
DDNeRF: Depth Distribution
Neural Radiance Fields

David Dadon, Ohad Fried, Yacov Hel-Or
School of Computer Science, Reichman University, Herzliya, Israel

david.dadon@post.idc.ac.il , ofried@idc.ac.il, toky@idc.ac.il

Abstract. In recent years, the field of implicit neural representation has
progressed significantly. Models such as neural radiance fields (NeRF)
[11], which uses relatively small neural networks, can represent high-
quality scenes and achieve state-of-the-art results for novel view syn-
thesis. Training these types of networks, however, is still computation-
ally very expensive. We present depth distribution neural radiance field
(DDNeRF), a new method that significantly increases sampling efficiency
along rays during training while achieving superior results for a given
sampling budget. DDNeRF achieves this by learning a more accurate
representation of the density distribution along rays. More specifically,
we train a coarse model to predict the internal distribution of the trans-
parency of an input volume in addition to the volume’s total density.
This finer distribution then guides the sampling procedure of the fine
model. This method allows us to use fewer samples during training while
reducing computational resources.

Keywords: NeRF, view synthesis, implicit scene representation, volume
rendering

1 Introduction

The field of implicit representation for 3D objects and scenes has been growing
rapidly in the last several years. Methods such as Occupancy Networks [9] and
DeepSDF [13] (Signed Distance Function) have achieved state-of-the-art results
in 3D reconstruction, which led to increased interest in this field. The two main
advantages of implicit representation are compactness and continuity (compared
to explicit representation methods such as meshes or voxels that are discrete and
less compact). It also enables us the 3D shape of the represented object for ev-
ery level of detail (LOD) to be extracted by increasing/decreasing the number
of samples in space. Due to their performance and accuracy, implicit methods
became very popular, adopted by many papers and various domains.
Neural Radiance Fields (NeRF) [11] use the same architecture as DeepSDF to
represent a scene as a radiance field by answering the following query: given an
(x, y, z) location and a viewing direction (φ, θ), what is the RGB color and the
density σ in this location? When rendering an image, a pixel color is evaluated
by sampling points along the ray from the center of projection (COP) that passes
through the pixel and applying a ray marching rendering technique for volume

ar
X

iv
:2

20
3.

16
62

6v
1

 [
cs

.C
V

]
 3

0
M

ar
 2

02
2

2 David Dadon, Ohad Fried, Yacov Hel-Or

rendering [14].
At the time this method was published it achieved cutting-edge results for novel
view synthesis. This led to what is called the “NeRF explosion”. In the past two
years, numerous follow-up works improved the NeRF model and extended it to
new domains. We review a few of those works briefly in the Section 2.
Nevertheless, NeRF has one major drawback: its training time and space re-
quirements. Because the quality of the model depends on the number of samples
drawn along each ray (more samples produce better models), the training pro-
cess has a trade-off between efficiency (number of samples) and output quality.
Most NeRF models use two-stage hierarchical sampling techniques. The first
stage (coarse model) samples uniformly with respect to the depth axis along the
ray and divides the ray into intervals according to these samples. The opacity (α)
and the total transparency of each interval i are used to determine the amount
of influence wi of each interval on the pixel color (see eq. (2)). The wi’s values
are normalized and interpreted as a piecewise-constant PDF (or discrete PDF)
between the intervals. The second stage (fine model) samples points according
to this PDF function. Figure 1 (a) illustrates this method.
In this paper we propose to represent the PDF of the first hierarchical sampling
stage as a combination of Gaussian distributions and we will show its advan-
tages over the piecewise-constant PDF. The input of the model is a specific
sub-section of the ray (interval), and the output is the Gaussian distribution
parameters (µ, σ) of the density influence in that interval – in addition to the
color and the total density. By using this technique, we achieve a more accu-
rate density representation along the rays, which will allow us to receive more
accurate samples in the second stage of the hierarchical sampling. Figure 1 (b)
illustrates our method. We will demonstrate and analyze its superiority over the
piecewise-constant PDF representation for a variety of domains and sampling
budgets. Our model and PDF representation are versatile and can be applied
to almost each of the existing NeRF Models. Our main contributions can be
described as follow:

1. A finer and more continuous representation of the density distribution along
the ray in NeRF based models, which leads to better results for a given
number of samples. This allows us to train the model with less computational
resources.

