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Abstract

The brittleness of deep image classifiers to small adver-
sarial input perturbations has been extensively studied in
the last several years. However, the main objective of ex-
isting perturbations is primarily limited to change the cor-
rectly predicted Top-1 class by an incorrect one, which does
not intend to change the Top-k prediction. In many digi-
tal real-world scenarios Top-k prediction is more relevant.
In this work, we propose a fast and accurate method of
computing Top-k adversarial examples as a simple multi-
objective optimization. We demonstrate its efficacy and
performance by comparing it to other adversarial example
crafting techniques. Moreover, based on this method, we
propose Top-k Universal Adversarial Perturbations, image-
agnostic tiny perturbations that cause the true class to be
absent among the Top-k prediction for the majority of nat-
ural images. We experimentally show that our approach
outperforms baseline methods and even improves existing
techniques of finding Universal Adversarial Perturbations.

1. Introduction

Along with revolutionizing a wide range of tasks, Deep
Neural Networks (DNNs) are intriguingly vulnerable to im-
perceptibly perturbed inputs, also known as adversarial ex-
amples [40,[19][12]. These malicious well-designed pertur-
bations are carefully crafted in order to cause neural net-
works to make mistakes. They may attempt to target a
specific wrong class to be a prediction (targeted attack),
or to yield a class any different from the true one (untar-
geted attack). Such adversarial perturbations found poten-
tial vulnerabilities of practical safety-critical applications of
DNN:ss in self-driving cars [[17} 20], speech recognition sys-
tems [6,113]], face identification |38, 25]]. Moreover, modern
defenses to adversarial attacks are found to be ineffective
[7, 141]. These security issues compromise people’s confi-
dence in DNNs. Thus, it is crucial to investigate and study
different types of adversaries on deep learning models.
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Although several adversarial attacks are found to be
physically realizable [11,8]], the vast majority of them study
high frequency pixel-wise perturbations, which heavily ex-
ploit the fact that images are in digital domain. However,
in many digital real-world applications of DNNs, such as
web search engines, recommendation systems, and com-
puter vision cloud APIs (Google Cloud Vision [[1], Ama-
zon Rekognition [2], IBM Watson Visual Recognition [3]],
Microsoft Azure Computer Vision [4], Clarifai [S]), Top-k
prediction is more important and meaningful. A user usu-
ally gets k& most likely classes corresponding to a particular
request and some of them are very similar and difficult to
differentiate. Therefore, fooling Top-k prediction in such
settings is more relevant. Traditional techniques of comput-
ing adversarial examples mainly target fooling the Top-1
prediction of DNNs, sometimes even just swapping classes
from the Top-2 prediction. This still makes the true class to
be present among Top-k prediction. Only a couple of works
[23}145]] study Top-k perturbations, however, they lack prac-
tical usability and time efficiency. We fill the gap and pro-
vide alternative much faster perturbations. We non-trivially
extend simple and accurate Top-1 adversary to Top-k case
by formulating a multi-objective optimization problem.

Our method is built upon DeepFool [33], a simple and
effective approach of constructing small Top-1 adversar-
ial noise. It analytically finds a perturbation in the direc-
tion towards classifier’s closest linearized decision bound-
ary, which is computed using first-order Taylor approxi-
mation. Based on DeepFool, input-agnostic small univer-
sal adversarial perturbations (UAPs) were proposed in [32].
Mere addition of such UAPs of a small norm cause neu-
ral networks to make mistakes on majority of natural im-
ages. The existence and cross-model transferability of such
perturbations show the threats of DNNs deployment in the
real-world scenarios, as adversaries can straightforwardly
compute and exploit them in a malicious manner. However,
no UAPs have been proposed to fool Top-k prediction pre-
viously. To fill this gap, we propose a systematic algorithm
to find universal Top-k perturbations. A visual illustration
of a Top-k UAP is shown in Figure
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Figure 1. A visual illustration of Top-k Universal Adversarial Per-
turbation (KUAP) calculated for VGG-16 neural network on
ILSVRC2012 dataset. A mere addition of a single small pertur-
bation makes true classes of initial images to be outside of Top-k
(here, k = 3) prediction of perturbed images for the majority of
images, even for unseen images. The /., —bound (maximal am-
plitude) of the perturbation is 10/255.

