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Abstract

We introduce a novel approach for gait transfer from un-
constrained videos in-the-wild. In contrast to motion trans-
fer; the objective here is not to imitate the source’s motions
by the target, but rather to replace the walking source with
the target, while transferring the target’s typical gait. Our
approach can be trained only once with multiple sources
and is able to transfer the gait of the target from unseen
sources, eliminating the need for retraining for each new
source independently. Furthermore, we propose novel met-
rics for gait transfer based on gait recognition models that
enable to quantify the quality of the transferred gait, and
show that existing techniques yield a discrepancy that can
be easily detected.

We introduce Cycle Transformers GAN (CTrGAN), that
consist of a decoder and encoder, both Transformers, where
the attention is on the temporal domain between complete
images rather than the spatial domain between patches. Us-
ing a widely-used gait recognition dataset, we demonstrate
that our approach is capable of producing over an order
of magnitude more realistic personalized gaits than existing
methods, even when used with sources that were not avail-
able during training. As part of our solution, we present a
detector that determines whether a video is real or gener-
ated by our model.

1. Introduction

The goal of this paper is to provide both a novel approach
and a detection mechanism for gait transfer from videos
in-the-wild. The objective is to replace a walking person
(source) in a video sequence with photorealistic images of
a different walking person (target), such that the resulting
gait is identifiable as the target’s while still mimicking the
source’s basic motion.

*This research has been supported by the Ariel Cyber Innovation
Center. Computing resources for this research were provided by Ariel Uni-
versity’s HPC Center.

Our approach learns directly from an unpaired collec-
tion of unconstrained videos in-the-wild containing walk-
ing people. We avoid the need for paired data and the need
to disentangle the walking patterns into different represen-
tations and learn directly from the 2D frames. We train our
model to translate multiple sources to a single target, so at
inference time it can generalize to unseen sources without
the need for retraining.

Motion transfer methods aim to synthesize a video in
which one individual is acting in accordance with that of
a different individual in a given real video. A growing body
of research has been conducted on this topic, which has
led to the development of advanced detection [33| 27, [10]
and enhanced motion transfer techniques [44}|10]. As a re-
sult of their mutually reinforcing relationship, motion trans-
fer technology can produce convincingly realistic images
and videos through deep learning-based manipulations. Us-
ing the whole-body motion transfer approach that directly
works on unconstrained videos [[10] for gait transfer has the
following key limitation: it attempts to replicate the pre-
cise movements of the source; rather, the goal of gait trans-
fer is to translate the typical motions and appearances of
the source into those of the target, adjusting for varied an-
gles, paces, and shapes. To address this limitation we intro-
duce CTrGAN for gait transfer. It transfers a series of poses
from the source to the target while maintaining the natural
movements of the target. Sources may vary in viewpoint,
shape, and pace. It is based on Transformers [41], which
have proven to be successful in translation tasks. Similar to
NLP’s models [47, (7], each Transformer consists of an en-
coder and a decoder. As a result, we can successfully trans-
late between the sequences of poses of the sources and the
targets. Our Transformer model performs self- and cross-
attention in time rather than in image space, capturing the
dynamic of the object. In order to generate unseen natural
poses of the target, our model is trained in an unsupervised
manner on unpaired data. This is in contrast to prior whole-
body motion transfer approaches that required paired data
(e.g., [43]). Figure E] shows our method.