2. A novel distribution estimation (DE) loss, which provides an additional path
for information to flow from the fine to the coarse model and improve the
overall model performance.

2 Related Works

Implicit 3D representation: Two of the first methods to achieve very good
results for implicit representation of 3D objects were Occupancy Networks [9],
which, for a 3D point input, was trained to answer the query: “is this point inside
or outside the 3D object?” and DeepSDF [13], which was trained to answer the

DDNeRF: Depth Distribution Neural Radiance Fields 3

Fig. 1. Hierarchical sampling: The horizontal axis represents the depth axis of the
ray for a scene with max depth of 5. First, the coarse samples (blue dots) are taken;
then the density values are transformed into a PDF function (blue line). The fine model
samples (purple dots) are taken with respect to the coarse model PDF. The orange
rectangle represents points that have an influence on the pixel color (similar in both
plots). The left plot illustrates the sampling procedure in the regular model, The right
plot illustrates our scheme. Notice how when using our representation, the finer samples
are concentrated around the informative areas.

query: given an (x, y, z) location in space, what is the distance to the zero-level
surface?, where positive and negative distances represent whether the point is
located outside or inside the shape. By answering the above queries for enough
3D points in a space, combined with a variant of the marching cube algorithm,
the 3D shape of an object can be extracted. These methods became very popular
due to their good results, compactness and continuity characteristics. Additional
papers, such as Pifu [17] followed and these too tried to answer similar queries
to extract 3D shapes. More advanced implicit models, e.g., SAL [2] and SALD
[3], were developed to train directly from the row 3D data without using ground
truth (GT).

NeRF models: As described above, the NeRF [11] method uses a neural net-
work to imply implicit representation of radiance field for volumetric render-
ing. It gets an (x, y, z) location and a view direction (φ, θ), and predicts the
RGB color and the density α in this location. When this method was published,
it achieved state-of-the-art results in the task of novel view synthesis. In the
past two years, many works extended the NeRF model to additional tasks and
domains. NeRF++ [20] extends the model to unbounded-real world scenes us-
ing additional neural network for background modeling and new background
parametrization. [8] extend the model for unconstrained image collection and
[15] extend it for dynamic scenes. MipNeRF [4] addresses the model aliasing
problem with different resolution images. Many works also tried to decrease the
computational resources required during training and, especially, the amount of
inference time demanded [12] [5] [16] [7].
The connection between sampling around informative depth locations and com-
putational complexity appeared in some of the above-mentioned works. DSNeRF
[5] uses some prior depth information to improve training time and output qual-

4 David Dadon, Ohad Fried, Yacov Hel-Or

ity when training with a small number of images. NSVF [7] uses sparse voxel
fields to achieve better sampling locations. DONeRF [12] improves inference time
by using a depth oracle for sampling in informative locations. The depth oracle
is trained with GT Depth (or a trained NeRF model) to predict an accurate
location for the second stage sampling. DONeRF [12] also uses log-sampling and
space warping techniques to increase model quality on areas far from the camera.

3 Problem Definition

When looking deeper into the NeRF hierarchical sampling strategy we observed
two inherent disadvantages. The first one is that for n samples, the second pass
sampling resolution cannot be better than 1

n2 of the scene depth. In other words,
even if the first pass predicts that 100 percent of the samples of the second pass
should be placed in a single interval, because the PDF along the ray is discrete,
the finer sampling will sample this interval uniformly.
To overcome this problem we are forced to use a large number of samples during
training (a small number of samples will lead to a non-accurate depth estima-
tion). Another derivative of this problem is that for a deep or unbounded scene,
even when using a large number of samples, the model still struggles to achieve
good results and there is a trade-off between background to foreground quality
(as shown in Nerf++[20]) as a function of the sample’s depth range.
The second disadvantage we observed in the traditional NeRF sampling strategy
is that most of the samples in the first pass contribute almost nothing to the
training process because they predict zero influence from a very early stage in
the training until its end. Despite this we still need to use them because of the
first problem we mentioned. Figure 2 illustrates the inherent trade-off between
the two problems.

