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Abstract

Nonlinear iris texture deformations due to pupil size
variations are one of the main factors responsible for
within-class variance of genuine comparison scores in iris
recognition. In dominant approaches to iris recognition,
the size of a ring-shaped iris region is linearly scaled to a
canonical rectangle, used further in encoding and match-
ing. However, the biological complexity of the iris sphinc-
ter and dilator muscles causes the movements of iris fea-
tures to be nonlinear in a function of pupil size, and not
solely organized along radial paths. Alternatively to the
existing theoretical models based on the biomechanics of
iris musculature, in this paper we propose a novel deep
autoencoder-based model that can effectively learn com-
plex movements of iris texture features directly from the
data. The proposed model takes two inputs, (a) an ISO-
compliant near-infrared iris image with initial pupil size,
and (b) the binary mask defining the target shape of the
iris. The model makes all the necessary nonlinear defor-
mations to the iris texture to match the shape of the iris in
an image (a) with the shape provided by the target mask
(b). The identity-preservation component of the loss func-
tion helps the model in finding deformations that preserve
identity and not only the visual realism of the generated
samples. We also demonstrate two immediate applica-
tions of this model: better compensation for iris texture
deformations in iris recognition algorithms, compared to
linear models, and the creation of a generative algorithm
that can aid human forensic examiners, who may need to
compare iris images with a large difference in pupil dila-
tion. We offer the source codes and model weights avail-
able along with this paper.

1. Introduction

The human iris is a thin, circular structure present-
ing a rich and unique texture information defined by de-
tailed characteristics such as crypts, ridges, furrows, rings,
corona, freckles, and a zigzag collarette. The minute iris

patterns and textures are formed during gestation and
have relatively little influence from genes [8], making it
unique even for the identical twins, and different in our
left and right eyes. Due to its uniqueness and stability, iris
texture is one of the most reliable biometric traits widely
employed for recognition. Recent research results [23]
also suggest that iris recognition is feasible a few weeks
after death, which opened interesting additional applica-
tions to forensic identification.

One of the primary sources of within-class variance in
this biometric modality is the highly complex iris texture
deformation due to pupil size variation. Dominant ap-
proaches to iris recognition based on Daugman’s method
[7] map the iris annulus into a rectangular region of
canonical dimensions. While simple and effective, this
linear mapping does not compensate for large differences
in pupil size [11]. This is why a nonlinear mapping, mod-
eling some but not all of the possible iris texture deforma-
tion subtleties [22], was found to be a better choice.

In this paper, we propose an end-to-end deep-
learning-based model of complex iris texture deforma-
tions. We demonstrate its usefulness in iris recognition
(to match the pupil size between iris scans being com-
pared). We also propound that this method has huge po-
tential to aid in human forensic iris examination. The
model does not assume circularity of iris boundaries and
is able to process full-frame ISO-compliant [12] iris im-
ages (not only their normalized versions). In particu-
lar, we propose an autoencoder trained with identity-
preserving loss that deforms an input iris image to match
its new shape given by an input mask, as shown in Fig.
1. The proposed method is trained to appropriately cap-
ture the complex, non-linear dynamics of the iris texture
and generate iris images with dilated or constricted pupil
which can allow for better iris recognition performance.
Our model can also aid human examiners in better com-
paring iris image pairs with excessive differences in pupil
size, which was found to be one of the most difficult is-
sues for subjects comparing iris images because the large
iris texture deformations in these cases made the same
salient features across images look quite different [19].
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Figure 1: The proposed model (DeformIrisNet) deforms an input iris image (left) to match the requested shape of the
iris given by the target mask (also provided as an input), preserving the identity and improving the iris recognition com-
pared to linear normalization methods. Deformation is made in a way to mimic the authentic, very complex iris muscle
movements. Additionally, the proposed model can “inpaint” iris texture in places covered by eyelids in the input sample
(middle) and reduce selected types of noise in the input image when we do not request the change in iris size (right).
+ denotes concatenation across channels.

