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Abstract

The robustness of gaze and head pose estimation models
is highly dependent on the amount of labeled data. Recently,
generative modeling has shown excellent results in generat-
ing photo-realistic images, which can alleviate the need for
annotations. However, adopting such generative models to
new domains while maintaining their ability to provide fine-
grained control over different image attributes, e.g., gaze
and head pose directions, has been a challenging prob-
lem. This paper proposes CUDA-GHR, an unsupervised do-
main adaptation framework that enables fine-grained con-
trol over gaze and head pose directions while preserving the
appearance-related factors of the person. Our framework
simultaneously learns to adapt to new domains and disen-
tangle visual attributes such as appearance, gaze direction,
and head orientation by utilizing a label-rich source do-
main and an unlabeled target domain. Extensive exper-
iments on the benchmarking datasets show that the pro-
posed method can outperform state-of-the-art techniques
on both quantitative and qualitative evaluations. Further-
more, we demonstrate the effectiveness of generated image-
label pairs in the target domain for pretraining networks
for the downstream task of gaze and head pose estimation.
The source code and pre-trained models are available at
https://github.com/jswati31l/cuda—qghr.

1. Introduction

Gaze behavior plays a pivotal role in the analysis of non-
verbal cues and can provide support to various applications
such as virtual reality [40, 41], human-computer interac-
tion [34, 23], cognition [ !, 43], and social sciences [21, 37].
Recent gaze estimation models rely on learning robust
representations requiring a time-consuming and expensive
step of collecting a large amount of training data, espe-
cially when labels are continuous. Although various meth-
ods [55, 53, 44] have been proposed to circumvent the data
need, to generalize in-the-wild real-world scenarios remains
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Figure 1: Comparison of existing methods and proposed
method. In Fig (a), previous approaches [38, 64] assume
conditional image-to-image translation (X§ — X2) using
a pair of labeled samples from a single domain Dg and use
a transforming function F' in the latent space to ensure dis-
entanglement. Here, Ds and Dy represent the source and
target domains. In Fig (b), our method auto-encodes the
images Xg, X from both domains into a common disen-
tangled space using labels only from source, and transfers
latent factors via a simple copy operation.

a challenge and is an open research problem.

Different gaze redirection methods [64, 57, 25] have
been explored as an alternate solution for generating more
labeled training data using generative adversarial networks
(GANS) [10] based frameworks. These generative meth-
ods require a pair of labeled images across both source and
target domains to learn image-to-image translation; thus,
these methods fail to generalize faithfully to new domains.
Furthermore, various visual attributes are entangled during
the generation process and cannot be manipulated indepen-
dently to provide fine-grained control. Consequently, these
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methods have limited applicability, as in order for the gen-
erated data to be useful on downstream tasks, the variability
of these visual attributes across the generated data plays a
key role in their success. Few works [51, 28] on neural
image generation attempt to manipulate individual visual
attributes in-the-wild real-world scenarios; however, they
are constrained by the availability of simulated data with
pre-defined labeled attributes. The recent work [52] pro-
poses contrastive regression loss and utilizes unsupervised
domain adaption to improve gaze estimation performance.

In this paper, we propose a novel domain adaptation
framework for the task of controllable generation of eye
gaze and head pose directions in the target domain while
not requiring any label information in the target domain.
Our method learns to render such control by disentangling
explicit factors (e.g., gaze and head orientations) from var-
ious implicit factors (e.g., appearance, illumination, shad-
ows, etc.) using a labeled-rich source domain and an un-
labeled target domain. Both disentanglement and domain
adaptation are performed jointly, thus enabling the transfer
of learned knowledge from the source to the target domain.
Since we use only unlabeled target-domain data to train
our framework, we call it as unsupervised domain adap-
tation [65, 48].

Figure 1 illustrates the differences between the proposed
method and previous approaches [38, 64]. Previous ap-
proaches use a pair of labeled samples (X%, X2) from
the source domain Dgs to learn the conditional image-to-
image translation while disentangling visual attributes us-
ing a transforming function F'. In particular, Park et al. [38]
provides control over only explicit factors while Zheng et
al. [64] manipulate both explicit and implicit visual at-
tributes. In contrast, our method can perform controllable
generation without any input-output paired samples and ap-
ply auto-encoding of images Xg and X7 from source Dg
and target D7 domains into a common disentangled la-
tent space. Concurrently, we adapt the latent representa-
tions from the two domains, thereby allowing the transfer of
learned knowledge from the labeled source to the unlabeled
target domain. Unlike previous approaches, the proposed
method is less constrained by label information and can be
seamlessly applied to a broader set of datasets/applications.