The quality of whole-body motion transfer is often eval-
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Figure 1: CTrGAN transfers the poses of the source to the target, while maintaining the natural gait of the target. From left
to right: (a) The source’s image is converted to (b) DensePose’s [20] IUV format. (c) Our model translates the IUV of the
source to the corresponding most natural IUV pose of the target by synthesizing a novel pose. (d) The generated pose is very
similar (but not identical) to an exiting real pose in the dataset. (¢) The generated pose is rendered to a corresponding RGB

image of the target.

uated in a supervised manner, based on the ability to ap-
proximate a pose and appearance of the target unseen during
training but available in the test set. In our case, in addition
to the appearance, the objective is to measure the transla-
tion of the gait pattern (i.e. the dynamic) from the source
to a typical gait pattern of the target. In many cases, there
are no one-to-one correspondences between each frame in
the newly generated dynamic of the target and the existing
ones already included in the dataset, and therefore it can not
be evaluated directly in a supervised manner. We propose
employing state-of-the-art gait recognition algorithms [38]]
to evaluate the quality of the gait transfer. The quality is de-
termined by the accuracy with which newly generated poses
are recognized as the target’s gait. In order to provide accu-
rate measurements in all scenarios, we use several different
algorithms [[L1 [16, 28]]. As a way of assessing the appear-
ances of unseen poses, Chamfer’s distance [6] is used.

Our model includes two networks: (a) CTrGAN, which
translates the poses of the sources to the poses of the target,
and (b) pose-to-appearance, which renders the appearance
of each pose. For the latter network, we deploy an indepen-
dent state-of-the-art existing approach.

This paper contributes by (a) introducing an approach for
gait transfer from unconstrained videos in-the-wild, as well
as evaluation metrics; (b) presenting Cycle Transformers
GAN with temporal attention that can generate realistic gait
patterns of the targets and a corresponding detector; and (c)
demonstrating the effectiveness of our approach based on a
standard gait recognition dataset, showing that it can gener-
alize to unknown input sources, yielding the desired gait in
an order of magnitude more cases than previous methods.

2. Related work

Pose-to-Pose/Appearance A variety of methods have
been introduced for the generation of video sequences of
the target based on semantic input, including facial mo-
tion transfer [35] 26| |4, 40] and whole-body motion trans-
fer [10} 112} 43} 144, 32| /48]]. These methods are based on the
ability to accurately estimate the pose [20, 8] and also on
image-to-image translation models [45,|51]. They are either
explicitly trained for each source [[L0] or can be trained only
once [43] as our approach. In contrast to previous works,
our goal is to generate the personalized gait pattern of the
target to best match the gait of the source rather than to ac-
curately imitate the original motion of the source. Building
on the recent advances, we employ [10, 44] as our pose-to-
appearance network where the input is the generated poses
of the target and not the source’s poses. Our experiments
demonstrate the benefits of CTrGAN over the direct use of
[10} 44] for gait transfer. In the context of computer ani-
mation, [1] introduced motion style transfer. However, they
require a separation between the walking style and its con-
tent and 3D joint positions whereas we learn directly from
the images containing the walking persons without disen-
tangled representations.

Gait Recognition. In recent years, various works have
been proposed that use neural network models to identify
people based on their gait [[11} [16, 39, [13]. GaitSet [L1]
considers the gait as a set consisting of independent frames
and recognizes it based on a sequence of silhouette images.
GaitGL [28] relay on both global visual information and
local region details and introduced attention between adja-
cent frames. GaitPart [[16] uses a novel part-based model to
characterize the gait. We use GaitSet, GaitGL, and Gait-
Part models to assess the quality of the generated video
sequence. When the source in the video sequence is re-



placed with the target, the identified gait should be replaced
as well. We show that for previous approaches, a gait is still
readily associated with its source while using our approach
it is considered to belong to the target.

Visual Transformers. Transformers [41] are proven ar-
chitectures in the field of Natural Language Processing [7]],
and several works have been done in recent years to adapt
them to computer vision [30} [14} 23| 29]. The Transformer
model is shown in [41]] consists of two main components:
an encoder and a decoder, which jointly process the input
sequence, based on the self-attention mechanism. Early
works [30] adapted Transformers to the image domain.
Even though this work demonstrated its ability only on very
small images, it paved the way for broader works that ad-
dressed common challenges such as object detection [9] and
classification [[14]. Recently, several works [23| 149, [24]
have been presented which show that Transformers can also
be incorporated into the GAN architecture for image gener-
ation tasks. Unlike previous approaches, our method trans-
fers motion between domains cyclically using unpaired data
[51115] and is based on attention in the temporal domain.