We also show that an intuitive approach employing com-
ponents of modern Generative Adversarial Networks may
offer results (in terms of identity preservation) that are in-
ferior to those obtained with the proposed autoencoder-
based model. The main contributions of the paper are:

1. An end-to-end, data-driven, deep learning-based
model of complex iris texture deformations;

2. An iris recognition-based identity-preserving loss
component that aims at constraining the deforma-
tions to those mimicking the authentic iris muscle
movements;

3. An iris mask loss component that maintains the
shape of the iris, which, together with the percep-
tual similarity loss can, additionally to (2), lead to
realistically-looking iris images.

We offer source codes and model weights along
with this paper at https://github.com/CVRL/
DeformIrisNet.

2. Related Works

The most commonly used method for iris normaliza-
tion is the homogeneous “rubber sheet” model proposed
by Daugman [8] which maps every pixel (x, y) of the iris
annulus in the Cartesian coordinate system into an equiv-
alent pixel in the polar coordinate system (r,θ), where
r ∈ [0,1] is the radial distance from the inner iris bound-
ary, and θ ∈ [0,2π] is the angular position. This model

converts the circular iris region into a canonical rectan-
gular image, compensating linearly for pupil size varia-
tions. Hollingsworth et al. have shown, however, that de-
spite this linear normalization, pupil dilation can degrade
iris recognition performance [11, 5].

There are relatively few advances in iris normalization
compared to iris segmentation and iris feature extraction.
Tomeo-Reyes et al. [22] addressed the problem of pupil
dilation by proposing the biomechanical model of iris
muscle deformation. They model the iris region as a thin
cylindrical shell made of orthotropic material and utilize
the biomechanics of the iris region to calculate the dis-
placements that occur during iris dilation and constric-
tion. This model can compensate for some, but not all
nonlinear movements of iris features, as it is a significant
simplification of the dynamics of the iris musculature.
Wilde et al. [25] compensated the iris deformation using
an image registration technique. The technique searches
for an optimal transformation in both space and inten-
sity that maps each point from one image to a point in the
other. Wei et al. [24] proposed an alternative non-linear
iris normalization model based on statistical learning.
The proposed iris deformation model is a combination of
linear and non-linear stretch. The linear stretch is based
on the rubber-sheet model and the non-linear stretch is
modeled using a Gaussian function with parameters ob-
tained by training. Yuan et al. developed a non-linear
iris normalization method based on the minimum-wear-
and-tear meshwork of the iris [27]. The minimum-wear-
and-tear meshwork proposed by Wyatt [26] models the

https://github.com/CVRL/DeformIrisNet
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iris as a mesh of radial and circular muscles and estimates
the deformation based on the motion of this meshwork.
Lefevre et al. proposed a “rubber sheet” model based on
fitted ellipses instead of circles [17]. More recently, Gen-
erative Adversarial Networks-based approaches have also
been experimented with to vary pupil size. However, most
of such methods suffer from the “texture sticking” prob-
lem making identity preservation difficult.

The model proposed in this paper is different from the
previous work in two ways. First, it makes neither geo-
metrical nor biological assumptions about the iris con-
striction phenomenon, nor requires providing the “pupil
size” (which is actually difficult to define due to the ir-
regular shape of the pupil). The proposed model learns
the complex iris muscle movement directly from the data.
Second, the model works directly with ISO-compliant iris
scans (i.e. 640 × 480 pixel near-infrared images), which
makes it applicable to complement any iris recognition
algorithm, including “black box” or closed commercial
matchers.

3. Database

We utilize the Warsaw-BioBase-Pupil-Dynamics v3.0
(WBPD) dataset which consists of 30-second near-
infrared iris videos with variable pupil size due to visible-
light stimuli [16]. After 15 seconds, a visible light stimulus
caused pupil contraction, which was kept for 5 seconds,
and then followed by a restorative dilation. After convert-
ing original videos to images, the dataset contains 117,117
grayscale images at a resolution of 768×576 pixels, repre-
senting 84 different eyes.