Fig. 2. Left plot: Limited depth resolution when using a small number of samples
(inside the green rectangle). Right plot: Many samples with zero contribution (inside
the red rectangles).

DDNeRF: Depth Distribution Neural Radiance Fields 5

4 Our Model

4.1 Preliminaries

Our model is a direct extension of NeRF [11] and MipNeRF [4]. For this reason
we will start by describing those models in more detail.

NeRF As mentioned above, NeRF receives a 5D input: (x, y, z, θ, φ), and pro-
duces a 4D output: (R,G,B, σ), where σ is the density of the input point that
translates later into opacity α (value between 0 and 1) by considering the dis-
tance δ along the ray that is affected by that σ. So, for sample i:

αi = 1− exp(−σiδi) (1)
To avoid confusion with the σ in our model that represents standard deviation,
we will omit σ in the notation from now on and refer directly to α. The influence
of each sample i on the final color prediction wi, is a combination of the total
transparency from sample i to the pixel and sample i opacity value (αi):

wi = αi ·
i−1∏
j=0

(1− αj) (2)

The NeRF architecture is composed of two identical networks (coarse and
fine) with eight fully connected (FC) layers. The input is first encoded using
positional encoding (PE) and then inserted into the network. As described in
section 1 (Introduction), the model use two-stage hierarchical sampling where
the wi’s values of the coarse model are normalized and can be interpreted as a
discrete PDF hc:

hc[i] =
wi∑n
j=0 wj

(3)

The fine model samples the second stage of the hierarchical sampling with
respect to hc. Figure 1 (a) illustrates this process. Color rendering is performed
using ray marching [14] for volumetric rendering and calculated as follow:

Ĉ(r) =
n∑
i=1

wici (4)

where Ĉ(r) is the predicted pixel color for ray r, ci is the RGB prediction for
sample i and wi is the influence that sample i has on the final RGB image. Ĉc(r)
and Ĉf (r) are the coarse and fine model color predictions. The calculations of wi
and ci are made separately for the coarse and the fine models. The loss function
is defined as:

Lnerf =
∑
r∈R

[||C(r)− Ĉf (r)||2 + ||C(r)− Ĉc(r)||2] (5)

where R is the rays batch for loss calculation and C(r) is the ground truth color.

6 David Dadon, Ohad Fried, Yacov Hel-Or

MipNeRF MipNeRF [4] is an extension of the regular NeRF model that was
suggested to handle aliasing caused when rendering images at different resolu-
tions or in different distances than the images used in the training process. In-
stead of a line, MipNeRF refers to a ray as a cone [1] with a vertex in the COP
that passes through the relevant pixel with a radius related to the pixel size. The
cone is divided into intervals (parts of the cone) along the depth axis and the
network receives the encoding of an interval as input. Each ray is divided into
n intervals bounded by n+ 1 partitions {ti} where interval i is the cone volume
bounded between partitions ti and ti+1; see Figure 3 (1). The bounded volumes
are encoded using the novel integrated positional encoding (IPE) method for
volume encoding before being passed through the network. With this new ray
representation the model can understand the entire volume that will affect the
pixel value. MipNeRF uses a single neural network for both the coarse and the
fine passes. The rest of the process is similar to the original NeRF.
In our model we also use the idea that the model predicts information regarding
the interval of a cone and not for a point on a ray.