We train our method on GazeCapture [29] dataset and
demonstrate its efficacy on two target domains: MPI-
IGaze [62] and Columbia [46] and obtain improved qual-
itative and quantitative results over state-of-the-art meth-
ods [38, 64]. Our experimental results exhibit a higher
quality in preserving photo-realism of the generated im-
ages while faithfully rendering the desired gaze direction
and head pose orientation. Overall, our contributions can
be summarized as follows:

1. We propose a domain adaptation framework for jointly
learning disentanglement and domain adaptation in la-

tent space, using labels only from the source domain.

2. Our method utilizes auto-encoding behavior to main-
tain implicit factors and enable fine-grained control
over gaze and head pose directions and outperforms
the baseline methods on various evaluation metrics.

3. We demonstrate the effectiveness of generated redi-
rected images in improving the downstream task per-
formance on gaze and head pose estimation.

2. Related Work

This section provides a brief overview of the works on
learning disentangled representations and gaze redirection
methods.

2.1. Disentangled Representations

The goal of learning disentangled representations is to
model the variability of implicit and explicit factors preva-
lent in the data generating process [35]. Fully supervised
methods [42, 59, 6] exploit the semantic knowledge gained
from the available annotations to learn these disentangled
representations. On the other hand, unsupervised meth-
ods [13, 3] aim to learn the same behavior without relying
on any labeled information. However, these methods pro-
vide limited flexibility to choose a specific factor of varia-
tion and are predominantly focused on a single domain rep-
resentation learning problems [4].

Unsupervised cross-domain disentangled representation
learning methods [32, 18] exploit the advantage of domain-
shared and domain-specific attributes in order to provide
fine-grained control on the appearance and content of the
image. For instance, synthetic data is utilized by a few
recent works [51, 28] to control various visual attributes
while relying on the pre-defined label information associ-
ated with the rendered image obtained through a graphics
pipeline. On the other hand, Liu et al. [33] provide con-
trol over different image attributes using the images from
both source and target domains and is trained in a semi-
supervised setting. However, their approach only consid-
ers categorical labels and thus has limited applicability.
In contrast, our method allows controllable manipulation
of continuous-valued image attributes (i.e., gaze and head
pose) in the cross-domain setting.

2.2. Gaze Redirection Methods

Numerous methods have been developed for gaze redi-
rection to attain a large amount of labeled synthetic data
for the gaze estimation task. Kononenko et al. [27] use
random forests to predict the flow field for gaze correc-
tion. More recently, several works [9, 2, 58] employ a deep
neural network to learn the warping flow field between im-
ages along with a correction term. However, these warping-
based methods cannot generalize well to large gaze and
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Figure 2: Overview of CUDA-GHR. The framework consists of two encoders E, and E, shared by both source and target
domains. E, encodes the target domain image X7 to 27, and the source domain image X5 to z& while E, encodes the target
pseudo gaze label gr and ground-truth source gaze label ggs to 29, and z%, respectively. The overall image representations are
formed as Zg = 2% @ zZ and Zp = 2§ @ =9, (where, @ is concatenate operation). These domain-specific encoded embeddings
Zr and Zg are passed through a shared generator network G along with the corresponding head poses (pseudo head pose
label A for the target domain, and ground-truth head pose label hg for source domain). These embeddings are also passed
through a feature domain discriminator Dr. D7 and Dg represent two domain-specific image discriminators. The whole

framework is learned in an end-to-end manner. The labels in red color are the ground-truth labels while in

generated pseudo-labels.

head pose directions. He et al. [12] propose a GAN-based
framework that utilizes a cycle consistency loss to learn
gaze redirection and generate images with a high resolution.

In addition, Wood et al. [54] uses a graphics pipeline to
redirect eye images by fitting morphable models. However,
these modeling-based methods make assumptions that do
not hold in practice. Mask-based generator networks [39]
have also been explored for the task of gaze redirection,
though their performance is highly dependent on the accu-
racy of the segmentation module [25]. Park et al. [38] uti-
lize a transforming encoder-decoder based network [ 14, 56]
to learn disentanglement in the latent space. Recently, Xia
et al. [57] and Zheng et al. [64] proposed controllable gaze
redirection method using conditional image-to-image trans-
lation. However, these methods use a pair of labeled sam-
ples during training. As mentioned earlier, our method
does not require any paired input-output samples and can
be adapted to the target domain without any label data.

3. Proposed Method

Our goal is to learn a controller network C such that
given an input image X7 and subset of explicit factors {e; }
(e.g., gaze and head pose directions), it generates an im-
age Xo satisfying the attributes described by {e;}, i.e.,
C : (Xr,e;) — Xo. To achieve this, we design a
framework that learns to disentangle the latent space and

color are the

manipulate each explicit factor independently. We start
with the assumption that there are three factors of varia-
tions: 1) appearance-related, including illumination, shad-
ows, person-specific, etc., which might or might not be ex-
plicitly labeled with the dataset, 2) eye gaze direction and 3)
head pose orientation. We train our network in an unsuper-
vised domain adaptation setting by utilizing a fully labeled
source domain and an unlabeled target domain considering
distribution shift across datasets into account. Recall that
we have the gaze and head pose labels only for the source
domain. Therefore, we aim to disentangle and control these
three factors of variations in the latent space and simulta-
neously transfer the learned behavior to the unsupervised
target domain. We named our framework as CUDA-GHR.