A necessary data curation step was to pair small and
large pupil images in a way that allows us to provide ap-
propriate inputs and targets to train the proposed model.
To do that, we first automatically detect the pupil and
iris radii for all the images in the dataset and find the
pupil-to-iris ratio. Previous research has shown that the
pupil-to-iris ratio generally varies between 0.2 (highly
constricted pupil) and 0.7 (highly dilated pupil) [11, 22].
We take all the images with a pupil-to-iris ratio between
0.2 and 0.7, and divide them into 5 bins of width 0.1. That
is, the first bin contains all images with pupil-to-iris ratio
between 0.2 and 0.3, the second bin contains all images
with pupil-to-iris ratio between 0.3 and 0.4, and so on. As
we are concerned with training a model for dilation, for
images in each bin we pair them with images from all the
bins with a higher pupil-to-iris ratio.

We divide the data into eye-disjoint training, valida-
tion, and test sets, with samples from 67 eyes in the train-
ing set, samples from another 6 eyes in the validation set,
and remaining samples representing 7 eyes in the test set.
This eye-disjoint split is crucial to make sure the model is
learning generic iris muscle movements, and not dynam-

ics specific to subjects present in the training dataset.

4. Proposed Method

4.1. Overview

We propose a modified U-Net autoencoder, which is
trained to construct a new image with an iris matching the
shape (including size) delivered by the image mask pro-
vided also as input. Though it is not the autoencoder ar-
chitecture that is our contribution, and rather its training
mechanism with multiple loss components, that ends up
with a possibility to learn complex iris muscle movements
to generate images that not only preserves the identity but
even helps in iris recognition. As the input mask can be of
any shape, our model can both dilate and constrict the
pupil as necessary.

Figure 2 presents an overview of the model’s training
strategy. All components of the proposed loss function
can be grouped into two functional sets: identity preser-
vation component and perceptual realism preservation
component. The next two subsections describe these two
aspects of the training in detail.
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Figure 2: Illustration of the training mechanism with all
loss components: (a) “Mask Loss” to request new shape
of the iris, (b) “Identity-Preserving Loss” for constraining
the deformations to those mimicking the authentic iris
muscle movements, hence preserving the identity infor-
mation in the generated sample, (c) “L1 Loss” to maximize
general similarity of the generated and ground-truth im-
ages, and (d) “Perceptual Loss” used to maximize percep-
tual realism of the generated samples. + denotes con-
catenation across channels.

4.2. Identity Preservation

To preserve the identity of the iris while training the
autoencoder, we define a loss that specifically focuses on
identity preservation. First, we convert the iris regions of



both the output and the target from Cartesian coordinates
to a pseudo-polar coordinate system [8]. For an image I
with iris center (xi , yi ), iris radius ri , pupil center (xp , yp )
and pupil radius rp , we can build a normalized iris image
as a function ND giving an output image O of width wD

and height hD as:
O = ND (I ) (1)

where

O(r ×hD , (θ/2π)×wD ) = I (x(r,θ), y(r,θ)) (2)

and

x(r,θ) = (1− r )× (xp + rp × cos(θ))+ r × (xi + ri × cos(θ))

y(r,θ) = (1− r )× (yp + rp × si n(θ))+ r × (yi + ri × si n(θ))

with r ∈ [0,1] and θ ∈ [0,2π]. This linear model “unrolls”
the iris region onto a rectangular region of a specified
width and height.

In the next step, we utilize the iris domain-specific
human-sources filters Fi r i s [6] that were learned using
image patches extracted from human salient regions ob-
tained from an eye-tracking device. We decided to use
this iris feature extractor due to reported best recognition
accuracy across all open-source iris matchers by a couple
of teams [4, 9]. Our identity preservation loss component
is defined as:

Li denti t y = |Fi r i s ~ND (IO)−Fi r i s ~ND (IT )| (3)

where ~ denotes the convolution operation. In words, we
convolve the filters with the output iris images IO from
the autoencoder, and target iris images IT after iris tex-
ture normalization ND , and take the mean absolute error
between these results as the identity-preserving loss.

