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Abstract

For autonomous vehicles and mobile robots to safely op-
erate in the real world, i.e., the wild, scene understanding
models should perform well in the many different scenar-
ios that can be encountered. In reality, these scenarios are
not all represented in the model’s training data, leading to
poor performance. To tackle this, current training strate-
gies attempt to either exploit additional unlabeled data with
unsupervised domain adaptation (UDA), or to reduce over-
fitting using the limited available labeled data with domain
generalization (DG). However, it is not clear from current
literature which of these methods allows for better gener-
alization to unseen data from the wild. Therefore, in this
work, we present an evaluation framework in which the
generalization capabilities of state-of-the-art UDA and DG
methods can be compared fairly. From this evaluation,
we find that UDA methods, which leverage unlabeled data,
outperform DG methods in terms of generalization, and
can deliver similar performance on unseen data as fully-
supervised training methods that require all data to be la-
beled. We show that semantic segmentation performance
can be increased up to 30% for a priori unknown data with-
out using any extra labeled data.

ProDA [45] Fully supervised Ground truth

Figure 1 Qualitative results of state of-the-art domain generallzatlon (RobustNet [9]), unsupervised domain adaptation
(ProDA [45]) and fully-supervised [6] methods on unseen datasets WildDash [44], IDD [37], and KITTI [1]. The baseline model
and RobustNet are trained only on Cityscapes [10], ProDA is trained on the labeled data of Cityscapes and the unlabeled data of BDD-

100K [42] and Mapillary Vistas [25], and the fully-supervised model is trained on the respective ‘unseen’ dataset. The ProDA method,
which leverages unlabeled data, consistently performs best, showing that generalization can be improved by using non-annotated examples.

1. Introduction

Semantic segmentation, where each pixel in an image
needs to be classified, is a useful computer vision task for
applications like autonomous driving and mobile robotics.
When applied to images from cameras mounted on such
mobile agents, it can provide them with actionable infor-
mation. However, state-of-the-art semantic segmentation
methods are all based on Deep Neural Networks (DNNs),
for which it is typically challenging to perform well in all
real-world conditions, i.e., the wild. To combat this, sev-
eral methods have been introduced that aim to improve the
generalization capabilities of such DNNs, so that they per-
form well under all imaging conditions. However, all these
methods have been researched in different settings, which
makes it difficult to make a fair comparison and identify the
best solution for a given application. To solve this, in this
work, we conduct an empirical study on the generalization
capabilities of different methods under fair conditions, and
provide key insights and take-away messages.

Semantic segmentation networks typically perform quite
well on images that are similar to the data that they are
trained on [6, 7, 46]. However, when they encounter im-
ages captured under different conditions, e.g., in different
weather, with other lighting, or with changed camera prop-
erties, their performance degrades [16, 40]. This is prob-
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task method semantic segmentation architecture training domains validation domains
encoder ‘ decoder labeled ‘ unlabeled
ProDA [45] ResNet-101 [14] DeepLab v2 [6] ‘ . .
UDA DSP12] ResNet-101 [14] DeepLab v2 [6] GTA V [29] Cityscapes [10] Cityscapes [10]
ResNet-101 [14] DeepLab v2 [6] . I NI
SAC [2] VGG-16 [35] DeepLab v2 [6] Synthia [31] Cityscapes [10] Cityscapes [10]
ResNet-50 [14] DeepLab v3+ [7]
WildNet [18] ResNet-101 [14] DeepLab v3+ [7] GTA V [29] n.a Cityscapes [10], BDD-100K [42], Mapillary [25], Synthia [31]
DG VGG-16 [35] DeepLab v3+ [7]
ResNet-50 [14] DeepLab v3+ [7]
RobustNet [9] | ShuffleNet v2 [21] | DeepLab v3+ [7] | Cityscapes [10] n.a BDD-100K [42], Mapillary [25], GTA V [29], Synthia [31]
MobileNet v2 [32] | DeepLab v3+ [7]

Table 1. Semantic segmentation architectures and training settings commonly used by top performing UDA and DG methods. This
shows that UDA and DG methods typically use very different network architectures, training data and evaluation data, making direct

comparisons between methods of different tasks very difficult.

lematic when deploying semantic segmentation networks in
the wild, because it is a priori unknown if the data that a
vehicle or robot will capture is similar to the training data.
One obvious solution is to gather more, possibly heteroge-
neous [23], training data, captured under as many different
conditions as possible. However, especially for semantic
segmentation, obtaining per-pixel labels is expensive and
time-consuming [10]. Moreover, there is no guarantee that
a gathered dataset contains images with all the conditions
that can be encountered during deployment.