4.2 General Description

As mentioned above, we are trying to extract additional information about the
distribution of the density along the ray from our coarse model. We will show that
a more accurate estimation of the influence distribution of the density along the
ray predicted by the coarse network will lead to better fine samples and improved
results.
To distinguish between the coarse and fine samples, we denote T c = {tci}ni=0 as
the coarse model samples and T f = {tfi }ni=0 as the fine model samples. Similar
to MipNeRF, our coarse model gets, as an input, an interval of a cone, but
in addition to the regular RGBα output, it also predicts an estimation of the
density influence distribution inside this section. More specifically, it predicts
the mean µ and s.t.d. σ of the distribution inside that interval. We assume the
distribution inside each interval is Gaussian and it does not affect or is affected
by adjacent intervals. The importance of this assumption will be explained later
in this section.
The coarse network learns to predict the distribution by trying to mimic the fine
network distribution. We assume that the fine network has a better estimation
of the density along the ray. This process will be described in more detail in
Section 4.3. The entire pipeline of our model is shown in Figure 3.

Architecture: We use the MipNeRF[4] architecture with two modifications:
(1) We use two different networks for the coarse and fine models - similar to
what was done in the original NeRF paper. (2) We change the final FC layer of
the coarse model, adding µ and σ to the predictions.

Similar to MipNeRF, we use IPE to encode the input sections before inserting
them into the network. Although we chose to use the MipNeRF model, our model
can be integrated with any variant of NeRF that uses hierarchical sampling by
changing the coarse model.

DDNeRF: Depth Distribution Neural Radiance Fields 7

Fig. 3. DDNeRF full pipeline: (1) Drawing a cone in space and splitting it into
relatively uniform intervals along the depth axis. (2) Pass these intervals through an
IPE and then through the coarse network to get predictions. (3) Render the coarse
RGB image. (4) Approximate the density distribution and include the interval’s inter-
nal distribution inside the coarse sections boundaries (red dots); then sample the fine
samples (green dots). (5) Pass these samples through an IPE and thereafter through
the fine network to get predictions. (6) Render the final RGB image and depth map.

4.3 Estimation of Density Distribution

The predicted µ and σ are limited to be in the range between 0 and 1. Those
constraint are implemented by passing the predicted values through the sigmoid
activation function. Those values are interpreted relatively to length of the in-
terval. the notation µri , σri stands for the relative mean and s.t.d. of interval i.
The transformation from the relative interpretation to the absolute location and
scale along the ray (µi, σi) is calculated as follows:

µi = tci + µri · (tci+1 − tci) (6)

σi = σri · (tci+1 − tci) (7)

These additional outputs allow us to achieve a finer distribution estimation
along the ray. That means that, in addition to the discrete PDF estimation hc
between the intervals, we also estimate the distribution inside each interval. The
total distribution along the ray is approximated as a combination of Gaussian
distributions (one Gaussian for each interval) that allows us to focus the fine
samples in a smaller area along the ray.
The PDF inside interval i is denoted as fi(t) = N (t|µi, σi) and its CDF denoted
as Fi(t) =

∫ t
−∞ fi(τ)dτ . Because we want fi to be bounded inside the interval,

we need to truncate the Gaussian to be inside the interval boundaries, normal-
ize it and define a truncated Gaussian distribution f ′. The truncated Gaussian
distribution f ′i inside interval i is defined as follows:

f ′i(t) =
1

ki
· fi(t) ; ki = Fi(ti+1)− Fi(ti) (8)

8 David Dadon, Ohad Fried, Yacov Hel-Or

The truncation procedure is illustrated in Figure 4 (a). The discrete function
hc between the intervals is calculated as is done in the regular NeRF model
(eq. (3)). The total density distribution estimated by the coarse model is a
mixture of the truncated Gaussian models when hc is used as the Gaussian
weights. This distribution is denoted as fdd. The calculation of fdd is defined in
eq. (9). The entire procedure illustrated in Figure 4.

fdd(t) = hc[i] · f ′i(t) when t ∈ [ti, ti+1] (9)

Fig. 4. (a) The PDF truncation process. The tails that exceed the section boundaries
are gray. The blue and orange curves are the PDF before (fi) and after (f ′

i), i.e.,
before and after the truncation. (b) Different interval truncated PDF distributions and
weights. Each color represents an interval. The vertical dashed lines are the interval
bounds and the horizontal lines are the intervals weights (hc). (c) The union of all
distributions into one finer distribution fdd.