4.3. Maintaining Realism

To match the shape of the generated iris with the
desired shape (given by the input mask), we use the
lightweight CC-Net [18] model, trained for the iris seg-
mentation task, to find the logits for both of the images,
and then minimize the absolute difference between the
logits (“Mask Loss” in Fig. 2). This construction is differ-
entiable and fast, so this enables us to use it in the au-
toencoder loss function without a significant slowdown in
training.

To ensure visual realism in the output images, we use
the Learned Perceptual Image Patch Similarity (LPIPS-
v0.1) loss (“Perceptual Loss” in Fig. 2), which matches
deep features extracted from the AlexNet backbone to en-
sure the output image is “perceptually” similar to the tar-
get image [28]. We also add the L1 norm between the gen-
erated and the ground truth samples (“L1 Loss” in Fig. 2),

which attempts to match the output and target image di-
rectly. Ideally, if we had infinite data and complex-enough
model architecture, this “L1 loss” would have been suffi-
cient to effectively train our model. Practically, however,
we need to build a mechanism into the overall training
strategy that guides the network toward salient iris fea-
tures in cases when data is limited. Note that the blurry
outputs from the model are well applicable in biometrics,
as iris recognition methods extract identity-related fea-
tures within low spatial frequencies.

4.4. Choosing a Neural Network Architecture

This section briefly summarizes a variety of experi-
ments and architectures used prior to ending up with a
successful model proposed in this paper. It may provide
cues to other researchers about which architectures have
the potential to work well in similar tasks.

Since it is currently one of the most popular off-the-
shelf generative adversarial networks (GANs), we initially
experimented with the StyleGAN3 [15] generator as a de-
coder to generate the output iris images. The genera-
tor model was trained from scratch on a subset of the
WBPD dataset at a resolution of 512 × 512 pixels. Be-
fore initiating the generator training process, the data pre-
processing included center-cropping the raw images to
a square shape (512× 512), as well as removing raw im-
ages wherein the iris was located too close to the image
boundary. Additionally, we filtered the training data to ex-
clude iris images where little to no iris was present, such
as when a subject was blinking. Left-right mirror aug-
mentation was enabled during training, which effectively
doubled the training data size. After training the gen-
erator and getting visually pleasing iris images, we took
the generator, froze its weights, and trained an encoder
to find the appropriate latent space representations that
can preserve the identity. To train this encoder, we fol-
lowed the training procedure as shown in Figure 2, how-
ever without the perceptual loss component that controls
the visual reealism, as our belief was that GAN’s generator
can already produce visually appealing results (so this loss
component would be redundant). One thing to note is
that the autoencoder architecture that resulted from this
did not contain skip connections as shown in Figure 2.

Surprisingly, this intuitive approach ended up with dis-
appointing results, which are still interesting to share as
a “negative” yet useful information. Namely, we found
that learning to find the latent space representation us-
ing an encoder in this way can neither preserve the iden-
tity nor produce visually-acceptable iris images. Finally,
we found that U-Net architectures [13] provide better re-
sults than the StyleGAN3 generator, and experimented
with different types of U-Net i.e. UNet with ResNet con-
nections, UNet with DenseNet connections, and UNet++.



We found that more complicated architectures than the
one provided in the paper produce similar results.

4.5. Architecture Details

We utilize an autoencoder architecture with skip con-
nections belonging to the family of U-Net architectures.
Most U-Net architectures are optimized for image seg-
mentation. Thus, to make U-Net “better” at generat-
ing iris images, not only segmentation results, we pro-
pose changes in the downsampling and upsampling op-
erations.