3.1. Model

The overall architecture of the CUDA-GHR is shown in
Figure 2. We denote S as the source domain and 7" as the
target domain. Further, following the notations used in [38],
we represent the appearance-related latent factor as z* and
gaze latent factor as z9.

The initial stage of our network consists of two encoders:
(a) an image encoder E, encodes the implicit (appearance-
related) factors of an image X; and outputs z{ such that
i € {S, T}, and (b) a separate MLP-based gaze encoder E
encodes the input gaze g; corresponding to the image X; to



a latent factor z;. For the source domain, we use ground-
truth gaze label gs as input to E, while for the unlabeled
target domain, we input pseudo gaze labels gr obtained
from a pre-trained task network 7 that predicts gaze and
head pose of an image. Note that 7 is trained only on source
domain data. Thus, the overall embedding Z; related to an
image X; can be formed by concatenating these two latent
factors, i.e., Z; = 28 @ zig (here & denotes concatenation).
Further, Z; and head pose label h; are given as input to a
decoder G based on the generator used in HoloGAN [36]
as it allows the head pose to be separately controlled with-
out any encoder. This generator G decodes the latent Z;
and head pose h; to an output image given by X, and is
trained in an adversarial manner with the discriminator net-
work D;. Note again that for labeled source images, we use
ground-truth head pose label hg while we take pseudo head
pose label hr produced by task network 7 for unlabeled
target domain inputs. In addition, we use a feature domain
discriminator D to ensure that the latent distributions of
Zs and Z7 are similar.

At inference time, the gaze and head pose directions
are controlled by passing an image from the target do-
main X7 through the encoder E, and desired gaze direc-
tion g through E, giving us E,(X7) and E,(g) respec-
tively. These two latent factors are concatenated and passed
through the generator G along with the desired head pose
h to generate an output image X%’h with gaze g and head
pose h, i.e.,

X4" = G(Eo(X7) @ Ey(g), h) (1)

Likewise, we can also control the individual factor of gaze
(or head pose) by providing desired gaze (or head pose) di-
rection and pseudo head pose (or gaze) label obtained from
T to generate gaze redirected image given as

X§ = G(Bu(X7)  Eq(g), hr) @)
and head redirected image given as
X} = G(Eu(Xr) ® Ey(gr), h) (3)

3.2. Learning Objectives

The overall objective of our method is to learn a common
factorized latent space for both source and target domain
such that the individual latent factors can be easily con-
trolled to manipulate target images. To ensure this, we train
our framework using multiple objective functions, each of
which are explained in detail below.

Reconstruction Loss. We apply pixel-wise L1 recon-
struction loss between the generated image X; and input
image X; to ensure the auto-encoding behavior.

Lr(Xi, X;) = |Xi = Xilh )

Bal

Thus, the total reconstruction loss is defined as

Erecon - Z ER(XZ; X’L) (5)

i€{S, T}

Perceptual Loss. To ensure that our generated images
perceptually match the input images, we apply the percep-
tual loss [24] which is defined as a mean-square loss be-
tween the activations of a pre-trained neural network ap-
plied between the generated image X; and input image X;.
For this, we use VGG-16 [45] network trained on Ima-
geNet [31].

(X, Xi) ZW Hi/}z i) — (Xl (6)

where 1 denotes VGG-16 network. Therefore, our overall
perceptual loss becomes

»Cperc - Z »CP(Xia X’L) (7)

i€{S, T}

Consistency Loss. To ensure disentangled behavior be-
tween implicit and explicit factors, we apply a consistency
loss between the generated image X; and input image X;.
For this, we use a pre-trained task network 7 which pre-
dicts the pseudo-labels (gaze and head pose) for an image.
The consistency loss consists of two terms: (a) label consis-
tency loss is applied between pseudo-labels for input and the
generated images to preserve the gaze and head pose infor-
mation, and (b) redirection consistency loss guarantees to
preserve the pseudo-labels for redirected images. For (b),
we generate gaze and head redirected images using Equa-
tion 2 and 3 respectively, by applying gaze and head pose
labels from source domain. We enforce the gaze prediction
consistency between )A(iqﬂ and Xg, and head pose prediction
consistency between X% and X7, i.e., T9(X%) = T9(Xs)
and T"(X%) = T"(Xr). A similar argument holds for the
head redirected image X7, i.e., T9(X2) = T9(Xr) and
Th(Xh) = T"(Xs). Here, T9 and T represent the gaze
and head pose predicting layers of 7. The overall gaze con-
sistency loss will become