As an alternative to increasing the training dataset, sig-
nificant research is focused on finding methods that allow
deep learning models to generalize better to environments
that are not part of the training data. On a high level, we can
identify two tasks that focus on improving generalization of
deep learning models in different ways: a) domain general-
ization (DG), and b) unsupervised domain adaption (UDA).
DG methods take one or multiple labeled datasets and apply
techniques to generate a model that performs well on multi-
ple datasets that were not seen during training [9, 18]. UDA
methods assume that they have access to unlabeled images
from the so-called rarget environment where the model is to
be deployed. Therefore, they train a model jointly on a sin-
gle labeled dataset and the unlabeled images from the target
environment, with the goal of achieving a good performance
on other images from this target environment [2, 45]. Some
UDA methods have also shown that they can also boost per-
formance on unseen environments, but this is not explored
extensively thusfar [28, 30].

Although both DG and UDA aim to explicitly or im-
plicitly improve the generalization capabilities, it is unclear
which of the two actually leads to better generalization to
unseen data, and under what conditions. To find this out,
a quantitative comparison should be made under circum-
stances that are as equal as possible. Such a fair comparison
is currently very difficult based on literature, due to multiple
factors, illustrated in Tab. 1 with different colors. Specifi-
cally, it can be noticed that a) methods are not trained us-
ing the same semantic segmentation network architecture,

while architectural differences can greatly impact perfor-
mance (blue); b) each task uses different training settings,
and UDA methods predominantly focus on adapting from
synthetic to real data, even though abundant real-world data
is available to perform real-to-real adaptations [25, 42, 44]
(pink); and c) UDA methods are not evaluated for the task
of generalization, i.e., they only measure performance on
the rarget dataset, and do typically not report scores on un-
seen data (green). To address this, in this work, we pro-
pose an evaluation framework where methods are trained
using a normalized architecture, on real-world labeled and
unlabeled data, and are evaluated specifically on unseen
datasets, to properly assess generalization capabilities.

With our proposed evaluation framework, we conduct a
thorough quantitative comparison between DG and UDA
methods, and assess their generalization capabilities under
various conditions. Most importantly, we find that leverag-
ing unlabeled data like in UDA, greatly boosts the general-
ization performance beyond the target domain. To provide
additional insights, we also assess the impact of choosing a
particular training dataset, and the proportion of labeled and
unlabeled data that is used for training.

To summarize, the contributions of this work are:

* We provide a new evaluation framework where seman-
tic segmentation models can be tested for generaliza-
tion to unseen data in the wild.

e Using this framework, to the best of our knowledge,
we are the first to provide a quantitative comparison
between DG and UDA methods for semantic segmen-
tation, to properly assess their relative performances
and provide recommendations on their usage.

e From this comparison, we find that unlabeled data is
an important resource to achieve generalization to un-
seen data, achieving performances on par with fully
supervised models.

The code of this work is made publicly available!.

Uhttps://fabriziojpiva.github.io/empirical-generalization-study/
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2. Related Work

Unsupervised Domain Adaptation (UDA) refers to the
process of training a model able to transfer the learned
knowledge from a domain where labels are accessible,
to a domain where annotations are not available. In the
past years, UDA methods for semantic segmentation have
shown impressive results [2, 19, 45], particularly by lever-
aging a combination of multiple strategies, that can involve
data augmentations [2, 8, 20, 22, 24, 41], feature align-
ments [3, 17, 19, 20, 28, 33, 36], and/or self-supervised
learning [2, 12, 19, 20, 28, 39, 45]. Regardless of the train-
ing strategy, UDA methods have strongly focused on adap-
tation settings where a synthetically generated dataset such
as GTA V [29] or SYNTHIA [31] represents the labeled do-
main, and needs to be adapted to a real-world dataset such
as Cityscapes [10] as the unlabeled target domain. While
we consider these benchmarks challenging, it is worth not-
ing that these settings 1) assume that the unlabeled domain
is the one and only domain on which the model will be de-
ployed, abandoning the possibility that the model could en-
counter other domains that are a priori unknown, and 2)
focus strongly on adapting synthetic to real data, without
considering other scenarios like real-to-real adaptations, de-
spite the availability of many datasets with annotated real
images. To properly assess the ability to generalize to un-
seen images and leverage the availability of real datasets,
our proposed evaluation framework evaluates on multiple
datasets that were not seen during training, and focuses only
on real-world data.

Domain Generalization (DG) methods for semantic
segmentation have surged significantly recently, where the
goal is to train a model on data from one or multiple la-
beled datasets, and let it perform well on various datasets
that were not seen during training. These methods predom-
inantly operate at feature-level, in combination with data
augmentations [9, 18, 26, 43], by creating augmented ver-
sions of the input images to either suppress style-related
features [9, 26], or to overexpose the network to multiple
styles [18, 43], encouraging the network to learn domain-
invariant features. Regardless of the methodology involved,
these methods only use data from labeled domains, and
therefore they are unable to exploit rich information that can
be extracted from data from unlabeled domains. We con-
sider that this is one of the main drawbacks of DG methods,
since unlabeled data is significantly easier and cheaper to
collect than labeled data. For this reason, we allow the us-
age of unlabeled examples in our evaluation framework, and
we assess the benefit of having access to unlabeled data on
the generalization capabilities of a network, i.e., with UDA.