3. Method

CTrGAN differs in the following ways from CycleGAN
and standard Transformer-based architecture. First, unlike
CycleGAN, it cycles between domains by using a series of
images rather than individual images. Second, unlike Cy-
cleGAN and Transformers, the attention is on the tempo-
ral domain between consecutive images and not between
patches of the same image. This allows us to incorporate
the target’s gait pattern into the source’s gait pattern trans-
fer process. Third, we do not use positional encoding due
to the approximate cyclic pattern of gait. Figure 2] depicts
a schematic illustration of our Natural Gait Retargeting ap-
proach.

3.1. CTrGAN Architecture

The Cycle Transormer GAN (CTrGAN) consists of three
main ingredients: features extractors, Transformers, and a
cyclic process. We denote Z = {I; }?il as a collection of

RGBA images and P = {P, }jvzl as a collection of ITUV

images [20]. I}', P5' and I}, P’ denote the corresponding
4" image of the source and the target from the correspond-
ing collection, respectively. In the following, we describe
the details with respect to the target. Details regarding the
source are derived in a similar manner. Below, the values in
parenthesis represent those that we use in our implementa-

tion.

3.1.1 Transformers.

The Transformers follow the same architecture as presented

n [41]. Originally, Transformers were designed to handle
sequences and consisted of two components, an encoder,
and a decoder. The encoder is designed to handle informa-
tion that remains constant throughout the series, while the
decoder is designed to handle the continuous flow of infor-
mation. The encoder and decoder consist of several chained
attention blocks, and each receives three types of data as
input: Keys, Values, and Queries (hereafter K, V, and Q).

3.1.2 Keys

The Keys of the target are selected from the images’ col-
lection whose feature vectors are the closest to the cluster
centers. Let U; denote the feature vector of image j:

{U,} = PCAVGG16({P } o1 n)od), (D)

where VGG [37] are the features of the last layer (clas-
sifier) of the pre-trained VGG || [37, 31] and d is the PCA
dimension (d = 100).

C}. denotes the center of the clusters as obtained by the
K-means clustering:

{Ci} = KmeanS({Uj},m)a 2

where m is the number of centroids (m = 18). Finally,
the Keys {K! } are defined as:

Kj={P,} . pr={argminf|U; - Ci[2}. (3
J

Samples of the Keys that were used for one of the sub-
jects can be seen in Figure 4a]

3.1.3 Queries

Given an input sequence P?, the queries are a sliding win-
dow of [,, consecutive frames (I,, = 3). We begin with
a given frame and advance one sample at a time. During
training, we choose a subsequence of length L at random
and begin with its first frame. We process the entire series
from beginning to end during inference.

3.1.4 Features Encoders and Decoders

Given an IUVA image P € R>H*W where IUVA is an
IUV image with an additional alpha layer, we generates a
feature tensor U, € R256% 1% &1 | The feature encoder Fr
is a 5-layers CNN followed by 4 strides max-pooling (see
Supplementary for more details).

!Trained on ImageNet-1K



Multi person
‘Source
Keys

Discriminator

AR AL
AS ARS
ARR) JRRR

ARt

Transformer
Generator
Target to Source

Transformer
Generator
Source to Target

Single person
Target
Keys

ARE

> AR

Discriminator

DensePose convertion

« -

S S AN )

Pose to
Appearance
Module

IS

Figure 2: The generators of CTrGAN are based on transformers. The inputs to each generator are [UVA gait images from
the training set and Keys. The outputs are natural gait poses. See the text for further details.
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The CTrGAN model includes two pairs of encoders (Fr
and Fg), where each of the pairs shares weights. All four
feature encoders (shown in Figure [3) have the same struc-
ture. The Hr and Hg decoders are identical to the Fr en-
coder, except that they operate in the other direction. The
discriminators D;_,, and D,_,s (Figure E[) are 5 -layers
CNN (see Supplementary for more details).