The main contributions of this paper are following:

* We propose kFool - a simple and accurate method to
compute a Top-k adversarial perturbation to an image
that makes the true class to be absent among the Top-
k prediction. Inspired by the idea of DeepFool [33]],
we linearly approximate decision boundaries and ef-
ficiently find such direction that simultaneously push
data point maximally closer to classifier’s k nearest de-
cision boundaries.

* We show efficacy of kFool, by demonstrating that it is
possible to construct a Top-k adversarial perturbation
of a small magnitude, bounded either in ¢5 or ¢, and
compare it to popular existing Top-1 adversarial per-
turbations crafting techniques.

* We propose Top-k Universal Adversarial Perturba-
tions (kUAPs), based on kFool, extending the pertur-
bations to image-agnostic scenarios.

* We experimentally show that kUAPs outperform base-
line methods and even improve existing techniques of
generating UAPs on standard ILSVRC2012 validation
dataset.

2. Background

Here, we describe preliminaries of adversarial examples
to introduce our method. Given an input image xo € R™
and an image classifier ' : R™ — R for C classes, the
(Top-1) adversarial perturbation [4Q] for an input xg is a
noise v € R™, such that the norm of the perturbation is
small, ||v|| < e, and the perturbed image is missclassified:

arg maxFj(xo) # arg maxFj(xo + v). (1)

where F; is the output logit corresponding to the class <.
The classical work FGSM proposed a single-
step way to craft an adversarial perturbation with small
£+, —bound value of € for an input x with a true label y, us-
ing gradient of a loss function £ (typically, cross-entropy)
between the prediction F'(x) and the true label y:

Xady = X + € sign(VxL(F(x0),v)), 2)

An iterative version of FGSM with random initialization is
Projected Gradient Descent (PGD) [26]. It finds a smaller
perturbation but requires a significant amount of time.

Our work is built upon the DeepFool [33], where a
geometry-inspired fast way was presented. The method is
as following: suppose, we have a linear two-class classifier
f(x) = wl'x + b with a separating plane f(x) = 0 and an
input image xo. The optimal (minimal norm) perturbation
is the distance to the separating plane f(x) = w’x+b = 0:

|.f (x0)|
"0 =g ™ @
and its magnitude is d(xg) = ||r(xo)||2 = |ﬂ‘(;“‘|°2)‘ For an

arbitrary deep differentiable classifier, the first-order Tay-
lor expansion allows to approximately linearize decision
boundary and approximate the ’slope” w as:

w ~ Vyf, “)

For a multi-class classifier, “one-vs-all” scheme is used.
Specifically, for an input xg and ¢-th decision boundary:

fi(XO) = Ftrue(XO) - Fi(XO)a

&)
W; = Vthrue(XO) - vxFi(XO),

Thus, the /—minimal perturbation r(x) to fool this lin-
early approximated classifier for xy can be computed as:

r(xp) = M w,, where ¢ = arg min |fi(xo)] (6)
||WC||2 i#true ||Wz||2

Using Holder’s inequality, the ¢, —minimal perturbation is:

| fe(xo0)]

r(xg) = ~—— sign w., where ¢ = arg min
||Wc||1 i#true

| fi(x0)]
[willx

)




Since the first-order Taylor expansion is a linear approx-
imation, it may deviate from the actual decision boundary
of the classifier. Therefore, the procedure should be re-
peated in an iterative manner: the original image is per-
turbed, then a new perturbation vector for the perturbed im-
age is computed and so on. However, only few iterations
are needed for DeepFool algorithm to quickly reach an in-
correct class, finding an efficient Top-1 adversarial pertur-
bation. It usually swaps classes from Top-2 prediction, con-
sequently, Top-k prediction still contains the correct class.

3. kFool

Our target is different: we need to perturb the initial im-
age such that the true class is not only outside the Top-1
prediction, but it is outside the Top-k prediction. Similarly
to (1), we formulate the Top-k adversarial perturbation for
an input image X as a noise v.€ R™, such that the norm
of the perturbation is small, ||v|| < ¢, and the original class
is outside of the largest k components of F'(xq + Vv):

argmaxFj(xo) ¢ argsort Fj(xo+v)[: k],  (8)

where arg sort is the function that returns indices of sorted

elements in decreasmg order and [: k| shows the first k com-
ponents. This notation is used for convenience and read-
ability. However, in formal mathematics it can be written as
{j| Fj(xo+V) € arg max > a}.
ACF(x0+V),|Al=kacA

The task is usually to find an optimal perturbation: the
perturbation that satisfies (I)) or (8) and has minimal norm.
DeepFool attempts to solve this task for Top-1 efficiently,
however it does not intend for Top-k. By considering k
nearest decision boundaries we can construct such a pertur-
bation in the same computational cost as the DeepFool.