The main reason we prefer the mixture of truncated Gaussians over the
regular mixture of Gaussians is that we want each Gaussian to affect only a
single interval. This property is necessary for two reasons. First, because the
model calculates each interval independently; we do not want the results of
one interval to affect others. Second, assigning each Gaussian to one specific
interval allows us to calculate the second pass samples and the additional loss
component (described below) efficiently and without requiring significant extra
time or memory.

Distribution Estimation (DE) Loss: To help the coarse network learn to
approximate the density distribution, we assume that the density distribution of
the fine network is always closer to the real density distribution. Hence we are
forcing the predicted coarse distribution to be close to the fine one.
The fine PDF function hf is a discrete function computed similarly to eq. (3)
with respect to density output α of the fine samples T f . We want to estimate hf
by using the coarse model PDF function fdd. We use ĥf to denote the estimated
hf . Because fdd is defined for every location on the ray, we can estimate ĥf using
fdd and its CDF function Fdd as follows:

DDNeRF: Depth Distribution Neural Radiance Fields 9

ĥf [i] = Pr(t′i ≤ t ≤ t′i+1) =

∫ t′i+1

t′i

fdd(t) dt = Fdd(t
′
i+1)− Fdd(t′i) (10)

We use KL divergence to measure the divergence between the two discrete
probabilities hf and ĥf . Using the KL loss naively tends to push µ and σ toward
values close to 0 or 1 and impairs the model convergence (by over-shrinking the
Gaussians or leading the model predictions to the vanishing gradient area of
the sigmoid function). To avoid these issues, we add two regularization terms
encouraging the Gaussian (before truncation) to remain in the center of the
interval, with s.t.d. large enough to avoid over-shrinking. This regularization
also keeps the model inside the effective range of the sigmoid function. The
regularization components of the loss function are

∑
i

µ2
raw and

∑
i

σ2
raw where

µraw and σraw are the model outputs values before passing through the sigmoid
function to limit the range to be between 0 to 1. The overall DE loss is defined
as:

DELoss = KL(ĥf , hf) +
1

n
· (λµ

∑
i

µ2
raw + λσ

∑
i

σ2
raw) (11)

where n is the number of coarse samples and λµ and λσ are the regularization
coefficients. We set the coefficient values to be in the range 0.01 to 0.1. The spe-
cific value depends on the number of samples along the rays (the specific value
for n samples is approximately 0.8

n).

The DELoss is added to the regular NeRF loss (eq. (5)) so the overall loss is:

L = Lnerf + λDE ·DELoss (12)

where λDE is the DELoss coefficient, set to be 0.1 in our experiments.

4.4 Sampling and Smoothing

Except for the unbounded scene case, the first sampling stage in our model is
always sampled uniformly along the ray. As in MipNerf, we use a 2-tap max
filter followed by a 2-tap blur filter for smoothing hc before sampling the second
stage. For a small number of samples (up to 16), the smoothness method became
a simple 1D blur filter with [0.1, 0.8, 0.1] values during training, which helps us
to achieve better accuracy in space (we found that this method works better
for a small samples number in most scenes). For internal interval smoothing we
defined an uncertainty factor u ≥ 1 that smooths the truncated f ′ Gaussians
inside the intervals by increasing σ: σ̂ = u · σ. This uncertainty factor is de-
creased during training toward 1 and it corresponds to our increased certainty
in the fine network depth estimation. Using this strategy also helps our model
refine the second stage sample locations throughout the entire training process,
while MipNeRF retains similar location from early stage in the training process.
Figure 5 visualizes the differences between the two sampling methods.