Comparisons between UDA and DG methods. Previ-
ous studies comparing UDA and DG methods for computer
vision tasks are mostly surveys [34, 38, 47], where differ-
ent theoretical aspects such as problem definitions, training

strategies and related research areas are described. One of
the main drawbacks of these surveys is the lack of a practi-
cal comparison, where UDA and DG models are evaluated
using a common framework to assess their applicability to
real-world scenarios. In line with this, a recent study has
proposed a setting to compare UDA and DG methods in a
practical fashion [13], but it is focused on clinical medicine
and addresses the effect of a temporal dataset shift, i.e.,
when the distribution of the data changes gradually over
time.

In this work, rather, we compare UDA and DG methods
for the computer vision task of semantic segmentation, us-
ing a common practical framework, especially designed to
assess the generalization capacity of these models on do-
mains that were not seen during training, independent of
distribution shifts that can occur over time. In particular, we
evaluate the effect of the aforementioned differences that
exist between DG and UDA approaches: 1) the effect of
leveraging unlabeled data in the network, which happens
for UDA but not for DG, 2) the effect of evaluating UDA
approaches on unseen domains, which is typically not done
for UDA methods, but is the main objective for DG.

3. Problem definition

In this work, we address the problem of applying se-
mantic segmentation in challenging real-world conditions,
i.e., in the wild. Assuming that there is no available labeled
dataset large and varied enough to yield good performance
in all real-world conditions, we focus on methods for train-
ing semantic segmentation using limited labeled data, along
with unlabeled data, with the aim of generalizing to varied
unseen data. To formally define this problem, we introduce
the following notations.

Notation. Let X’ be the input images, and let ) be their
corresponding pixel-wise ground truth for semantic seg-
mentation. A labeled domain D; is defined as the joint dis-
tribution P(X', ) on X x Y, and it typically consist of mul-
tiple sub-domains Dj, ..., D}". A dataset represents a ran-
dom subset of samples from one or multiple (sub)domains.
Respectively, an unlabeled domain is a domain where pixel-
wise ground truths are not available for training, denoted as
D,.;, and an unseen domain D,, is a domain where both in-
put images and ground truths are not available during train-
ing.

Goal of generalization. When a neural network is de-
ployed in a mobile agent, it is a priori unknown whether the
images that are captured by the sensing devices fall into do-
mains Dy, D,;, or D,,. Therefore, to have a system that per-
forms well in all circumstances, it is important that the se-
mantic segmentation network performs well on all domains,
i.e., not only on the typically evaluated training domains D;
and D,,;, but especially on unseen domains D,, as illus-
trated in Fig. 2.
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Figure 2. Conceptual illustration of domains in the represen-
tation space. Each domain can be seen as taking up a specific
subspace of the representation space. The distance between two
domains is often referred to as their domain gap and datasets can
be seen as random samples, visualized by the colored dots, com-
ing from one or multiple domains. The goal of generalization is
to train a model on a labeled domain D; (blue) and possibly an
unlabeled domain D,,; (green) such that the model also performs
well on an unseen domain D,, (pink). Conceptually, the envelope
of the model (grey), should ideally contain all domains.

metrics
calculation name

datasets
training testing

experiment | domains #images

training  testing

| D | CSuain.split  CSvalsplit | 2975 500 | ave. overmloUof
14,2 » BDD train. split  BDD val splic | 7000 1000 | €S BPDMAP — scenmloUave.
" | MAP train. split MAP val. split | 18000 2000 val. splits
| D | MAPuain. split MAPval. split | 18000 2000 | avg. over mloU of
1B > BDD train. split BDD val. split | 7000 1000 | ©S:BDD-MAP scenmloU avg.
" | CStrain. split  CSval.split | 2975 500 val. splits
WILD val. split | 3404 852 | avg. over mloU of
1,2 D, IDD val. split | 6993 973 | WILD, IDD, KITTI  unseen mloU avg.
KITTIval. split | 160 40 val. splits

Acronyms for datasets: Cityscapes (CS) [10], BDD-100K (BDD) [42], Mapillary Vistas
(MAP) [25], WildDash (WILD) [44], IDD (IDD) [37], KITTI (KITTI) [1].
Table 2. Datasets and metrics for each experiment. The pro-
posed performance metrics, the seen and unseen mloU avg., are
computed over the validation splits of the datasets for the training
domains, and the datasets for the unseen domains, respectively.