To illustrate kFool in Figure [2} for simplicity, we con-
sider £ = 2 closest linearized decision boundaries. The
DeepFool directions (r; or ro, which are opposite to cor-
responding normal vectors w; and wy of decision bound-
aries) bring data point closer to one boundary, and unfortu-
nately might move away data point from another. Thus, to
attack Top-k prediction, the adversary needs to find a direc-
tion which brings the data point closer to all k (here, k = 2)
boundaries (green region in Figure |2)) and solves following
multi-objective optimization problem:

minimize  (||r1(Xo)]|2, - - -

vk (xo0)ll2)
. ©)
subjectto xp € X

where X is the feasible space of images. Using (3) and
fi(x) = Firye(x) — Fi(x) > 0, the distances are:

fz(XO) -

[will2

T )
w; X0 + b; (10)
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Figure 2. A geometric illustration of a single step of kFool for
k = 2. The data point X is inside the true class region surrounded
by k£ = 2 closest linearized decision boundaries %, and %> to
incorrect classes. Auxiliary planes .4 and <%, passing through
X, are parallel to the boundaries %; and A, respectively. These
planes (&7 and %) split the space into 4 regions. Perturbations
in the purple region push away point x¢ from both boundaries.
Perturbations in the blue regions bring the point xo closer to one
boundary, but push away from another (DeepFool). Perturbations
in the green region bring the point x¢ closer to k (here, £ = 2)
boundaries (kFool).

We solve (@) in two steps: first we find the direction
of the perturbation, then its magnitude. To bring the data
point closer to k closest boundaries simultaneously, we need
to follow direction that minimizes the sum of distances to
them. This is equivalent to opposite of the direction that
maximizes the sum. Among all the directions that increase
the sum of distances to k nearest boundaries, the gradient
(by definition) with respect to the input is the one that in-
creases it the most:

k 52 [zl

wp = argmaxz lr;ll2 =
i=1

b w;
E:: [[will2
1D
From basic geometry, the sum of normalized vectors is
the direction of the bisector between these vectors. The di-
rection of Top-k perturbation ry, that decreases the most, is
exactly opposite to wy,. For k = 2, the direction of ry, is per-
pendicular to bisector line %, of the exterior angle between
the boundaries (Figure[J). As we found the direction of the
perturbation, next we need the magnitude of r,. Following
the analogy from DeepFool[33] (3)), to compute the mag-
nitude of the perturbation r;, we assume the most optimal
Top-k perturbation is the distance to the bisector line. For
that reason, we need to calculate f, = WbTX + by, for which
we need by,.
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Figure 3. Examples of kFool (k = 5), DeepFool [33] and
FGSM [19] adversarial perturbations. For the kFool-perturbed im-
age, true class is absent among Top-k prediction, while for the
image perturbed by DeepFool and FGSM true class is present
among Top-k prediction, which shows the superiority of kFool.
Moreover, visually kFool produces perturbation even smaller than
FGSM and comparable to DeepFool, however latter two use more
simple task statement.

Gsm

To find b, we introduce an “intersection” point x*, where
0= fAK) = folx’) = = fix") = ---. Since
there are k£ equations and m >> k (input dimension) vari-
ables, from basic linear algebra such a point exists. Since
the bisector line is also passing through this point, then

0 = fy(x*) = wix* + b, and we have:
by = —wi x* (12)
’ Z ||Wz||2 Z ||Wz||2
Then:
fo(x0) = Wi x + by = (13)

Then, using p as an index array of sorted logits F'(xg) in
descending order, setting f;(x0) = Fy[;)(X0) — Firue(X0)
and w; = VyF)(X0) — Vx Firue(Xo), we have:

_|fb(xo)‘wb_ iz hwslla Z Wi (14)
= 2

[wil3 2 Twills

Similarly to DeepFool, it might be not enough to add a
perturbation only once to satisfy the goal (true class is ab-
sent among largest k components), thus we do a few itera-
tions for that (see Algorithm [T]).