3.1.5 Cycle Transformer GAN

Figure [3] shows the architecture of CTrGAN . We denote
the source images collections as ®* = {I* P%} _ .
and the target image collection as ¥* = {I*, P'}. We de-
fine two networks G_,; and G;_, ;. The first network adapts
pose images from a variety of sources to pose images of
the target, while the second network does the opposite. We
denote P? and P* as the outputs of the networks:

{P'} =g (K"}, {P™)). )
{Pr} =G (k) {P1). ©)

For brevity, images’ indices have been omitted. Using
the pose images of the source’s gait pattern, our method at-
tempts to generate pose images of the target while preserv-
ing its gait pattern. This domain adaptation is accomplished
by composing both G,_,; and G;_. in a cyclic manner as
shown in the following:

Issi = gt%s (Ksi,gsﬁt (Kta PSi)) ) (6)

P' =G, (K',Giss (K*, P)). (7

The output pose image P (i.e. G,_,; (K, P*))are used
to generate the requested appearance by pose-to-appearance
network G:

I =Gy (P}). (8)
3.1.6 Self and Cross-Attention

The attention layer at the attention block is one of the core
components of the Transformer. A detailed explanation of
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Figure 4: (a) Samples of the Keys (centroids) K that were
used. (b) A visual demonstration of our attention mecha-
nism.

the self- and cross-attention and visualizations can be found
in the Supplementary Materials. Figure [4b] visualizes the
attention mechanism.

3.1.7 Gait Cycle

We do not use positional encoding due to the cyclic pat-
tern of gait [36]. The gait cycle can be defined as the time
interval between two successive occurrences of one of the
repetitive phases of locomotion [2]. Here, we demonstrate
the periodicity of the movement as expressed by the cross-
attention patterns along time for the Keys. Figure [5| shows
the cross-attention of Key 0 (top) and Key 1 (bottom) over
time. As can be seen, the gait cycle is evident.
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Figure 5: Attention power vs. time.

3.2. Optimization and Loss Functions

We use the following loss functions in our training:
chcle = )\idtzidt + )\ad'ugadv + )\cycgcyc + )\pergpera (9)

where Aigt, Aadv » Acye and Ay, are the weights of the
losses. The identity loss function ¢;4; is used to ensure that
the cyclic mapping preserves the mapping from a pose im-
age to itself. We use £ loss function.

liat = L1 (Gsmst (PY) ,P*) + L1 (Gimss (P*) ,P®). (10)

Following CycleGAN [51]] and ReCycleGAN [5] we use
the same adversarial loss ¢4, in which two discriminator
networks D,_,; and D,_,, are learned as a part of the train-
ing process.

In the same manner as GAN [19] architectures, we
use the generator and discriminator Gs_,¢, Gy, s Ds_,; and
Dy s. In our training process, we use the Lo as the objec-
tive loss function of the adversarial 1oss £, .

lady = L2 (Dsmst (Gomst (P*)),0) + L2 (Dsmse (P*) 1)
+£2 (Dtas (gt%s (Pt)) 70) + £2 (Dt—)s (PS) 9 1)7
(11)



Figure 6: Pre-processing procedure - From left to right: 1.
Original image. 2. Cropped and centered image. 3. Pose
image (IUV - DensePose format). 4. Masked image, cre-
ated from the I part of the IUV image

where O and 1 are matrices of zeros and ones
with the same dimensions as Ds_; (Gs—: (P®)) and
Dt—>s (gt—>s (Pt))'

The cycle loss function £.,. which is the main core of
the cycle GAN process is defined as:

écyc == £2 (gt%s (gs—)t (Pé)) 9 Pé)