Lye = La(T*(Xs), T*(Xs)) + Lo(T*(X7), T*(X1))
label consistency loss
La(T9(X7). T(Xs)) + La(T*(X]), T*(X1))

redirection consistency loss

®)

Similarly, we can compute the head pose consistency



loss L}, as follows:

Lhe = Lo(T"(Xs), T"(Xs)) + Lo(T"(X7), T"(X1))
label consistency loss
+ Lo (T"(X$), T"(X1)) + Lo(T"(XF), T"(X5))

redirection consistency loss

9)
Here, L, is defined as:
L, (@, u) = arccos <Auu) (10)
&[] - [Jue]]
Hence, total consistency loss becomes
Lconsistency = £gc + £hc (1 1)

GAN Loss. To enforce photo-realistic output from the
generator &, we apply the standard GAN loss [10] to image
discriminator D;.
Leany Dy, Xi, X;) = log D;(X;) + log(1 — Dy(X;))
Leane (Di, X;) = log Dy(X;)

(12)
The final GAN loss is defined as
Liise= Y Laan, Dy, X, X))
i€{S,T
€{s,T} ) (13)
Egen = Z KGANG (Du Xz)
i€{S, T}

Feature Domain Adversarial Loss. We employ a latent
domain discriminator network D r and train it using the fol-
lowing domain adversarial loss [49] to push the distribution
of Zr closer to Zg.

Lfecat(Dp, Z7,Zs) =log Dp(Zs) + log(1 — Dp(Z7))
(14)

Overall Loss. Altogether, our final loss function for train-
ing encoders and generator network is

ﬁoverall = ARﬁrecon + APEperc + >\C£consistency

15)
+ )\G‘Cgen + )\F‘Cfeut

4. Experiments
4.1. Datasets

GazeCapture [29] is the largest publicly available gaze
dataset consisting of around 2M frames taken from unique
1474 subjects. Following the split defined in [29], we use
data from 1274 subjects for training, 50 for validation, and
150 for the test.

MPIIGaze [62] is the most challenging dataset for the in-
the-wild gaze estimation and includes higher within-subject
variations in appearance, for example, illumination, make-
up, and facial hair. We use the images from the standard
evaluation subset MPIIFaceGaze [63] provided by MPI-
IGaze containing 37667 images captured from 15 subjects.
Columbia [46] contains 5880 high-resolution images from
56 subjects and displays larger diversity within participants.
The images are collected in a constrained laboratory setting,
with limited variations of head pose and gaze directions.

4.2. Implementation Details

The architecture of the encoder E, is DenseNet-based
blocks as used in Park et al. [38] and the decoder network
G is HoloGAN based generator [36]. The gaze encoder E
consists of four MLP layers with hidden dimensions equal
to the input dimension and output dimension is set to 8. The
task network 7 is a ResNet-50 [ 1 1] based model trained on
GazeCapture [29] training subset and gives 4-D output, two
angles for each gaze and head direction. The two image
discriminators Dg and D7 share a similar PatchGAN [22]
based architecture. The domain discriminator Dz consists
of four MLP layers. Note that 7 remains fixed during train-
ing of our whole pipeline. More implementation details can
be found in the supplementary materials.

All the datasets are pre-processed by a data normaliza-
tion algorithm as described in Zhang et al. [61]. Our input
is a single image containing both eyes and is of size 256 x
64. We use a data processing pipeline as employed in Park
et al. [38] to extract the eye image strip. The inputs gaze
g and head pose h are 2-D pitch and yaw angles. We train
our framework in two settings: GazeCapture—MPIIGaze,
trained with GazeCapture as source domain and MPIIGaze
as target domain, and GazeCapture— Columbia is trained
with Columbia as the target domain. For GazeCapture, we
use the training subset from the data split as labeled source
domain data. From MPIIGaze and Columbia, we respec-
tively choose the first 11 and 50 subjects as unlabeled target
domain data for training. We call them as ‘Seen’ subjects
as our network sees them during training while remaining
users fall into ‘Unseen’ category. We evaluate our method
on three test subsets: ‘Unseen’, ‘Seen’ and ‘All’. ‘All’ in-
cludes both ‘Seen’ and ‘Unseen’ participants data.

Hyper-parameters. We use a batch size of 10 for both
GazeCapture—MPIIGaze and GazeCapture— Columbia
and are trained for 200K and 81K iterations, respectively.
All network modules are optimized through Adam [26]
optimizer with a weight decay coefficient of 10~%. The
initial learning rate is set to 0.0005 which is decayed
by a factor of 0.8 after approximately 34K iterations.
For GazeCapture—MPIIGaze, we restart the learning rate
scheduler after around 160K iterations for better conver-



Table 1: Quantitative Evaluation.

Comparison of CUDA-GHR with the state-of-the-art methods [38, ].

GazeCapture—MPIIGaze is evaluated on MPIIGaze subsets and GazeCapture— Columbia is evaluate on Columbia subsets.