Extension of @ to £ is straightforward, as we follow
DeepFool’s extension in (6) and (7):

Algorithm 1 kFool
INPUT: k, Image x, its label: true, classifier F' with logits
{F1,...,Fc}

1: p + argsort(F;(x))

> In descending order

2:r+ 0

3: while true in p[: k] do

4: wp <+ 0

5 o0

6: forz’:ltok—l—ldo

7. (X) VxFir ue(x)

Wp <= Wb + 7 F (x) Vi Firue(®)[2
[ (x) Ftrue(x)

B: o = Fo t T2 00—V Forae GOT

9: end for

10 r<r-+ ‘fb|2wb
[Iwsll3

11 p < argsort(F;(x +r)) > In descending order
i

12: end while
OUTPUT: Top-k Adversarial Perturbation r

= sign (Z l Z” ) (15)

Comparative illustration of kFool perturbation is shown
in Figure 3] The comprehensive quantitative experimental
comparison is presented in the Section[5.1]

4. kKUAP

Univesral Adversarial Perturbations (UAPs) solve
(T) for most of images simultaneously. To find such a uni-
versal direction that fools the majority of images, DeepFool
[33] algorithm was applied in an iterative manner over the
dataset of images, as it finds a small Top-1 adversarial per-
turbation efficiently. To satisfy the constraint of smallness
of noise, at each time a new perturbation is projected to the
£,-ball, suitable for that.

Inspired by the existence of such directions, we propose
Top-k Universal Adversarial Perturbations (KUAPs). Fol-
lowing [32]], we apply the kFool algorithm iteratively over
a dataset of images, to find a perturbation, mere addition of
which to most of natural images makes their true classes to
be outside of Top-k prediction. Formally, the goal of kKUAP
is to find a perturbation v that satisfies two following condi-
tions:

1. P [argmax(F(x)) ¢ argsort(F(x+ v))[: k]] > ¢

X~p
2. vllp<e

In the above criteria, p is the distribution of images from
which x is sampled. Adversarial strength € is the maximum
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Figure 4. A schematic illustration of KUAP procedure. Data
points x1,X2,x3 from different classes (with decision regions
P, R, Hs) are super-imposed. Then, kFool is applied itera-
tively. It first sends points in the direction Av; to the bisector
line %1 of the exterior angle between k nearest boundaries for
the x1. Then, in the direction Avy to Hp2. Then in the direction
Avs to %3 and so on. The resulting v is Top-k UAP.

£, norm of the perturbation v. The arg sort(F;(-))[: k] oper-
ator gets the first k indices of sorted output logits F; (i.e. the
Top-k prediction). The parameter ¢ quantifies the desired
fooling rate — i.e. the fraction of images Top-k prediction
of which should be fooled.
Algorithm. Given a dataset X = {x1,...,Xy} ~
1, our proposed algorithm kUAP searches for a direction
[Iv]l, < e, addition of which to (1 — §) fraction of images
makes their true label (arg max;(F;(x))) to be outside of
Top-k prediction (arg sort(F;(x+v))[: k]). Following [32],
we propose to apply kFool (which finds the normal vector to
the “bisector of an exterior angle between the nearest k de-
cision boundaries” (see Algorithm [I)) iteratively over data
samples from X. The illustrative schematic of the proce-
dure is demonstrated in Figure[d] First, all images are super-
imposed into one starting point and v is initialized as a zero
vector. At each iteration 7, Algorithm finds kFool direction
Av; for a given data point x; + v, which fools the Top-k
prediction for the current image x;, and updates the current
universal perturbation v simply by v = P.(v + Av;). The
projector operator P. controls the criteria ||v||, < e. For
example, for p = oo:
P.(v) = Clip(v, —¢,¢€) (16)
To improve the quality of kUAP the iterative procedure
over X needs to be repeated several times until the desired
universal fooling rate (1 — ) is reached, as in [32] (see Al-
gorithm [2). The universal fooling rate for Top-k prediction
is similar to (T8)), except that v does not depend on x:

N
UFRk Z argmax F'(x;) ¢ arg sortF; (x;+v)[:k]
- (17)

Algorithm 2 kUAP
INPUT: k, /,-bound ¢, fooling rate 6, dataset X =
{x1,...,xN}, classifier F'

Lve0
2: while UFR;[X] <1—-ddo
3: for x; € X do:

4: if argmaxFj(x;) € argsort(F;(x; + v))[: k]
then: Z '

5 Av; = kFool(k,x; + v, F) > Algorithm[]]

6: vV P(v+ Av;)

7 end if

8: end for

9: end while
OUTPUT: Top-k Universal Adversarial Perturbation v

5. Experiments
5.1. Experiments with £Fool

Here, we experimentally show the effectiveness and
speed of the kFool algorithm. Different values of k lead
to different presentation of the perturbations. In the exper-
iments below we present results for a fixed &, however, the
numerical results for other values of k are always similar
(see Table[T).