12
Lo (Got (G () Py P

The perceptual loss £, measures the difference be-
tween feature vectors of a real image and a generated one:

Eper = El (VGGIG (gt%s (gs—n (Pé))) 5 VGGIG (Ps))

+Lq (VGG16 (gs—>t (gt—>s (Pt))) VGGis (Pt)).
(13)

We use a pre-trained VGG model [37, 31] to extract the
feature vectors. VGG model is pre-trained on three layers
of RGB, whereas we use four layers (IUVA), we therefore
measured the perceptual loss of the IUV and the alpha chan-
nels separately.

4. Experiments
4.1. Dataset

We use CASIA-A [42], which is a widely-used gait
recognition dataset [25) |15} 3, [18]. It includes twenty sub-
jects. Each subject has twelve image sequences that were
captured from three different viewpoints, resulting in four
instances for each of the viewpoints (denoted by 001, 002,
003 and 004). Overall, there are a total of 240 video se-
quences with a resolution of 352x240 and 19,139 images.

We remove the background from the original CASIA-A
images by using DensePose [20]. The input to our model is
four-channel images (RGBA). In each frame, we extract the

binary mask for the subject and attach it to the RGB image
as an alpha channel. The images are cropped and centered
around the object to create 256x256 canvases. See Figure 6]
for examples.

4.2. Implementation Details

The networks are implemented using Pytorch [31] and
were trained on a single NVidia 2080Ti GPU. We train the
model with Adam optimizer with 51 = 0.5 52 = 0.999
over 20 epochs. The initial learning rate is set to 2e — 4,
for 5 epochs followed by a linear decay to zero over 15
more epochs. The same configurations and parameters are
used for all models (Fr,Fs,H1,Hs,Es,Ds ,E7,D1 and
Ds—1,Di—s ). In order to represent temporal relations more
effectively, we use three consecutive frames as a mini-batch.
Our augmentations include a small magnification (from 256
to 272) and random cropping.

A detailed description of our architecture can be found
in the Supplementary Materials.

4.3. Baselines

The baselines are state-of-the-art methods for motion re-
targeting, V2V [44]] and EDN [10]. The models are adapted
to include an alpha channel as well. EDN is adjusted to
work with IUVA (IUV + alpha channel), whereas the V2V
model is already optimized for DensePose images, so only
one more channel is needed. We train V2V and EDN ac-
cording to their protocol with the default parameters.

We evaluate the following approaches to assess CTr-
GAN’s contribution: (a) direct - using trained baselines to
map directly from pose to appearance. (b) ours - we use
CTrGAN to generate the pose images, then use the base-
lines to render the appearance.

4.4. Metrics

Gait quality. We evaluate our results by gait recogni-
tion models GaitSet [11], GaitGL [28] and GaitPart [16],
implemented by the OpenGait [17] package.

We report target-accuracy - the percentages of times the
gait recognition model identifies the generated gait as the
target’s gait. Given a set of reference videos {Is'} and a
generated video I8, the goal is to find the reference video
in which the gait pattern is the most similar. For that, ref-
erences videos are ranked according to their distance from
I&:

Dy g = [M(T) — M(T5)[|2, (14)

where M is the specific model. The most similar refer-
ence video is considered as the one with the highest top-3
(minimum distance) frequency I%*. The identified gait is of
the subject in I5i* and the recovered distance is D, 4. In
our case the generated video I8 is Gys (Gs—¢ (P8)), where



Gys is the pose to appearance model that is in use (e.g.
V2V).

We train the models on all the subjects and half of the
CASIA-A videos.

Appearance quality. We use the following metrics to
evaluate our appearance quality: Inception Score (IS)[34],
Structural Similarity (SSIM) [46]], Perceptual Image Patch
Similarity (LPIPS), [50] and Frechet Inception Distance
(FID) [22].