DG and UDA. Given the aforementioned notation and
the description of these tasks in Sec. 2, we note that DG
methods only use the labeled domain D; during training,
and evaluate on D,,, which is unseen for them. In contrast,
UDA methods use the labeled domain D; and the unlabeled
domains D,,; during training. Whereas UDA methods are
normally evaluated on an unseen split of D,,;, we now eval-
uate on other, unseen domains D,,, to assess their general-
ization capabilities.

4. Experiments
4.1. Overview of experiments

The main goal of this work is to thoroughly assess and
compare the generalization capabilities of DG and UDA
methods for semantic segmentation. Moreover, we are in-
terested in the effect that the used data has on the final per-
formance. To this end, we conduct the following experi-
ments:

1. Quantitative comparison UDA vs. DG. To make a
proper comparison, we propose a training setting where
UDA and DG methods are trained on the same labeled
dataset D;. Additionally, we pick multiple datasets to rep-
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Figure 3. Inten;ity histograms for Cityscapes ‘and Mapillary.
Cityscapes shows a clear peak in the histogram, indicating that
many images have a similar style. Mapillary has a much more
uniform distribution, indicating there is no dominant style.

resent the unlabeled domains D,,;. By definition, this unla-
beled data is only leveraged by UDA methods. To assess
the generalization capabilities, we select multiple, other
datasets as unseen domains D,, on which the evaluation
is performed. The better the performance on these unseen
domains D,,, the better the generalization capabilities of the
network.

In practice, the availability of labeled data for the labeled
domain D; may vary. Because the level of variation in terms
of image conditions within a dataset generally influences
the generalization capabilities of a network trained on that
dataset, we also expect the availability of heterogeneous la-
beled training data to have an impact on the performance of
UDA and DG methods. Therefore, we conduct this experi-
ment in two different configurations:

A) Homogeneous dataset as labeled domain. This ex-
periment considers a situation where there is only a
simple, homogeneous labeled dataset available, as is
often the case in practical environments. This dataset
consists of images captured at similar locations, with
similar conditions and lighting properties.

B) Heterogeneous dataset as labeled domain. In this
experiment, there is a labeled dataset that consists of
images captured under many different conditions, from
many distinctive subdomains.

2. Impact of using unlabeled data. To investigate the ef-
fect of leveraging unlabeled data to achieve generalizable
semantic segmentation, we conduct an experiment where
we vary the quantity of available unlabeled data for the
best-performing UDA method. To set a baseline, we train a
fully-supervised network with the same increasing portions
of images, but then with labeled data. Specifically:

* Train the best performing UDA method from exper-
iment 1.A on D; with increasing unlabeled portions
{0, 25,50, 75,100}% of D,,.

* Train a fully-supervised segmentation model on D; to-
gether with increasing portions {0, 25, 50, 75,100} %
of the datasets for D,,; but now using their labels.

This experiment is designed to provide insights in the
amount of unlabeled data that is needed to achieve gener-
alization to unseen domains, and how this compares with
using the same number of images for supervised training.
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4.2. Evaluation protocol

In order to compare different generalization and adapta-
tion methods quantitatively, we need to select datasets for
the labeled and unlabeled training domains as well as the
unseen domains, as defined in Sec 3. With these datasets,
which are described below and summarized in Tab. 2, mod-
els are trained and evaluated using the performance metrics
reported in Tab. 2.

4.2.1 Datasets

For our evaluation protocol, we need several datasets that all
consist of similar categories. In the context of autonomous
driving, multiple datasets are available:

Cityscapes [10] is an urban street scene dataset col-
lected in several cities in an around Germany. BDD-
100K [42] also contains images of urban scenes, but then
captured at different locations in the United States. Like-
wise, IDD [37] gathered numerous urban scenes from sev-
eral cities in India. On the other hand, Mapillary Vis-
tas [25] is a very diverse dataset, and contains street scenes
from all over the world, under different conditions. Simi-
larly, WildDash [44] consists of a vast number of images,
including high-hazard scenarios, from places all over the
world. It is designed to benchmark the robustness of seman-
tic segmentation models. Finally, KITTI [1] is a relatively
small dataset with very similar images, captured around the
same city in Germany.

4.2.2 Training domains

Given the six datasets described in Sec. 4.2.1, we need to
select the datasets that will be used as labeled domains D;
and unlabeled domains D,,; during training.

Labeled domains. As explained in Sec. 4.1, we aim to
conduct experiments in two high-level settings, where A)
the labeled domain consists of a homogeneous dataset and
B) the labeled domain is a heterogeneous dataset. Given
the properties of the datasets, we select Cityscapes [10] to
be the homogeneous dataset for D; in experiment 1.A, be-
cause its images are captured under very similar conditions.
For experiment 1.B, we pick Mapillary Vistas [25] as the
heterogeneous dataset for D; in experiment 1.B, because it
contains images captured under many different conditions,
in many different locations.