For the experiments below we use following neural net-
work architectures: LeNet [28]] for MNIST test dataset,
ResNet-20 [22] for CIFAR-10 test dataset and ResNet-18
[22] for ILSVRC2012 [16] validation dataset. To show the
effectiveness of kFool (k = 3;5 for MNIST and CIFAR10,
k = 5;10;15; 20 for ILSCVRC2012, for other values of k
we got similar results), we compare the Top-k fooling rate
with DeepFool [33]] and FGSM [19] (90% Top-1 fooling
rate). Results shown in Table 1] illustrate that kFool is in-
deed effective in terms of Top-k fooling rate. The metric to
compare fooling rates is:

N
FRk Z arg max F'(x;) ¢ arg sortF; (x;+v(x;))[:k]

(18)

Figure [3]illustrates examples of a kFool adversarial per-
turbation for £ = 5, DeepFool [33]] perturbation, and FGSM
[19] perturbation. It can be observed that kFool produces a
hardly perceptible adversarial noise of a small norm. To
quantitatively measure the efficiency (smallness) of kFool
perturbations, we compare it to existing techniques of gen-
erating adversarial examples: FGSM [19] and DeepFool
[33]. Following [33]], the numerical metric (the lesser - the
better) to compare norms of adversarial perturbations for a

dataset D is:
[r(x
(19)
Pr = IDIZ HXIIp




DF |FGSM| kFool | kFool DF [FGSM
[33][19] k=3 | k=5 [33]|[19]

kFool | kFool DF |FGSM | kFool | kFool| kFool | kFool

k=5 [33]|[19] |k=5 |k=10 |k=15 [k=20

FRy| 1.0 0.9009| 1.0 1.0 FR;| 1.0]0.8919

1.0 FR;||1.0{0.892] 1.0 | 1.0 | 1.0 | 1.0

FRy| 0.0 0.4299(0.9994|0.9998| | F'R>| 0.0 |0.7851]0.9972|0.9999| | F'R5 || 0.0 | 0.538 {0.995/0.998| 1.0 | 1.0

FRs3| 0.0 0.2206(0.9988(0.9994| | F'R3| 0.0 [0.6615[0.9941| 0.998

FRy| 0.0 0.428 [0.062(0.998|0.997 | 0.999

FR4|0.0]0.1181{0.2819]|0.9987| | F R, | 0.0 |0.5348]0.1928|0.9962

FRi5|[ 0.0 | 0.366 |{0.007|0.201|0.996 | 0.997

FRs5| 0.0 [0.0620{0.0935(0.9984| | F'R5 || 0.0 |0.4367]0.0502|0.9958

F Ry 0.0]0.328 | 0.0 {0.053/0.301|0.996

(a) MNIST (LeNet)

(b) CIFAR10 (ResNet-20)

(c) ILSVRC2012 (ResNet-18)

Table 1. Comparison of fooling rates of DF (DeepFool) [33], FGSM [19], and kFool (ours) for different datasets and architectures.

Metric | kFool | DF FGSM

) | ) | (90%)

MNIST | ] e Lot | 01836
CIEARI0 | s | ooost | 0,533
wsvRe2oiz | 00 | Goora | 00042

Table 2. Comparison of average relative £, —norms (I9) of adver-
sarial perturbations by kFool (k = 3 for MNIST and CIFARI10,
k = 5 for ILSVRC2012), FGSM [19] and DeepFool [33] algo-
rithms.

Since FGSM [19] targets the ¢,,-bounded perturbation,
we use the £, version of DeepFool and kFool for fair com-
parison (see Table[2). In the case of DeepFool and kFool we
reach our desired fooling condition (either Top-1 or Top-k)
for 100% of images, however for FGSM increasing € even
to very large values, we cannot reach 100% fooling rate. For
this reason, we use such values of € for FGSM, that guar-
antee the fooling for some specific number of images (90%
Top-1 fooling rate).

Based to the quantitative results in Table [2} it can be
seen that kFool generates very efficient perturbation both
in terms of 5 and /., norms. kFool either reaches the same
average relative norms p, (I9) as FGSM, or outperforms
it, and has average relative norms comparable to DeepFool,
however the goal of kFool is more challenging, as it targets
to perturb input data point such that rue class is outside of
Top-k prediction.