All errors are in degrees (°) except LPIPS, and lower is better.

GazeCapture—MPIIGaze GazeCapture— Columbia
Test Set | Method LPIPS | Gaze Head g¢g—h] h—gl | LPIPS| Gaze Head g¢g—h] h—gl
Redir. | Redir. | Redir. | Redir. |

Unseen | FAZE 0.311 6.131 6.408 6.925 4.909 0.435 9.008 6.996 6.454 4.295
ST-ED 0.274 2.355 1.605 1.349 2.455 0.265 2.283 1.651 1.364 2.190
ST-ED+PS 0.266 2.864 1.576 1.472 2.346 0.266 2.117 1.437 1.124 2.356
CUDA-GHR | 0.261 2.023 1.154 1.161 1.829 0.255 1.449 0.873 1.209 1.514

Seen FAZE 0.382 5.778 6.899 5.311 5.172 0.486 10.368 7.231 7.302 4.788
ST-ED 0.315 2.405 1.669 1.209 2.341 0.319 2.484 1.616 1.343 2.456
ST-ED+PS 0.288 2.269 1.888 1.179 2.229 0.299 2.071 1.536 1.088 2.330
CUDA-GHR | 0.278 1.905 0.979 0.761 1.236 0.282 1.328 0.831 0.646 0.996

All FAZE 0.370 5.840 6.828 5.613 5.123 0.481 10.214 7.226 7.214 4.737
ST-ED 0.307 2.392 1.660 1.232 2.359 0.314 2473 1.618 1.350 2.435
CUDA-GHR | 0.275 1.922 1.012 0.844 1.341 0.279 1.337 0.832 0.707 1.045

gence. The weights of the objective function are set as Ap
=200, \p =10, A\¢ =10, A\¢ =5 and A = 5.

4.3. Evaluation Metrics

We evaluate our framework using three evaluation met-
rics as previously adopted by [64]: perceptual similarity,
redirection errors, and disentanglement errors.

Learned Perceptual Image Patch Similarity
(LPIPS) [60] is used to measure the pairwise image
similarity by calculating the distance in AlexNet [30]
feature space.

Redirection Errors are computed as angular errors be-
tween the estimated direction obtained from our task net-
work 7 and the desired direction. It measures the accom-
plishment of the explicit factors, i.e., gaze and head direc-
tions in the image output.

Disentanglement Error measures the disentanglement of
explicit factors like gaze and head pose. We evaluate g —
h, the effect of change in gaze direction on the head pose,
and vice versa (h — g). To compute g — h, we first cal-
culate the joint probability distribution function of the gaze
direction values from the source domain and sample ran-
dom gaze labels. We apply this gaze direction to the input
image while keeping the head pose unchanged and measure
the angular error between head pose predictions from task
network 7 of the redirected image and the original recon-
structed image. Similarly, we compute h — g by sampling
random head pose orientations from the source labeled data.

4.4. Comparison to the state-of-the-art

We adopt FAZE [38] and ST-ED [64] as our baseline
methods. Both FAZE and ST-ED are based on transforming
encoder-decoder architecture [ 14, 56] and apply known dif-
ferences in gaze and head rotations to the embedding space

for translating the input image to a redirected output im-
age. FAZE inputs an image containing both eyes, which is
the same as our method, thus necessary to compare. We
use original implementation' and trained models provided
by the FAZE authors for comparison. In addition, we re-
train the ST-ED network on images containing both eyes
for a fair comparison. FAZE learns to control only explicit
factors (gaze and head pose orientations) while ST-ED con-
trols implicit factors too. Note that for the ST-ED baseline,
we compare only by altering explicit factors. Furthermore,
we also compare CUDA-GHR to baseline ST-ED+PS which
is trained with source data GazeCapture and using pseudo-
labels for target dataset (MPIIGaze or Columbia). The
pseudo-labels are obtained in same manner as of CUDA-
GHR. For more details, please refer to the supplementary
materials.

Quantitative  Evaluation. Table 1 summarizes
the quantitative evaluation of both our experiments
GazeCapture—MPIIGaze and GazeCapture— Columbia.
The left half of Table 1 shows evaluation on MPIIGaze test
subsets {‘Seen’, ‘Unseen’, ‘All’}, and we observe that our
method outperforms the baselines (even ST-ED+PS) on all
the evaluation metrics for each test subset. We get lower
LPIPS (even on ‘Unseen’ users), indicating the generation
of better quality images while achieving the desired gaze
and head directions attested by lower gaze and head
redirection errors. We also obtain better disentanglement
errors exhibiting that our method successfully controls each
explicit factor individually. The improved performance on
‘Unseen’ users shows the superiority and generalizability
of our method over baselines. We also notice improvements
over ST-ED+PS baseline, exhibiting that domain adaptation
is essential to achieve better performance.

lhttps ://github.com/NVlabs/few_shot_gaze
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We show evaluation of GazeCapture— Columbia exper-
iment on right half of Table 1. Note that due to the
small size of the Columbia dataset, we initialize the model
for this experiment with the previously trained weights on
GazeCapture—MPIIGaze for better convergence. Recall
that we do not use any labels from the target domain dataset
in any experiment. As shown in Table 1, our method is con-
sistently better than other baselines on all evaluation met-
rics, showing the generalizability of our framework on dif-
ferent domains and thus, can be adapted to new datasets
without the requirement of any labels.