To support our selection, we conduct a histogram anal-
ysis on the pixel intensities of the images in each dataset.
We expect that a homogeneous dataset, captured with the
same camera setup and under similar lighting conditions,
will show a clear peak at certain pixel intensity values. On
the other hand, a heterogeneous dataset with images cap-
tured under many different conditions, should have a more
uniform distribution. Therefore, this histogram should give

a rough indication of the homogeneity of a dataset. We ac-
knowledge that there exist more advanced techniques for
this purpose, but we consider this to be out of scope, since
we only use these histograms as an auxiliary tool.

From the histograms depicted in Fig. 3, we find that the
histogram for the Cityscapes shows a clear peak around
certain intensity values, whereas Mapillary Vistas images
have a more uniform pixel intensity distribution. This sup-
ports our decision for picking Cityscapes as a homogeneous
dataset and Mapillary Vistas as a heterogeneous dataset.
We refer to the supplementary material for more informa-
tion about these histograms, and the histograms for other
datasets.

Unlabeled domains. In experiment 1.A, where
Cityscapes is labeled domain D; we pick the training splits
of BDD-100K and Mapillary Vistas to be the unlabeled
training domains D,,;. We choose BDD-100K and Map-
illary because together they consist of more varied im-
ages than Cityscapes, which can now be leveraged by
UDA methods to boost generalization. In experiment 1.B,
D, is composed of the training splits of BDD-100K and
Cityscapes, two datasets which are both homogeneous com-
pared to the labeled dataset D;, Mapillary Vistas.

4.2.3 Unseen domains

For all experiments, unseen domains D,, are composed of
a combination of the validation splits of WildDash, IDD,
and KITTI. Note that these are only used during testing and
never during training. We choose these datasets because
they together represent the realistic and challenging streams
of images that a driving system encounters during deploy-
ment: they consist images from multiple environments cap-
tured under different conditions (WildDash), and images
captured at very specific locations under very specific con-
ditions (IDD and KITTI). In the end, a good generalized
model should perform well on both types of datasets.

4.3. Method selection

In our evaluation, we aim to include the best-performing
state-of-the-art methods for domain generalization and un-
supervised domain adaptation. To select only the best-
performing and properly reproducible methods, we set
the following requirements: 1) the implementation of the
method should be publicly available, providing training and
evaluation scripts, 2) the method should not require train-
ing external networks not available in the published code,
3) the methods should obtain state-of-the-art results in the
standard benchmarks for their research domains, and 4) re-
producing the reported results should not lead to a perfor-
mance drop of more than 5%. Methods fitting these cri-
teria are adapted using their original code so that they all
use a normalized architecture for the semantic segmentation
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model’s encoder and decoder (i.e., ResNet-101 [14] and
DeepLabv2 [6] from [45]), to allow for a fair comparison.
The final selected models are ProDA [45] and SAC [2] for
UDA, and WildNet [18] and RobustNet [9] for DG. Please
note that our comparison is not meant to disqualify methods
in any way. Our aim is merely to find out what type of meth-
ods should be used in what situation. More information on
the selection process and the adaptation of these methods is
provided in the supplementary material.

4.4. Baselines

To further complement the quantitative comparison, and
provide informative baselines, we also train the following
fully-supervised segmentation models:

Single-dataset training. To provide additional insights
in all the datasets used in our evaluation protocol, and to
evaluate how well models generalize by training on just
a single labeled dataset, we train fully-supervised mod-
els separately on each individual dataset using a standard
cross-entropy loss, and evaluate them on all the datasets.
By doing so, we can identify what type of dataset can be
used to achieve good results on unseen data, without using
any adaptation/generalization technique. We briefly discuss
takeaways on these models in Sec. 5.1.

Labeled-domain-only training. @ This is a fully-
supervised model trained only on the dataset that is the la-
beled domain D;. We consider DG and UDA methods ef-
fective only if they outperform this baseline.

Multi-dataset training. We train fully-supervised mod-
els on multiple datasets. Specifically:

1. We train a model on the datasets used as labeled do-
main D; and unlabeled domains D,,;, with all labels,
to compare with UDA trained using the same datasets
D; and D,,;. The goal of the DG and UDA methods
is to reach comparable performance, but using signifi-
cantly less labeled training data.

2. We train a model jointly on all the datasets used as
D., to see what the ‘oracle’ performance is, i.e., the
performance when a fully-supervised model is trained
on the datasets that are used for evaluation.