For downsampling, we replace max pooling in the orig-
inal U-Net autoencoder with a combination of strided
convolution and bilinear downsampling followed by con-
volution in parallel. In max pooling, gradients flow
through only the max point and it works well when fea-
tures are sparse. For our problem, we are looking to
capture the overall iris texture and its dynamics, hence
the information is not sparse. Our idea is that through
strided convolution, the model can learn the most im-
portant features it wants to preserve, while the downsam-
pling through interpolation would provide the model with
a view of the overall features as well.

For upsampling, we add bilinear upsampling followed
by convolution in parallel to upsampling by sub-pixel
convolution [21, 3]. Using a transposed convolution, as in
the original U-Net, has been known [20] to cause checker-
board artifacts in the produced image, especially when
the kernel size is not divisible by the stride causing un-
even overlap of the kernel while sliding over the image.
While the transposed convolution used in the original
U-Net architecture had a kernel size and stride of 2, we
found that replacing it as detailed decreases artifacts in
the produced image, and thus improves the performance
of the iris recognition applied to images generated by this
model. Figure 3 shows the overall architecture of our net-
work.

5. Applications

There are two biometric applications of the proposed
model. First, a model capable to generate ISO-compliant
iris images with varying pupil sizes, and deforming the
iris texture as the authentic eye does, should increase
the accuracy of any iris matcher by comparing images
with rectified pupil size, instead of raw iris scans. Sec-
ond, visually-realistic and identity-preserving iris images
of varying pupil sizes can increase the accuracy of human
examination in forensics. We present details of these two
applications in the following subsections.

5.1. Iris Recognition

The usefulness of the proposed model in iris recog-
nition is evaluated on the subject-disjoint test set of

322

64

128 128 128

128 64

64 3232 1

256256 256

256

512
512

conv 3x3, LeakyReLU
dense connection
downsample
upsample
conv 1x1, Tanh

In
pu

t
32

0x
24

0

16
0x

12
0

80
x6

0

40
x3

0

20
x1

5

32

64

Network Details:

O
ut

pu
t

Interpolate Strided Conv
4x4, s=2, p=1

downsample

Conv 3x3
LeakyReLU

Conv 3x3
LeakyReLU

LeakyR
eLU

C
onv 3 x3

LeakyR
eLU

C
onv 3 x3

LeakyR
eLU

C
onv 3 x3

dense connection

LeakyReLU
Conv 3x3

LeakyReLU
Conv 3x3

Interpolate

upsample

Figure 3: Details of the proposed model and its modules.
The bottom figure shows the detailed implementation of
connections pictured in the top figure. The dense con-
nections (illustrated in the bottom right picture) are ex-
plained for three filters; the same logic follows for the
other number of filters.

Warsaw-BioBase-Pupil-Dynamics v3.0 [16] (WBPD). The
example iris recognition method utilized here is based
on human-driven binary image features [6]. We com-
pare our deformation methodology with the linear ap-
proach [8] (denoted later as “Linear”) and the nonlinear
biomechanical model [22] (denoted later as “Biomech”).

As there can be a huge number of pairs if we make
all possible comparisons for the WBPD dataset, we ran-
domly select image pairs from the minimum pupil-to-iris
ratio (0.1 to 0.2) bin and maximum pupil-to-iris ratio (0.7
to 0.8) bin without replacement for each individual. We
find genuine and imposter comparison scores using these
pairs. As we are selecting the pairs randomly, we repeat
the experiment 10 times to assess the statistical signifi-
cance of the results.

Table 1: Average percentage of different iris code bits for
genuine and imposter comparisons and for various iris
texture deformation models.