Qualitative Evaluation. We also report the qualitative
comparison of generated images in Figure 3 using a model
trained with GazeCapture—MPIIGaze. The results are
shown on MPIIGaze dataset images which is the target do-
main dataset in this setting. As can be seen, our method
produces better quality images while preserving the appear-
ance information (e.g., skin color, eye shape) and faithfully
manipulating the gaze and head pose directions when com-
pared with FAZE [38] and ST-ED [64]. It is also worth
noting that our method generates higher-quality images for
people with glasses, e.g., row 3 in Figure 3a and row 6 in
Figure 3b. These results are consistent with our findings
in quantitative evaluation, thus showing that our method is
more faithful in reproducing the desired gaze and head pose
directions. Additional results are provided in the supple-
mentary materials.

4.5. Ablation Study

To understand the role of individual components of the
objective function, we provide following ablation study. In
Table 2, we compare against the ablations of individual loss
terms. The ablation on the perceptual loss is shown in the
first row (Ap = 0). The second row (Ac = 0) repre-
sents when consistency loss is set to zero, while the third
row (A = 0) shows results when feature domain adver-
sarial loss is not enforced during training. The fourth and
fifth row shows an ablation on reconstruction (Ar = 0) and
GAN (Ag = 0) loss, respectively. As can be seen, all of
these loss terms are critical for the improvements in perfor-
mance. We see a substantial improvement with the addition
of Leonsistency- The ablation study is performed for Gaze-
Capture — MPIIGaze on the ‘Seen’ subset of MPIIGaze.

4.6. Controllability

Figure 4 shows the effectiveness of our method in con-
trolling the gaze and head pose directions. We vary pitch
and yaw angles from —30° to +30° for gaze and head redi-
rections. We can see that our method faithfully renders the
desired gaze direction (or head pose orientation) while re-
taining the head pose (or gaze direction), therefore, exhibit-
ing the efficacy of disentanglement. Furthermore, note that
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Figure 3: Qualitative Evaluation:
son of the generated images
(GazeCapture—MPIIGaze) with the baseline methods
FAZE [38] and ST-ED [64]. The quality of gaze redirected
images is depicted in 3a, while head redirected images are
shown in 3b. The first column represents the gaze/head
pose source image from which gaze/head pose information
is used to redirect. The second column shows the input
image from the target domain. Our method (column 5)
produces better quality images and preserves the implicit
factors than the baseline methods (columns 3 and 4). Best
viewed in color.
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the range of yaw and pitch angles [—30°, 30°] is out-of-
label distribution of source dataset (GazeCapture), showing
the extrapolation capability of CUDA-GHR in the genera-
tion process.

4.7. Evaluation of Downstream Tasks

We also demonstrate the utility of generated images from
our framework in improving the performance of the down-
stream gaze and head pose estimation task. For this, we
conduct experiments for cross-subject estimation on both
MPIIGaze and Columbia datasets. The main goal of this



Table 2: Ablation Study: An ablation study on different
loss terms for GazeCapture — MPIIGaze on MPIIGaze
‘Seen’ subset. All errors are in degrees (°) except LPIPS,
and lower is better.

Table 3: Downstream Task Evaluation: Comparison of
mean angular errors (mean = std in degrees) for various ini-
tialization methods on gaze and head pose estimation task.
Lower is better.

Ablation term | LPIPS | Gaze Head g—hl h—gl
Redir. | Redir. |
Ap = 0.307 6.450 0.922 0.655 1.334
Ac =0 0.326 15.183 3.412 0.106 11.616
Ap = 0.281 4.791 0.787 0.636 0.826
Ar=0 0.304 4.958 0911 0.463 0.876
Ae =0 0.309 11.130 0.942 0.355 0.868
Ours 0.278 1.905 0.979 0.761 1.236
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(b) Head redirected images with (pitch, yaw) € [—30°, 30°]

Figure 4: Controllable Generation: Illustration of control-
lable gaze and head redirection showing the effectiveness of
disentanglement between various explicit factors.

experiment is to show that the generated “free” labeled data
from our framework can be used to obtain a good pretrained
model to further fine-tune on cross-subject estimation task.
We compare it against three initializations: random, Ima-
geNet [7], and pretrained model obtained using ST-ED [64]
generated images.