3. We train a model on all the datasets proposed for D,
D, and D,,, to serve as an ‘upper bound’.

4.5. Implementation details

As explained before, currently reported results in litera-
ture for DG and UDA methods are not comparable, because
these methods use different semantic segmentation architec-
tures and are trained and tested on different datasets (Fig.
1). To solve this, our experiments aim for a normalized
comparison, where each method is trained and tested on the
same datasets and all methods use the same semantic seg-
mentation architecture. For all experiments, all models are

trained and evaluated on the same 19 classes, i.e., the 19
classes typically evaluated on the Cityscapes dataset. For
Mapillary Vistas, we map the class labels to the Cityscapes
definition as in [15].

Hardware and network architecture. In our ex-
periments, we have implemented all methods using Py-
Torch [27], training them on two NVIDIA A6000 GPUs
with 48GB memory each. Due to the heterogeneity in ar-
chitectures, we adapt the code of all methods, so that all
networks use the same version of DeepLabv2 [6, 45] with
a ResNet-101 backbone [14] pretrained on ImageNet [11].
More details are provided in the supplementary material.

Hyperparameters. We run all selected candidates us-
ing the set of hyperparameters that led to achieve their best
mloU performance. The fully-supervised models, which
are DeepLabv2 models as described previously, are trained
using an SGD [5] optimizer with momentum of 0.9, ini-
tial learning rate of 2.5 x 10~#, polynomial schedule with
decay of 0.9, and a standard cross-entropy loss [4]. In ad-
dition, all baseline models are trained on random crops of
896 x 512 (WxH) pixels, for Ny x 180k iterations, where
Ny is the amount of datasets used for training, and using
early-stopping, i.e., stopping training if there are no perfor-
mance improvements during 20 consecutive epochs.

5. Results

In this section, we provide the results for the experiments
as listed in Sec. 4.1. But first, to a) provide insights in the
different datasets that are used in our evaluation framework,
and b) show that DG or UDA methods are necessary for
better generalization, we briefly discuss the results of the
single-dataset training baselines described in Sec. 4.4.

5.1. Single-dataset training

In Tab. 4, we report the performance of the fully-
supervised models trained individually on each of the
datasets used in our evaluation framework. When looking
at this table, it is immediately clear that Mapillary Vistas
and WildDash lead to the best overall performance across
all datasets, as reflected in the average mean IoU. This is
expected, because we found that those datasets contain the
most varied images, captured under many different condi-
tions (see also Fig. 3), making it more likely that the images
used for evaluation are similar to images in the training set.

In this table, the results for training and evaluating on
the same dataset — but not the same split, as we train on the
training set and evaluate on the validation set — are high-
lighted in blue across the diagonal. These numbers repre-
sent the mIoU that can be achieved if the network has access
to labeled data from the domain that is used for evaluation.
It can be seen that, in the vast majority of cases, the best
results for each dataset are the results highlighted in blue.
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. . . seen . unseen
task  method training domains seen domains mloU ave. unseen domains mloU ave.
Dy Dy CcS BDD MAP WILD IDD KITTI

Labeled-domain-only (baseline) CS n.a. ‘ 69.8 43.2 39.8 ‘ 50.9 ‘ 32.9 43.5 49.6 ‘ 42.0

UDA ProDA [45] (& BDD, MAP | 74.4'+%0  53.8'7100 51 9t+121 60.0'° 50.9' 181 557122 61,6710 | 5617
SAC [2] CS BDD, MAP | 68.4+ ! 5141152 453119 55.001 4421718 510170 52.9 49.4
WildNet [18] w/ class balancing (& n.a. 70.6 46.11+29 56371100 5771108 44,1712 50.4 47.3¢ 47.3

DG WildNet [18] w/o class balancing CS n.a. 69.3+0 45.41+2 53.97+142 56.2153 42,3194 49.4" 51.0 47.6
RobustNet [9] w/ class balancing CS n.a. 74.6' 48 47,9147 550001038 59.17+82 3817152 50.81+7 52.81 47.2
RobustNet [9] w/o class balancing cS n.a. 70.47H06 44.41+12 5147107 5541145 3717442 48.7 49.61 100 45.1
Fully sup. training domains CS, BDD, MAP na. 7317798 60.3111T L 57810 | g3, 71128 | 53014204 5g 7T HIs2 5651400 | 55 510
Fully sup. unseen domains WILD, IDD, KITTI na. 45247240 4371405 43.81+40 442467 | qrptrias g7t 50.17+06 51.6'796
Fully sup. all domains CS, BDD, MAP, WILD, IDD, KITTI na. 70.8" 711 583711 5R.GITIV0 | 626717 | 59.117262  66.51 7250  63.311138 | 3.017210