Method Genuine Imposter
pairs pairs

Linear [8] 32.67 ± 0.22 43.81 ± 0.15
Biomech [22] 32.74 ± 0.21 43.78 ± 0.16
DeformIrisNet (proposed) 22.40 ± 0.11 34.02 ± 0.08

The iris recognition method used in this evaluation
provides unique binary codes for the iris textures of dif-



ferent individuals. Table 1 reports the percentage of bits
that are different for the binary codes between authen-
tic gallery images (with smaller pupil) and rectified probe
images (with the pupil size matching the size of the au-
thentic gallery samples) for all transformation methods.
As we can see from the table, the deformed pupil image
generated by DeformIrisNet has a lower number of dis-
agreeing bits between the authentic gallery and rectified
genuine probe image than in the case of other methods.
This is good and expected as it indicates that deformed
iris images are now closer, in terms of the features utilized
by the iris recognition module, to authentic images. How-
ever, we also observe a lower number of disagreeing bits
for imposter comparisons, which is not desired but likely
happens because we are deforming the two iris images
from different individuals to the same iris shape. Thus, to
evaluate the efficacy of the DeformIrisNet model in terms
of the biometric identification capabilities when used in
conjunction with an iris recognition module, we find the
genuine and imposter score distributions for all the iris
normalization methods and calculate the decidability (d ′)
defined as:

d ′ = |µg −µi |√
1
2 (σ2

g +σ2
i )

(4)

where µ and σ are the mean and standard deviation, re-
spectively, of the genuine (g ) and imposter (i ) scores. We
also calculate the Equal Error Rate (EER) for all the meth-
ods.

Table 2: Decidability score d ′ and Equal Error Rates (EER)
obtained in same-dataset subject-disjoint evaluation.

Method d ′ EER

Linear [8] 2.642 ± 0.072 0.121
Biomech [22] 2.644 ± 0.062 0.115
DeformIrisNet (proposed) 3.003 ± 0.049 0.118

As shown in Table 2, we find that using the DeformIris-
Net model a higher separation between the imposter and
genuine score distributions (larger d ′) can be achieved,
indicating that our model is able to produce rectified
iris images that can improve iris recognition results com-
pared to those obtained by linear or biomechanical-
based normalization strategies. While EER is on par
with other methods, the receiver operating characteristic
(ROC) curves shown in Figure 4 suggest that the example
iris recognition method when applied to images rectified
with the proposed nonlinear iris deformation model, ob-
tains a better recognition accuracy, measured by the Area
Under the ROC Curve.

Figure 4: ROC curve and Area Under the ROC Curve val-
ues for iris recognition with different iris texture deforma-
tion methods: Linear [8], Biomech [22], and DeformIris-
Net (proposed)

5.2. Human Examination

With iris recognition becoming the next biometric
modality in e-passports, a component of the FBI’s Next
Generation Identification (NGI) system [1], and recently
documented its usefulness for identification of deceased
subjects [23], the need for having trained (professional)
human iris examiners, who could confirm the machine’s
decision in a legally-biding manner started to emerge. For
instance, NIST has initiated a working group that meets
regularly and aims at designing a training curriculum for
human iris image examiners who might be called upon to
give testimony in court [2].
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texture mapping

Human Examination

DeformIrisNet
Small Pupil

Image
Large Pupil

Image
Large Pupil

Image

Generated
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Figure 5: Comparing iris images with the same pupil size
is much easier for human examiners than samples with
an excessive difference in pupil size. DeformIrisNet can
be used to rectify the size of the iris annulus, applying cor-
rect, learned from the data nonlinear warping of iris tex-
ture.
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Figure 6: Iris images generated by DeformIrisNet from a single iris sample (left), given the target masks (top) that can
be used in human examination of iris image pairs, making the process easier for forensic examiners when examined iris
scans with varying pupil size.
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Figure 7: Same as in Fig. 6, except that illustrating generative process from multiple images of varying pupil size into a
single iris image with canonical pupil size.

The proposed deformation model may become a use-
ful part of the human examination toolbox. As demon-
strated in the literature [19] and illustrated in Figure 5,
human examiners may have a tough time comparing iris
images from the same individual with an excessive differ-
ence in pupil size in both samples. Our iris deformation
model allows us to generate iris images with varying pupil
sizes from a still iris image. That is, the human exam-
iner, by rotating a virtual “knob”, can generate an infinite
number of samples preserving the identity and showing
the iris at various levels of constriction to match the de-
sired pupil size. The project GitHub repository1 includes
a video showing an example output of this process, illus-
trated also in Fig. 6. Such a tool should significantly in-
crease the chances of correctly matching iris samples un-
der human examination, and to our knowledge has never
been proposed before.