10 David Dadon, Ohad Fried, Yacov Hel-Or

Fig. 5. Density distribution during training. Training with eight intervals: 50k
iterations (left), 200k iterations (middle), RGB image after 200k iterations (right). The
blue line is hc and the green line is fdd. The red line is the smoothed fdd; note how the
divergence between the red and green curves has closed during training as u decreased
toward 1. The blue dots are the coarse samples. The purple dots are the fine samples
and the purple line is hf . Our model (second row) keeps refining its fine sample’s
locations, while the MipNeRF sample’s locations remain relatively similar from 50K
to 200K iterations. Our model also achieves more accurate samples and a better RGB
image than the regular model (first row).

For an unbounded scene first pass, we also tried a different sampling strategy,
of two methods. Similar to NeRF++[20], we dedicated half of the samples to
uniformly sample the volume below radius 1 from the origin (the scene center).
Outside the sphere we use the DONeRF log-sampling method [12]. The second
sampling stage remained the same. This method performed better for these
scenes. Detailed results are described in Section 5.

5 Experiments

We tested our model in three main domains: real-life forward facing scenes,
synthetic 360◦ scenes and real life 360◦ scenes. We compare the model’s perfor-
mance for different sampling budgets. We used the same number of samples for
the coarse and fine networks. Thus, the number of samples listed in the results
refers to one network. We used three different metrics when evaluating our re-
sults: structural similarity (SSIM), perceptual (LPIPS) and PSNR.
We divide our experiments into two parts. In part one, we focus on domains
in which NeRF achieved excellent results: real-life forward facing and synthetic
360◦, part two contains domains that NeRF is struggling with: real life 360◦

bounded and unbounded. All our training used a single GeForce GTX 1080.

Part 1: For the forward facing scene we chose the fern scene from the LLFF
paper [10]. We used the NDC transformation as in NeRF and MipNeRF. For

DDNeRF: Depth Distribution Neural Radiance Fields 11

the synthetic 360◦ scene we chose the LEGO scene from the NeRF [11] example
datasets. We trained each model with 200K iterations using 2048 rays per itera-
tion. To challenge the model we reduced the number of samples and repeated the
training routine several times. Each time we used different numbers of samples
along the rays – 4, 8, 16, 32. Validation was performed using the same number
of samples as in the training. We compare our results with those of MipNeRF,
which trained and validated the model results under the same conditions. Re-
sults are presented in Table 1 and in Figure 6. Our model achieved better results
in each one of the evaluation metrics for every number of samples.

Table 1. Experiment results on the LLFF fern dataset (real-world forward facing) and
synthetic 360 deg LEGO scene. We trained each model for 200k iterations. Our model
achieved better results than the regular models for every number of samples.

FERN LEGO

Samples Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
4 MipNeRF 20.20 0.521 0.606 21.64 0.733 0.281

DDNeRF 20.81 0.577 0.507 21.79 0.741 0.274
8 MipNeRF 21.6 0.614 0.477 24.64 0.813 0.184

DDNeRF 22.23 0.659 0.384 24.92 0.836 0.160
16 MipNeRF 23.37 0.707 0.327 27.83 0.888 0.092

DDNeRF 23.51 0.727 0.285 28.67 0.917 0.062
32 MipNeRF 23.85 0.740 0.279 30.38 0.932 0.045

DDNeRF 23.87 0.748 0.264 31.53 0.948 0.031

Fig. 6. Lego results: First row – MipNeRF model. Second row – our model. The
number of samples is marked at the top of each column. Our model achieves better
results for any number of samples.

12 David Dadon, Ohad Fried, Yacov Hel-Or

Another indication of the additional information our model gathers relative
to the other models is its depth estimation. We extract the depth as the mean
of the PDF along the ray, for the regular coarse model – E[hc(t)] and for our
coarse model – E[fdd(t)]. For the fine models the depth calculated as E[hf (t)].
Our coarse model produces a much better depth estimation than MipNeRF
coarse model. Figure 7 shows the qualitative results.