FID and IS metrics measure statistical differences be-
tween sets of images and not directly between individual
images. However, SSIM and LPIPS evaluate the generated
image based on a single, ground truth image. Due to the fact
that the generated synthetic image If in our test set can be
derived from an unseen source’s pose, a ground-truth image
It is not always available. We therefore use the Chamfer
Distance [6] to recover the nearest ground truth image from
the reference video sequence {I} }:

N
1 . Tt Tr
Ecp = N Zlmkan<Ii’Ik>7 (15)

where () represents our quality metrics, SSIM or LPIPS.
All methods are compared using E¢ p, both ours and others.

Pose retargeting quality. To estimate the extent to
which the basic motion of the source is transferred to the
target, the intersection over union (IoU) of the binary sil-
houettes of the source and target is used. The binary sil-
houette S(P2) of subject A in frame k is generated from
the alpha channel of its IUVA image I, with a threshold of
maz(I,)—min(1,)

Given two sequences A and B with M and N frames
respectively, we calculate the average IoU between them
according to:

M N
R(A,B) = ﬁ > N 1oUS(PP),S(PR)).  (16)
7 k

We report R where A is the generated target and B is
the source, and when A is the generated target and B is its
original sequence.

4.5. Experiments

4.5.1 CTrGAN successfully generates the gait of the
target.

We train our model on thirteen subjects and use the remain-
ing seven for testing. For each subject, both the training
and test sets include two video sequences. In this way, we
can include in our evaluation cases where sources were not
available during training.

For the test set, we generate video sequences for the
trained subjects. We deploy all subjects in the dataset as

Method | Model | GaitPart | GaitSet | GaitGL
EDN 16.94 29.44 16.67
) v2v 3.89 3.61 4.17
ours EDN 18.89 62.78 36.39
V2V 84.72 56.67 | 68.06

Table 1: The target-accuracy 1. The top row is before and
the bottom row is after applying CTrGAN to generate the
poses. Our approach significantly improves the ability to
generate the target’s gait, up to approximately x21 than ex-
isting methods (GaitPart+V2V).

i O

(b) After

(a) Before

Figure 7: GaitSet’s distance matrix for subject three (the tar-
get) in the training set before and after applying our method.
The darker the color the lower the value. It can be seen that
before deploying our model, GaitSet easily distinguishes
between the generated and real gait and can identify the true
sources. After applying our approach, GaitSet identifies for
most of the cases the generated gait as the real gait of sub-
ject three.

sources, including those not included in the training set. We
test the ability to identify the generated gait as the target’s
gait by the gait recognition models, before and after apply-
ing our approach. Our results demonstrate that our approach
can generate a more realistic gait for the target by an order
of magnitude than previous methods.

Table[T] presents our main results, the target-accuracy for
V2V and EDN. In all the tables, bold represents the best
result. The top of the table shows the baselines applied di-
rectly to the pose of the source. At the bottom of the table,
CTrGAN generates the poses of the target before applying
the baseline methods. It can be seen that for all the meth-
ods, CTrGAN significantly improves the ability to gener-
ate the natural gait of the target. All models have failed to
recognize the gait of the target in the case of V2V with-
out CTrGAN. This implies that indeed, V2V can accurately
mimic the movements of the source by the target, in accor-
dance with its original goal. On average, the generated gait
rendered by V2V is approximately 17 times more likely to
match the target’s gait when using our method.

Figure[7] shows the GaitSet’s distances for subject num-
ber three (the target) with respect to all the twenty sub-



Features
Model Attention Encoder Decoder Target-accuracy 1
mechanism self-attention self-attention
Cycle Only X X X 5.28
+ Attention v v X 66.21
+ Time-Attention v v v 69.82

Table 2: The target-accuracy of several CTrGAN configurations.