Table 3. Quantitative comparison when labeled domain D; is homogeneous. The reported deltas (in green and red) are with respect to
the baseline (first row). The highest mloU values are highlighted as follows: bold, considering all methods; and underlined, considering

only UDA and DG methods.

validation non-diagonal

= CS | BDD | MAP | WILD | IDD | KITTI || mloU avg. g0
training mloU avg.

cs 69.8 | 432 | 398 | 32.0 | 435 | 496 165 s

BDD 51.1 | 544 | 41.0 43.3 51.8 47.2 48.1 46.9

MAP 60.1 | 54.6  55.0 | 482 | 550 | 528 54.3 54.1

WILD 564 | 514 | 493 | 565 | 56.0 | 46.0 52.8 52.0

DD 28| 421 | 387 | 372 | 689 418 B2 105

KITTI 209 | 27.2 | 24.1 | 231 | 272 | 489 30.1 26.3

Table 4. Results for fully-supervised networks trained individ-
ually on a single dataset.

This means that, when the evaluation images are dissimi-
lar from the training images, the performance drops. This
is exactly the lack of generalization that we described in
the introduction, and that the DG and UDA methods aim
to solve. Interestingly, we can also see some cases where
the blue highlighted number is not the best result. Specif-
ically, 1) training on Mapillary Vistas yields slightly bet-
ter results on BDD-100K and KITTI than training on those
datasets, and 2) training on Cityscapes also leads to bet-
ter performance on KITTI. We hypothesize that for case 1,
the Mapillary Vistas training simply yields very good re-
sults because the dataset is large and varied. For case 2, we
expect that Cityscapes images look very similar to KITTI,
meaning that the training and evaluation conditions are sim-
ilar. Moreover, Cityscapes consists of much more training
images than KITTI, further boosting the performance (see
Tab. 2). Overall, though, there is a clear lack of general-
ization that needs to be addressed, to allow for a successful
application in the wild, e.g., with UDA or DG methods.

5.2. Quantitative comparison UDA vs. DG

Overall findings. We apply the selected state-of-the-art
UDA and DG methods to our evaluation framework, as de-
scribed in Sec. 4, and report the results in Tab. 3 and Tab. 5.
Note that Tab. 3 reports the results for the setting with a
homogeneous labeled domain D;, and Tab. 5 has a hetero-
geneous labeled domain. Because we are interested in the
generalization capacity of models to unseen domains, the
unseen mloU avg. is the most relevant and important metric.
At first glance, both Tab. 3 and Tab. 5 show that ProDA [45],
a UDA method, significantly outperforms all other methods
on the unseen mloU avg., improving the baseline with an

average mloU of +14.1 and +4.7 points, respectively. Sur-
prisingly, this performance is also on par with — or even bet-
ter than — the fully-supervised baseline trained on all train-
ing domains, achieving a generalization equivalent to train-
ing a segmentation network with all the training datasets
fully labeled.

Furthermore, it is also remarkable that both UDA meth-
ods, ProDA and SAC, generalize to unseen domains more
effectively than domain generalization methods. This is
an interesting finding, because UDA methods are not de-
signed to perform well on unseen domains D,,, but rather
to perform well on seen, unlabeled domains D,,;. We ex-
pect that the good performance by UDA methods is caused
by the fact that they have access to unlabeled data, which
allows them to use techniques like feature alignment and
self-training, as mentioned in Sec. 2. In Sec. 5.3, we further
analyze the impact of leveraging portions of unlabeled data.

In Fig. 1, we show some qualitative results for the best
performing methods of the setting with the heterogeneous
training domain, to demonstrate what an increase in mloU
means in terms of actual segmentation quality. In this fig-
ure, we observe that ProDA works consistently well, regard-
less of the unseen domain, as also supported by quantitative
results.