Fig. 7. Disparity comparisons: Comparison between MipNeRF ans DDNeRF esti-
mated disparity on the fern scene. Both models were trained and evaluated using eight
samples and without NDC warping. Notice how the depth estimation of our coarse
model is closer to the fine model’s estimation than to the MipNeRF coarse model.

Part 2: In the 360◦ domains we did not perform any space warping, excluding
scale normalization of the world coordinate such that the main part of the scene
is at a maximum distance of 1 from the origins.
For the bounded scene we created our own scene of a motorcycle inside a ware-
house. We acquired 200 snapshots from 360◦ views, where 10% of the images
were saved for validation purposes. Although its depth is bounded, restoring this
scene is not straightforward because it includes a big complex object and many
small objects with fine details. We used the COLMAP structure from motion
model [19] [18] to extract the relative orientation of the cameras. We trained
each model with 300K iterations using 2048 rays per iteration. As in the first
part of our experiment, we used a different number of samples. In this case – 32,
64, 96. Results are shown in Table 2 and Figure 8. As can seen from Table 2,
our model achieved better results in all metrics for any number of samples. More
than that, our 32 sample model achieved better results than the 96 sample Mip-
NeRF model. We can also see that our model produced more accurate depth
estimation and better RGB prediction, especially around complex shapes (see
Figure 8).

For an unbounded scene we chose the playground scene from the Tanks
and Temples dataset [6]. We compare our model with both the MipNeRF and
NeRF++ models. We trained and tested each model using 64 and 96 samples.
For NeRF++, we split the sample budget equally between the foreground and
the background models. For the 96 samples we also compared the unbounded

DDNeRF: Depth Distribution Neural Radiance Fields 13

Fig. 8. Motorcycle scene results: First row– RGB predictions. Second
row– disparity estimation from the fine model results. Our model achieves better depth
estimation and better RGB prediction. Notice the crop for how our model is able to
catch complex shapes such as the motorcycle’s off road tires and the frame and small
wheel of the tool cart.

Table 2. Experiments results for real world 360 deg scenes. “Smpl” column stands for
the number of samples in each of the networks (coarse and fine). All models were trained
for 300K iterations. The left part of the table compares DDNeRF with MipNeRF for
different numbers of samples. The right part compare alse to NeRF++ model.

Bounded scene – Motorcycle Unbounded scene – Playground

Smpl Model PSNR↑ SSIM↑ LPIPS↓ Smpl Model PSNR↑ SSIM↑ LPIPS↓
32 MipNeRF 20.36 0.533 0.532 MipNeRF 21.47 0.547 0.540

DDNeRF 20.84 0.577 0.453 64 DDNeRF 21.71 0.568 0.498
64 MipNeRF 20.7 0.554 0.502 NeRF++ 21.73 0.575 0.524

DDNeRF 21.07 0.592 0.422 MipNeRF 21.67 0.551 0.550
96 MipNeRF 20.8 0.563 0.488 96 DDNeRF 21.69 0.569 0.498

DDNeRF 21.12 0.593 0.418 NeRF++ 21.74 0.589 0.511
DDNeRF* 21.43 0.596 0.451

14 David Dadon, Ohad Fried, Yacov Hel-Or

scene sampling method that we described in Section 4.4. The model is notate
as DDNeRF* in Table 2. Our model achieved the best LPIPS and SSIM scores
from the models we tested. NeRF++ achieved a better PSNR score (see Ta-
ble 2). When looking at the output images we can see that our model achieved
better quality in the foreground and in the close background parts but struggles
with far background parts; see Figure 9

Fig. 9. DDNeRF vs NeRF++: Left image rendered using the DDNeRF* model, the
right image using NeRF++. Notice that DDNeRF works better for the large foreground
object. Two left crops: Far background – NeRF++ works better. Two middle crops:
Small foreground objects – DDNeRF works better. Two right crops: Combination of
foreground and close background – DDNeRF works better.