Figure 7 additionally shows the result of running mul-
tiple iris images with different pupil sizes through De-
formIrisNet and requesting the same pupil size for all
samples. An interesting observation here is that the

1https://github.com/CVRL/DeformIrisNet

smaller the change in the pupil is, the sharper and closer
the output image is to the input image. This should be the
case because the smaller the difference in the pupil size,
the “lesser” the work that our model needs to do to de-
form the iris image and match the input pupil mask. For
human iris examination (which is not the focus of this pa-
per), sharper images (showing more fine-grained iris tex-
ture) would be more desirable. However, to quantitatively
assess this statement, human examination experiments,
in which subjects compare iris images with and without
proposed normalization, are needed.

6. Iris Inpainting and Noise Reduction

Apart from two core applications driven by actual and
timely needs in the iris recognition community, the pro-
posed model can be also used for “painting” realistically-
looking iris NIR images given an arbitrary iris mask. Also,
it can be applied as an iris domain-specific noise reduc-
tion tool. However, these are “by-products” of our model
and our training mechanism did not optimize the model
for either of these tasks. This subsection discusses these
observations.

https://github.com/CVRL/DeformIrisNet


In the training dataset we utilized, there are iris images
with partially closed eyelids when the subject was blink-
ing. Interestingly, seeing such examples during train-
ing, the model learned how to “open” or “close” the eye-
lids given the mask suggesting such situations. Figure 8
shows what happens when we take an iris image and run
it through the model together with masks for partially
closed-eye images. We see that the network effectively
learned to close the eyelid while preserving the iris texture
for the visible region.

DeformIrisNet

Output Iris
Images

Target Masks

Input Iris
Image

Figure 8: Generating partially closed eye images from an
open eye image given the segmentation mask.

Figure 9 shows what happens when we take an iris im-
age with partially closed eyelids and run it through the
model with a target mask suggesting a fully opened eye.
Interestingly, if a significant portion of the iris texture is
visible, the rest of the iris texture is being “dreamed” up
by the network in a way to make it similar to the actual
iris texture, but – certainly – without any guarantee that
the generated texture represents a given identity, hence
having limited application in biometric recognition.

Finally, Figure 10 demonstrates how the trained De-
formIrisNet can partially de-noise iris images by feeding it
with a noisy iris image and actual segmentation mask for
that image (so no changes in iris texture are requested).
While it is not perceived as a main application of the
trained model, we found it an interesting by-product for
the model that “understands” the complex deformations
of the iris texture. We believe training specifically for this
“denoising” task can provide interesting results [10, 14].

7. Conclusions

This paper proposes an end-to-end, fully data-driven
autoencoder-based approach to mimic complex defor-
mations of the iris texture while preserving the identity
information of an individual whose iris image is being
processed. Our method aims to mitigate the degradation
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DeformIrisNet
Target
Mask

Output Iris ImagesTarget Iris Images

Figure 9: Generating an open-eye image from a partially-
closed-eye image given the segmentation mask.
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Figure 10: An example of what happens when we run a
noisy version of the image through the network.

in performance that occurs in iris recognition modules
due to changes in pupil size by filling the gap between
the accuracy observed for comparing irises with same-
size and different-size pupils. We demonstrated its poten-
tial usefulness in iris recognition and propound its useful-
ness in forensic human examination, since matching the
iris images with identical pupil size should make it easier
for human examiners to compare and match iris scans.
Since the rectified iris images are compliant with ISO re-
quirements, they can be used with any iris recognition
methods, including black-box / closed-source commer-
cial solutions. In addition, we presented the in-painting
and noise reduction capabilities of the proposed model.
Source codes and model weights are offered along with
the paper for full reproducibility.
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