SSIM | LPIPS | FID| IS}
Method | Model [CD]+ | [CDI.
EDN 0.890 0.072 55.79 | 0.0025
- V2V 0.901 0.063 | 53.131 | 0.0010
EDN 0.870 0.101 83.67 | 0.0030
ours v2v 0.909 0.055 52.89 | 0.0009

Table 3: Appearance quality.

jects in the dataset (the sources). Dark colors represent
low values, whereas light colors represent high values. The
lower the distance, the more similar the gait in the refer-
ence sequence is to that in the generated sequence. Figure
presents the distance matrix for the V2V method in the
direct approach. It can be seen that GaitSet is able to accu-
rately recognize the sources for all the generated sequences.
Figure |/b| presents the results for V2V after applying our
CTrGAN to generate the poses. For the vast majority of
the sequences, GaitSet recognizes the generated gait of the
target (subject three) as the real gait.

Table [3| shows the appearance quality of the different
approaches when deploying pose to appearance networks,
with and without CTrGAN. Without CTrGAN, the appear-
ance metrics are similar across the different methods. CTr-
GAN slightly increases the appearance quality for V2V but
overall the metrics are comparable. It is expected as the
key contribution of CTrGAN is the generation of poses that
can naturally be attributed to the target rather than improv-
ing the rendering mechanism of an existing pose. A pos-
sible explanation for the slight improvement could be that
the generated poses by CTrGAN match more naturally the
target’s appearances that need to be rendered.

The average pose retargeting quality obtained by apply-
ing eq. to all the sequences of the generated targets
and the sequences of their corresponding sources is 0.8677.
The average pose retargeting quality obtained by apply-
ing eq. (I6) to all the sequences of the generated targets
and their original sequences before applying CTrGAN is
0.6325. It is evident that CTrGAN transforms the pose’s sil-
houette of the target to be very similar to the source poses’
silhouette.

In the Supplementary Material, we show that existing

motion transfer methods retain the gait pattern of the source.

4.5.2 Temporal attention improves accuracy.

Table[2]shows the effect of the different components of CTr-
GAN on the final results. We employ V2V as our pose-
to-appearance network and evaluate the average target-
accuracy over all gait recognition models. It can be seen that
CycleGAN architecture on its own is not sufficient in order
to generate natural poses of the target. Adding encoder self-
attention and cross-attention between the image sequence
and the keys using the decoder produces significantly more
natural poses. A further improvement is obtained when the
decoder self-attention is added, which takes advantage of
the temporal relations within the sequence. Additional de-
tailed comparisons can be found in the Supplementary Ma-
terials.

5. Detecting Gait Transfer

It is imperative to carefully consider the implications of
our method, particularly in light of recent events that are oc-
curring, where misinformation is being used systematically.
In introducing the gait transfer problem, we hope to increase
awareness of this important issue. We investigate methods
for detecting generated gait transfer videos as a first step to-
wards preventing misuse of our approach. In order to iden-
tify videos created by our model, we train an appearance-
based detector. Choosing an appearance-based detector is
practical since the key contribution of our approach is the
generation of natural gait patterns whereas the appearance
quality is comparable to that of existing motion transfer
methods. Our detector classifies videos as either real or
generated. The dataset includes both original and generated
images of a walking person in an outdoor environment. We
use 75 percent of the subjects for training and 25 percent
for testing. The deployed model is ResNet152[21]. Us-
ing transfer learning, the last FC layer of the model trained
on ImageNet is replaced with one that is adapted for two
classes, which is fine-tuned on the training data. We achieve
an average detection accuracy of 96.2% for held-out target
subjects.



6. Conclusion

We introduce a novel approach for gait transfer based on
unconstrained videos in-the-wild. We propose quantifiable
metrics to better evaluate the quality of the transfer. We
present CTrGAN, a novel Transformer-based architecture.
Our model cycles between domains by using a series of im-
ages and includes self-, cross-, and temporal-attention. We
introduce an appearance-based detector and show that it can
be highly accurate. Using our approach, we obtained state-
of-the-art results.
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