6 Conclusions

In this paper we introduced DDNeRF. An extension of the MipNeRF model
that produces more accurate representation of the density along the rays while
improving the sampling procedure and the overall results. We showed that our
model provides superior results on various domains and sample numbers. Our
model uses fewer computational resources and produces better results.
Our new representation of the density distribution along the ray and our novel
DE loss are general and can be adjusted to more NeRF variations.
For unbounded scenes, despite the good results we got, we believe that combin-
ing our model for foreground and close background together with the NeRF++
[20] background model will lead to better results. We leave this for future work.

Acknowledgements This work was supported by the Israeli Ministry of
Science and Technology under The National Foundation for Applied Science
(MIA), and was partially supported by the Israel Science Foundation (grant No.
1574/21).

DDNeRF: Depth Distribution Neural Radiance Fields 15

References

1. Amanatides, J.: Ray tracing with cones. SIGGRAPH Comput. Graph. 18(3),
129–135 (jan 1984). https://doi.org/10.1145/964965.808589, https://doi.org/
10.1145/964965.808589

2. Atzmon, M., Lipman, Y.: Sal: Sign agnostic learning of shapes from raw data.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2020)

3. Atzmon, M., Lipman, Y.: SALD: sign agnostic learning with derivatives. In: 9th
International Conference on Learning Representations, ICLR 2021 (2021)

4. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. ICCV (2021)

5. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised nerf: Fewer views
and faster training for free (2021)

6. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics 36(4) (2017)

7. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
NeurIPS (2020)

8. Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A.,
Duckworth, D.: NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections. In: CVPR (2021)

9. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR) (2019)

10. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi,
R., Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with prescrip-
tive sampling guidelines. ACM Transactions on Graphics (TOG) (2019)

11. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020)

12. Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J.H., Chaitanya, C.R.A.,
Kaplanyan, A.S., Steinberger, M.: DONeRF: Towards Real-Time Rendering of
Compact Neural Radiance Fields using Depth Oracle Networks. Computer Graph-
ics Forum 40(4) (2021). https://doi.org/10.1111/cgf.14340, https://doi.org/10.
1111/cgf.14340

13. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation (2019)

14. Perlin, K., Hoffert, E.M.: Hypertexture. In: Proceedings of the 16th Annual
Conference on Computer Graphics and Interactive Techniques. p. 253–262. SIG-
GRAPH ’89, Association for Computing Machinery, New York, NY, USA (1989).
https://doi.org/10.1145/74333.74359, https://doi.org/10.1145/74333.74359

15. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural radi-
ance fields for dynamic scenes. CoRR abs/2011.13961 (2020), https://arxiv.
org/abs/2011.13961

16. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radi-
ance fields with thousands of tiny mlps. CoRR abs/2103.13744 (2021), https:
//arxiv.org/abs/2103.13744

17. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu:
Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization.

https://doi.org/10.1145/964965.808589
https://doi.org/10.1145/964965.808589
https://doi.org/10.1145/964965.808589
https://doi.org/10.1111/cgf.14340
https://doi.org/10.1111/cgf.14340
https://doi.org/10.1111/cgf.14340
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/74333.74359
https://arxiv.org/abs/2011.13961
https://arxiv.org/abs/2011.13961
https://arxiv.org/abs/2103.13744
https://arxiv.org/abs/2103.13744

16 David Dadon, Ohad Fried, Yacov Hel-Or

arXiv:1905.05172 [cs] (May 2015), http://arxiv.org/abs/1905.05172, arXiv:
1905.05172

18. Schönberger, J.L., Frahm, J.M.: Structure-from-Motion Revisited. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2016)

19. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise View Selection
for Unstructured Multi-View Stereo. In: European Conference on Computer Vision
(ECCV) (2016)

20. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving
neural radiance fields. arXiv:2010.07492 (2020)

http://arxiv.org/abs/1905.05172

	DDNeRF: Depth Distribution Neural Radiance Fields