Homogeneous vs. heterogeneous labeled domain. Al-
though most results are the same for the settings with a)
a homogeneous labeled domain and b) a heterogeneous la-
beled domain, there are also notable differences. Specif-
ically, we note that DG methods suffer a significant drop
in generalization performance when the labeled domain is
heterogeneous (Tab. 5), compared to the baseline trained on
the labeled domain only, but perform quite well when the
labeled domain is homogeneous (Tab. 3). We expect that
this is caused by the techniques employed by the DG meth-
ods. Specifically, they try focus on the style component of
a specific dataset, and try to enhance or suppress it. How-
ever, when applied to a dataset with a high statistical vari-
ability (see Fig. 3b), the style component becomes hard to
estimate, harming the learning process of these methods.
This is not the case for ProDA and SAC, as their underly-
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training domains seen domains seen unseen domains unseen
task  method mloU avg. mloU avg.
D, Do cs BDD MAP WILD IDD KITTI
Labeled-domain-only (baseline) MAP na | 60.1 54.6 550 | 566 | 48.2 55.0 52.8 | 52.0
UDA ProDA [45] MAP BDD,CS | 67.7/°7¢  58.0""%* 558707 | 60.5 %0 5487100 5751727 58.01777 56.8" 47
SAC [2] MAP BDD,CS | 614714 5731427 57.91129 | 58.91+23 48.41 101 5424708 55.01 22 5251405
WildNet [18] w/ class balancing MAP na. 56.3-5% AT TO 60.5TH00 | 54610 | 48.0402 505 41947109 | 46,8452
DG WildNet [18] w/o class balancing MAP n.a. 53.2°09 458458 56.01+10 51.6+19 4550727 50.8 4284100 46.4+-50
RobustNet [9] w/ class balancing MAP n.a. 58.1 g 50.50 11 61.57165 | 5677102 476407 52.1+%0 45,9470 48.5
RobustNet [9] w/o class balancing MAP n.a. 5350700 46.87%  56.07100 | 521010 42,640 49.8+752 444184 456"
Fully sup. training domains CS, BDD, MAP na. 73111130 0.37057 5781127 | 6377171 | 5321100 5671017 5650157 5550435
Fully sup. unseen domains WILD, IDD, KITTI n.a. 4527149 43 7109 43 8L 12 g 9128 | g7 7l 0.6 57.11+21 50.1427 51.6+"
Fully sup. all domains CS, BDD, MAP, WILD, IDD, KITTI na. 7081108 5831HST  588THET | 62.6' 700 | 59.17110-9 6.5/ 7115 63.317105 | 63.01 1110

Table 5. Quantitative comparison when labeled domain D; is heterogeneous. The reported deltas (in green and red) are with respect
to the baseline (first row). The highest mIoU values are highlighted as follows: bold, considering all methods; and underlined, considering

only UDA and DG methods.
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Figure 4. Impact of amount of labeled and unlabeled data.

Models are trained on the labeled domain D; along with portions
of the unlabeled domain D,,;, either labeled or unlabeled.

ing learning mechanisms do not involve the estimation of
any style-related components. Therefore, when the labeled
domain D is heterogeneous, we recommend using UDA or
standard supervised learning over DG methods. Moreover,
we find that the best average results by ProDA in both Tab. 5
and Tab. 3 are quite similar, even though the labeled domain
Dy is very different. This implies that it does not signifi-
cantly matter what training dataset is labeled; it seems to
be more important that the network has access to heteroge-
neous data, whether it is labeled or not.

5.3. Impact of using unlabeled data

In the previous experiments, we found that having ac-
cess to unlabeled data allows UDA methods to apply tech-
niques that boost generalization to unseen domains, and that
they can even perform on par with fully-supervised methods
trained on the same data. This shows that there is a great
benefit in just collecting and using data, without having to
annotate it. To further investigate the benefits, we study the
effect of the quantity of labeled and unlabeled data that is
used by the network. The results of this analysis can be
seen in Fig. 4. First of all, although this is not the focus of
this work, when we consider the mloU avg. on the seen do-
mains (beige bars), the figure shows that ProDA with 100%
of unlabeled data achieves roughly the same as the fully-
supervised model using 25% of labeled data. This indicates
that there is still room for improvement for methods using
unlabeled data, as there is a considerable gap. However,
in terms of generalization to unseen domains, there is no

real gap between the supervised method and ProDA. It can
be observed that most of the generalization capacity to un-
seen domains (purple bars) of the model is already achieved
with 25% of the total amount of unlabeled data. With 25%
percentage of unlabeled data, ProDA already performs very
similarly to the model trained in fully-supervised fashion
on the same images, i.e., using the labels. We even observe
that using 100% of the unlabeled data is better than using
100% of labeled data. As recording unlabeled data is inex-
pensive compared to labeling, this shows that much labeling
effort can be avoided by simply training with a UDA strat-
egy, when the purpose is generalization.

6. Conclusions

In this work, we evaluated several state-of-the-art seman-
tic segmentation training strategies in terms of their abil-
ity to generalize to data unseen during training. Whereas a
fair comparison was not possible based on literature alone,
we proposed a fair evaluation setting where normalized im-
plementations of existing domain generalization (DG) and
unsupervised domain adaptation (UDA) methods could be
assessed. From the experiments conducted with this evalu-
ation protocol, we found that UDA methods yield the best
generalization performance, and we showed that the abil-
ity to use unlabeled data plays a key role in achieving this.
Moreover, we showed that unlabeled data can be just as
powerful as labeled data when the purpose is to generalize
to unseen data. From this, we can conclude that it is highly
advisable to train semantic segmentation models that need
to work reliably and robustly in the wild with both labeled
and much unlabeled data using a UDA strategy, especially
when considering that unlabeled data is significantly easier
and cheaper to collect than labeled data.
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