archi-
tectures for efficient inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 8080–8089, 2018. 2

[32] Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy.
Conditional deep learning for energy-efficient and enhanced
pattern recognition. In 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 475–480.
IEEE, 2016. 2

[33] Paschalis Panteleris, Iason Oikonomidis, and Antonis Argy-
ros. Using a single rgb frame for real time 3d hand pose
estimation in the wild. In 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 436–445.
IEEE, 2018. 3, 7

[34] Thammathip Piumsomboon, Adrian Clark, Mark
Billinghurst, and Andy Cockburn. User-defined gestures for
augmented reality. In IFIP Conference on Human-Computer
Interaction, pages 282–299. Springer, 2013. 1

[35] Jing Qian, Meredith Young-Ng, Xiangyu Li, Angel Cheung,
Fumeng Yang, and Jeff Huang. Portalware: A smartphone-
wearable dual-display system for expanding the free-hand
interaction region in augmented reality. In Extended Ab-
stracts of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI EA ’20, page 1–8, New York, NY,
USA, 2020. Association for Computing Machinery. 1

[36] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. ACM Transactions on Graphics, (Proc. SIG-
GRAPH Asia), 36(6), Nov. 2017. 4

[37] Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri,
Manik Varma, and Prateek Jain. Rnnpool: Efficient non-
linear pooling for ram constrained inference. arXiv preprint
arXiv:2002.11921, 2020. 1, 2, 3, 8

[38] Geonseok Seo, Jaeyoung Yoo, Jaeseok Cho, and Nojun
Kwak. Kl-divergence-based region proposal network for ob-
ject detection. In 2020 IEEE International Conference on
Image Processing (ICIP), pages 2001–2005. IEEE, 2020. 5

[39] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 4, 6, 8

[40] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using mul-
tiview bootstrapping. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 1145–
1153, 2017. 7

[41] Jie Song, Gábor Sörös, Fabrizio Pece, Sean Ryan Fanello,
Shahram Izadi, Cem Keskin, and Otmar Hilliges. In-air ges-
tures around unmodified mobile devices. In Proceedings of
the 27th annual ACM symposium on User interface software
and technology, pages 319–329, 2014. 1

[42] Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges.
Cross-modal deep variational hand pose estimation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 89–98, 2018. 7

[43] Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Anto-
nio Criminisi, and Aditya Nori. Adaptive neural trees. In In-
ternational Conference on Machine Learning, pages 6166–
6175. PMLR, 2019. 2

[44] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung
Kung. Branchynet: Fast inference via early exiting from deep
neural networks. In 2016 23rd International Conference on
Pattern Recognition (ICPR), pages 2464–2469. IEEE, 2016.
2

[45] Bugra Tekin, Federica Bogo, and Marc Pollefeys. H+ o:
Unified egocentric recognition of 3d hand-object poses and
interactions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4511–
4520, 2019. 1, 6, 7

[46] Andreas Veit and Serge Belongie. Convolutional networks
with adaptive inference graphs. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 3–18,
2018. 1, 2

[47] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. Skipnet: Learning dynamic routing in
convolutional networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 409–424,
2018. 1, 2

[48] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic inference paths in residual networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8817–8826, 2018. 2

[49] John Yang, Hyung Jin Chang, Seungeui Lee, and Nojun
Kwak. Seqhand: Rgb-sequence-based 3d hand pose and
shape estimation. In European Conference on Computer Vi-
sion, pages 122–139. Springer, 2020. 1, 3, 4, 7

10

[50] YoungJoon Yoo, Dongyoon Han, and Sangdoo Yun. Extd:
Extremely tiny face detector via iterative filter reuse. arXiv
preprint arXiv:1906.06579, 2019. 1, 2, 3

[51] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European conference on
computer vision, pages 818–833. Springer, 2014. 1

[52] Jiawei Zhang, Jianbo Jiao, Mingliang Chen, Liangqiong Qu,
Xiaobin Xu, and Qingxiong Yang. 3d hand pose track-
ing and estimation using stereo matching. arXiv preprint
arXiv:1610.07214, 2016. 3, 7

[53] Xiong Zhang, Qiang Li, Hong Mo, Wenbo Zhang, and Wen
Zheng. End-to-end hand mesh recovery from a monocular
rgb image. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2354–2364, 2019. 3,
6, 7

[54] An Zhao, Mingyu Ding, Zhiwu Lu, Tao Xiang, Yulei Niu,
Jiechao Guan, and Ji-Rong Wen. Domain-adaptive few-shot
learning. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 1390–1399,
2021. 5

[55] Christian Zimmermann and Thomas Brox. Learning to esti-
mate 3d hand pose from single rgb images. In Proceedings of
the IEEE international conference on computer vision, pages
4903–4911, 2017. 1, 3, 6, 7

11