We generate around 10K samples per user from MPI-
IGaze dataset using GazeCapture—MPIIGaze trained gen-
erator and train a ResNet-50 [I11] network (initialized
with ImageNet pre-trained weights) with batch normaliza-
tion [20] replaced by instance normalization [50] layers.
Afterward, we fine-tune this network on MPIIGaze dataset
using leave-one-subject-out cross-validation for both gaze
and head pose estimation and report the mean angular error.
A similar method is followed for ST-ED generated images.
We compare the errors obtained from four initialization
methods: random, ImageNet, ST-ED, and CUDA-GHR.
Analogously, we train gaze and head pose estimation mod-

Initialization Head Pose Gaze
Method Estimation Errors| Estimation Errors|
Columbia MPIIGaze | Columbia MPIIGaze
Random 68+12 67+07 | 6707 67+13
ImageNet 59+13 57+£28 | 55+£01 57+14
ST-ED 57+£11 514+24 | 54+£04 55413
CUDA-GHR | 53+11 49+25 | 51+04 55+14

els on generated images for Columbia data subjects (~1.6K
samples each) using GazeCapture— Columbia model and
fine-tune on Columbia dataset using 4-fold cross-validation.
The comparison of different initialization methods on two
datasets is shown in Table 3.

It can be seen that the model trained with CUDA-GHR
gives around 7% and 4% relative improvements over ST-ED
initialization on Columbia and MPIIGaze, respectively, for
the head pose estimation task. We also show results for the
gaze estimation task in Table 3 giving a relative improve-
ment of around 5.5% on the Columbia dataset while per-
forming similar to the ST-ED baseline on MPIIGaze. We
hypothesize that this is because the gaze and head pose la-
bel distribution of GazeCapture is closer to MPIIGaze dis-
tribution than Columbia [5] and thus, performs closely for
both ST-ED and CUDA-GHR. This indicates that domain
adaptation is more advantageous for the Columbia dataset.
Hence, it shows the effectiveness of our method over base-
lines when performing domain adaptation across datasets
with significant distribution shifts.

5. Conclusion

We present an unsupervised domain adaptation frame-
work trained using cross-domain datasets for gaze and head
redirection tasks. The proposed method takes advantage of
both supervised source domain and unsupervised target do-
main to learn the disentangled factors of variations. Experi-
mental results demonstrate the effectiveness of our model in
generating photo-realistic images in multiple domains while
truly adapting the desired gaze direction and head pose ori-
entation. Because of removing the requirement of annota-
tions in the target domain, the applicability of our work in-
creases for new datasets where manual annotations are hard
to collect. Our framework is relevant to various applications
such as video conferencing, photo correction, and movie
editing for redirecting gaze to establish eye contact with the
viewer. It can also be extended to improve performances on
the downstream task of gaze and head pose estimation.
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A. Data Pre-processing

We follow the same data pre-processing pipeline as done
in Park et al. [38]. The pipeline consists of a normalization
technique [61] initially introduced by Sugano et al. [47]. Tt
is followed by face detection [15] and facial landmarks de-
tection [8] modules for which open-source implementations
are publicly available. The Surrey Face Model [19] is used
as a reference 3D face model. Further details can be found
in Park et al. [38]. To summarize, we use the public code?
provided by Park et al. [38] to produce image patches of
size 256 x 64 containing both eyes.

B. Architecture Details

Our framework CUDA-GHR. We use DenseNet archi-
tecture [ 16] to implement image encoder E,. The DenseNet
is formed with a growth rate of 32, 4 dense blocks (each
with four composite layers), and a compression factor of 1.
We use instance normalization [50] and leaky ReLU activa-
tion function (o = 0.01) for all layers in the network. We
remove dropout and 1 x 1 convolution layers. The dimen-
sion of latent factor z® is set to be equal to 16. Thus, to
project CNN features to the latent features, we use global-
average pooling and pass through a fully-connected layer to
output 16-dimensional feature from E,. The gaze encoder
E, is a MLP-based block whose architecture is shown in
Table 4. The dimension of z9 is set as 8.

For the generator network G, we use HoloGAN [36] ar-
chitecture shown in Table 8. The latent vector z for each
AdalN [17] input is processed by a 1-layer MLP, and the
rotation layer is the same as the one used in the original
paper [36]. The latent domain discriminator D consists
of 4 MLP layers as shown in Table 5. It takes the input of
dimension 24 and gives 1-dimensional output. Both image
discriminators D and Dg are PatchGAN [22] based net-
works as used in Zheng et al. [64]. The architecture of the
discriminator is described in Table 7.