We also show the efficiency of kFool in terms of running
time. We compared kFool to Top-k PGD attack, which is
extension of PGD [26 31]] and Top-k CW [45] attack [45],
which is extension of CW [12], for CIFAR-10 (k = 3)
and Imagenet (¢ = 5). PGD [26l 31] and CW [12] are
known to find minimal Top-1 perturbations. To extend PGD
to Top-k scenario, we maximize losses of Top-k classes
other than the true. As we see in Table 3] kFool 60 times
quickly finds Top-k adversarial perturbation compared to
Top-k CW [45] for CIFAR-10, and 42 times more quickly

] | Top-k CW[45]|| Top-k PGD| kFool |

Time (CIFAR-10) 30.4s 0.6s 0.5s
Time (ILSVRC2012) 33.3s 0.68s 0.68s
FR (CIFAR-10) 0.994 0.5 0.9941

FR (ILSVRC2012) 0.999 099  [0.9984
12 (CIFAR-10) 0.0094 0.1 0.017
p2 (ILSVRC2012) 0.0022 0.07  |0.0043

Table 3. Comparison of sample processing time, fooling rate, £
norms of kFool, Top-k CW [45]], and Top-k£ PGD for CIFAR-10
(k = 3) and ILSVRC2012 (k = 5).
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Figure 5. Average relative norms of kFool (k = 5) of adversarially
trained models over ILSVRC2012 validation dataset

for ILSVRC2012, though Top-k CW finds perturbation of
lesser norm.

Adversarial training (AT) [19} 31] has been recently pro-
posed as an empirical defense to make models robust to
Top-1 adversarial perturbations. AT models are trained on
Top-1 PGD adversarial examples instead of clean samples.
This models have been shown to be prone to Top-1 adver-
sarial perturbations, however, it is interesting how adversar-
ial training affects norms of Top-k perturbations. To explore
this, we tested kFool on AT-models (pretrained from [36]])
trained at different robustness strengths €. The results are
shown in Figure 5] As we see from the plots, adversar-
ial training helps to resist not only Top-1 perturbations, but
also for Top-k perturbations.
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Figure 6. Examples of perturbed images with a single quasi imperceptible Top-k Universal Adversarial Perturbation generated for Mo-
bileNetV2 and k = 3. Under each image the wrong Top-3 prediction is shown, when the perturbation is added.

Classifier Metric UAP [ kUAP (k =3) |
Top-1 0.7725 0.7789
ResNet-18 Top-2 0.7015 0.7109
Top-3 0.6598 0.6720
Top-1 0.7909 0.8231
VGG-16 Top-2 0.7265 0.7661
Top-3 | 0.6882 0.7320
Top-1 0.8851 0.9154
MobileNetV2 Top-2 0.8373 0.8791
Top-3 0.8033 0.8550

Table 4. Universal fooling rates (T7) of different architectures

| ResNet-18 | VGG-16 | MobileNetV?2 |
ResNet-18 0.6720 | 0.2688 0.3040
VGG-16 03448 | 0.7320 0.4211
MobileNetV2 [ 0.2465 | 0.1500 0.8550

Table 5. Cross-network transferability of kUAPs (k = 3). The
rows indicate the network for which the KUAP is computed, and
the columns indicate the network for which the fooling rate is re-
ported.

5.2. Experiments with KUAP

For our experiments with ILSVRC2012 [16] dataset we
used the following pre-trained architectures: VGG-16 [39],
ResNet-18 [22], MobileNetV2 [37].

To generate Top-k universal adversarial perturbation we
use 10000 images from validation set of ILSVRC2012 [16]
dataset, such that each of 1000 classes are represented by 10
samples, as the train set. The remaining 40000 images from
ILSVRC2012 validation set is used as the test set. We con-
straint the universal perturbation v by /., norm bounded
by € = 10, which is significantly smaller than the aver-
age {, norm of the validation set: ﬁ > Ixllee & 250.

xeD

These criteria produces quasi-imperceptible Top-%k Univer-
sal Adversarial Perturbations. Examples of such perturbed
images from test set are shown in Figure[6] In Figure [f]one

single Top-3 universal adversarial perturbation, generated
using kUAP algorithm for MobileNetV2 architecture,
was added to natural images.