Table 4: Architecture of gaze encoder E

Layer name Activation Output shape
Fully connected LeakyReLU (a =0.01) 2
Fully connected LeakyReLU (« = 0.01) 2
Fully connected LeakyReLU (a =0.01) 2
Fully connected None 8

The task network 7 is a ResNet-50 [11] model with
batch normalization [20] replaced by instance normaliza-
tion [50] layers. It takes an input of 256 x 64 and gives a
4-dimensional output describing pitch and yaw angles for
gaze and head directions. It is initialized with ImageNet [7]
pre-trained weights and is fine-tuned on the GazeCapture

Zhttps://github.com/swook/faze_preprocess

Table 5: Architecture of latent domain discriminator D i

Layer name Activation Output shape
Fully connected LeakyReLU (« = 0.01) 24
Fully connected LeakyReLU (a =0.01) 24
Fully connected LeakyReLU (« = 0.01) 24
Fully connected None 1

Table 6: Architecture of the task network 7~

Module/Layer name Output shape
ResNet-50 layers with MaxPool stride=1 2048 x1x1
Fully connected 4

training subset for around 190K iterations. The GazeCap-
ture validation subset is used to select the best-performing
model. The initial learning rate is 0.0016, decayed by a fac-
tor of 0.8 after about 34K iterations. Adam [26] optimizer
is used for optimization with a weight decay coefficient of
10~*. The architecture of 7 is summarized in Table 6.

Downstream Tasks. For gaze and head pose estimation,
we use similar architecture as employed for 7 shown in Ta-
ble 6. For all the experiments, the initial learning rate is
0.0001 decayed by a factor of 0.5 after every 1500 itera-
tions. The pre-trained models are trained for 10 epochs with
a batch size of 64 while fine-tuning is done for 5 epochs
with a batch size of 32.

State-of-the-art Baselines. We re-implement the ST-
ED [64] on images containing both eyes for a fair compar-
ison with our method using the public code® available. We
use the same hyperparameters as provided by the original
implementation. For the accurate comparison, we replaced
tanh non-linearity with an identity function and removed a
constant factor of 0.57 in all the modules.

C. Additional Results

In Figures 5 and 6, we show additional qualitative results
for both target datasets, namely, MPIIGaze and Columbia.
Figure 5a and 6a represent gaze redirected images and Fig-
ure 5b and 6b show head redirected images.

3https://github.com/zhengyuf/STED-gaze
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Table 7: Architecture of the image discriminator networks D and Dg. Note that, both the discriminators has the same
architecture.

Layer name Kernel, Stride, Padding Activation Normalization  Output shape
Conv2d 4x4,2,1 LeakyReLU (a =0.2) - 64x 32x128
Conv2d 4x4,2,1 LeakyReLU (v =0.2) InstanceNorm 128x16x64
Conv2d 4x4,2,1 LeakyReLU (a=0.2) InstanceNorm 256x8x32
Conv2d 4x4,1,1 LeakyReLU (o =0.2) InstanceNorm 512x7x31
Conv2d 4x4,1,1 - - 1x6x30
Table 8: Architecture of the generator network G
Layer name Kernel  Activation = Normalization Output shape
Learned Constant Input - - - 512x4x2x8
Upsampling - - - 512x8x4x16
Conv3d 3x3x3 LeakyReLU AdaIN 256x8x 4x16
Upsampling - - - 256x16x8x32
Conv3d 3x3x3 LeakyReLU AdaIN 128x16x8x32
Volume Rotation - - - 128x16x8x32
Conv3d 3x3x3 LeakyReLU - 64x16x8x32
Conv3d 3x3x3 LeakyReLU - 64x16x8x32
Reshape - - - (64 - 16)x8x32
Conv2d Ix1 LeakyReLU - 512x8x%x32
Conv2d 4x4 LeakyReLU AdaIN 256x8x%x32
Upsampling - - - 256x16x32
Conv2d 4x4 LeakyReLU AdaIN 64x16x64
Upsampling - - - 64x32x128
Conv2d 4x4 LeakyReLU AdalN 32x32x128
Upsampling - - - 32x64x256
Conv2d 4x4 Tanh - 3x64x256
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(a) Gaze Redirected images for MPIIGaze dataset (GazeCapture—MPIIGaze)
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(b) Head Redirected images for MPIIGaze dataset (GazeCapture—MPIIGaze)

Figure 5: Additional Qualitative Results (GazeCapture—MPIIGaze): More qualitative results on the MPIIGaze dataset.
5a shows the gaze redirected images and 5b shows the head redirected images. The first column shows the gaze/head pose
source image from which gaze/head pose information is used to redirect. The second column shows the input image from the
MPIIGaze dataset. Best viewed in color.
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(b) Head Redirected images for Columbia dataset (GazeCapture— Columbia)

Figure 6: Additional Qualitative Results (GazeCapture— Columbia): Qualitative results on the Columbia dataset. 6a
shows the gaze redirected images and 6b shows the head redirected images. The first column shows the gaze/head pose
source image from which gaze/head pose information is used to redirect. The second column shows the input image from the
Columbia dataset. Best viewed in color.