We also generate Top-k Universal Adversarial Pertur-
bations using kUAP for different deep neural networks.
Figure [7| shows generated kUAPs (k = 3) corresponding
to ResNet-18 [22], VGG-16 [39]], MobilenetV2 for
ILSVRC2012 dataset. Similarly to [32], these perturba-
tions contain visually structured patterns, which might re-
veal some interesting information about DNNs. We report
their fooling rates on test set and compare to UAP in Table
Even UAP’s target is not Top-k prediction, it shows good
fooling rate, however KUAP outperforms.

It is well-known that the UAPs have property
to transfer across networks, which make them ’doubly-
universal’. It is interesting to check if proposed KUAPs are
also transferable. It is expected that they are more network-
specific, which is indeed confirmed by Table |§|, however,
the constructed perturbations give fooling rate sufficiently
higher than random perturbation.

It should be mentioned that Top-k Universal Adversar-
ial Perturbations shown in Figure [7] are not unique pertur-
bations and there are a numerous perturbations satisfying
above criteria. The diversity for example might be reached
by changing the training batch of images, however, it is
interesting to see how fooling rate depends on the size of
training set.

To explore that we select 1,2, 3,4 samples from each
class from previous training set (10000 images) which cor-
responds to 1000, 2000, 3000, 4000 size values and con-
struct universal perturbation using UAP and our pro-
posed KUAP (k = 3). We test all perturbations on the same
test set of 40000 images that was used before. Figure [§]
demonstrates the Top-3 fooling rate for UAP and KUAP us-
ing different sizes of training set. As it can be seen, KUAP
generates much stronger Top-k universal adversarial pertur-
bations than UAP [32] for the same size of training dataset.



(a) ResNet-18

(c) MobileNetV2

Figure 7. Result of KUAP (k = 3) to different deep neural networks for ILSVRC2012
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Figure 8. The test set fooling rate on the size of training set

6. Related Work

In the task of image classification, class ambiguity is a
common problem especially when the number of classes
increases. Thus, it makes sense to allow making k guesses
and it motivates to evaluate classifiers based on the Top-
k error, instead of the typical Top-1 error. This problem
is computationally easier to solve (scales better), and pro-
duces the better accuracy score. Several Top-k losses were
suggested recently to yield the better Top-k accuracy score
127, 14,44, 130].

Initially found in [40Q], adversarial examples have gained
significant attention [12] 146]]. Goodfel-
low et.al [19] first proposed a single-step way of construct-
ing adversarial perturbations, and its iterative extension was
proposed in [26]. DeepFool [33] is an efficient geometric
approach of finding small perturbations. These attacks in-
vestigate Top-1 vulnerability of deep learning models.

Our work studies the robustness of Top-k classification.
Recently, Jia et al. provided tight bounds of certified
robustness for a Top-k adversarial perturbation in /5 norm,
however existing adversarial perturbations are mostly con-

cerned only with Top-1 prediction. In [45] ordered Top-k
attack was suggested, however, their method relies on C&W
attack [12]], which is not an efficient way of constructing ad-
versarial perturbation, as requires a lot of time.

With the discovery of Universal Adversarial Perturba-
tions [32]], several other methods were proposed
21129, 9]. In [34], it was proposed to craft data-
free UAPs, using different objectives. In [24], it was pro-
posed to use (p, g)—singular vectors to craft UAPs with a
few data samples. Several works proposed to attack images
with UAPs in a black-box manner, using Fourier basis[42]]
or Turing Patterns [43]]. In [21]], generative models were
used to construct UAPs.

7. Conclusion

In this work, we make a step towards geometric under-
standing of decision boundaries of deep classifiers. We
propose an efficient way of constructing Top-k adversar-
ial perturbations and Top-k universal adversarial perturba-
tions. We find our method as a simple, fast and accurate
technique. Our method kFool outperforms existing tech-
niques in Top-k fooling rate and finds Top-k adversarial
perturbations of small norm. Based on our proposed algo-
rithm kFool we propose kUAPs: single perturbations mere
addition of which to most of images pushes away the cor-
rect class outside of Top-k prediction. Our method KUAP
outperforms UAP both in Top-1 and Top-k fooling rates.

The ’bisector’ direction, that simultaneously brings
closer several decision boundaries, has interesting interpre-
tation. It normalizes the vectors towards each boundary and
sums them up. Similar approaches can be helpful in multi-
task learning, when the goal is to solve several tasks simul-
taneously.
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