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Abstract

Image-sentence retrieval has attracted extensive re-
search attention in multimedia and computer vision due to
its promising application. The key issue lies in jointly learn-
ing the visual and textual representation to accurately esti-
mate their similarity. To this end, the mainstream schema
adopts an object-word based attention to calculate their rel-
evance scores and refine their interactive representations
with the attention features, which, however, neglects the
context of the object representation on the inter-object rela-
tionship that matches the predicates in sentences. In this pa-
per, we propose a Cross-modal Semantic Enhanced Interac-
tion method, termed CMSEI for image-sentence retrieval,
which correlates the intra- and inter-modal semantics be-
tween objects and words. In particular, we first design the
intra-modal spatial and semantic graphs based reasoning
to enhance the semantic representations of objects guided
by the explicit relationships of the objects’ spatial posi-
tions and their scene graph. Then the visual and textual
semantic representations are refined jointly via the inter-
modal interactive attention and the cross-modal alignment.
To correlate the context of objects with the textual context,
we further refine the visual semantic representation via the
cross-level object-sentence and word-image based interac-
tive attention. Experimental results on seven standard eval-
uation metrics show that the proposed CMSEI outperforms
the state-of-the-art and the alternative approaches on MS-
COCO and Flickr30K benchmarks.

1. Introduction
Image-sentence retrieval aims at retrieving the most rel-

evant images (or sentences) given a query sentence (or im-
age), which involves the cross-over study on computer vi-
sion and neural language processing [11, 37, 9, 20, 2]. Due
to its broad applications, such as multimedia analysis, mul-
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Figure 1. Illustration of two cross-modal semantic interaction
schemas (only show image-to-sentence retrieval for clarity). (a)
traditional schema: the correlated objects (e.g. man and glass) are
hardly attended to their common word (e.g. wear) with high rel-
evance score (thick arrow), (b) our CMSEI method: the relation-
ships between the correlated objects are integrated into the region
features of these objects, whose common word is with high rele-
vance score. Note that the semantic relationships are detected via
scene graph and judged by whether there is a predicted label (e.g.
wear) with high confidence.

timedia search, album management, and medical image re-
trieval, image-sentence retrieval has aroused the widespread
research attention. The key issue of image-sentence re-
trieval lies in jointly learning the visual and textual repre-
sentations to guarantee their similarity between the matched
image and sentence.

To this end, existing works mainly adopt two schemas to
learn the visual and textual representations, i.e. modality-
independent representation learning [11, 17, 37, 9, 49,
40, 12, 4, 5] and the cross-modal semantic interaction
[20, 13, 24, 31, 47, 26] Specially, on one hand, the modal-
independent representation learning has been widely stud-
ied due to its high retrieval efficiency. For instance,
[11, 37, 9, 49] optimized a joint embedding space by mini-
mizing the distance of the visual and textual global features,
which are directly extracted from the whole image and the



full sentence via Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) respectively. Sev-
eral recent works [13, 4, 5] extracted the visual and textual
local features from object regions and words and integrated
them as a whole respectively before projecting these two
features into a common latent space. However, due to the
lack of the deep semantic correlation on the fine-grained
fragments, these methods are limited on the retrieval accu-
racy.

On the other hand, cross-modal semantic interaction is
proposed to boost the retrieval performance by learning
the accurate visual-textual semantic relevance between the
fragments of image and sentence [20, 13, 24, 31, 47], as
shown in Figure 1 (a). For instance, SCAN [20] attended
object regions to each word to generate the text-aware visual
features for sentence-to-image matching and conversely for
image-to-sentence matching. Although achieving the sig-
nificant improvement, these methods neglects the fact that
little inter-object relationships are reflected in the object
representations compared to the strong context of the tex-
tual structure, which leads to a feeble role of visual semantic
during image-sentence matching.

To deal with the above problem, it’s intuitive to put for-
ward two straightforward solutions to cooperate visual se-
mantic representation with the inter-object relationship. On
one hand, the object region features can be concatenated
with the feature of the inter-object relationship detected by
an off-the-shelf detector [43, 41, 35, 1]. However, such
method has three defects that affect the retrieval perfor-
mance: (i) it’s hard to keep a structured correlation among
the objects and their relationships in a multi-layer network
without continuous correlation guidance; (ii) the detected
relationship labels, trained on different dataset, bring about
the extra recognition error; and (iii) it’s not an end-to-end
framework. On the other hand, the inter-object relationships
can be utilized for object representation enhancement via
the graph-based modeling. The representative solutions are
in two folds. First, following [38, 29], the relationships are
detected guided by the scene graph and their label-based
features are aggregated with the object region features to
feed the Graph Convolution Networks (GCNs). However,
such methods still suffer from the aforementioned (ii) and
(iii) as revealed in [26]. Second, following [8, 5], the re-
lationships are implicitly reflected via the fully-connected
GCNs where the object region features are input as graph
nodes, nevertheless, leaving the relationship information
weak and ambiguous that effects the object discrimination.
Therefore, it’s natural for us to consider an integrated struc-
tured modeling that captures the explicit information of the
inter-object relationships to enhance the object representa-
tion. As manifested in Figure 1 (b), by explicitly construct-
ing the inter-object relationship, it’s easier compared to 1 (a)
for the correlated object (e.g. regions of head and glasses)

to obtain the high relevance with the correlated predicate
words (e.g. word wear).

Driven by the above consideration, we propose a novel
cross-modal semantic enhanced interaction method for
image-sentence retrieval, termed CMSEI, which correlates
the intra- and inter-modal semantics between objects and
words. For the intra-modal semantic correlation, the inter-
object relationships are explicitly reflected on the spa-
tially relative positions and the scene graph guided poten-
tial semantic relationships among the object regions. We
then propose a relationship-aware GCNs model (termed R-
GCNs) to enhance the object region representations with
their relationships, where the graph nodes are object re-
gion features and the graph structures are determined by the
inter-object relationships, i.e. each edge connection in the
graph adjacency matrices rely on whether there is a relation-
ship with high confidence. Different from [38, 29], intra-
modal semantic correlation in CMSEI minimizes the error
interference from the detection and maximizes the feasibil-
ity of the end-to-end representation learning. For the inter-
modal semantic correlation, the semantic enhanced repre-
sentations of words that undergo a fully-connected GCNs
model, as well as the semantic enhanced representations of
object regions are attended alternatively in the inter-modal
interactive attention, where the object region features are at-
tended to each word to refine its feature and conversely the
word feature are attended to each object region to refine its
feature. To correlate the context of objects with textual con-
text, we further refine the representations of object regions
and words via cross-level object-sentence and word-image
based interactive attention. The intra-modal semantic corre-
lation, inter-modal semantic correlation, and the similarity-
based cross-modal alignment are jointly executed to further
enhance the cross-modal semantic interaction.

The contributions of this paper are as follows: (1) We ex-
plore an intra-modal semantic enhanced correlation to ex-
plicitly utilize the inter-object spatially relative positions
and inter-object semantic relationships guided by scene
graph, and propose a relationship-aware GCNs model (R-
GCNs) to enhance the object region features with their rela-
tionships. This module mitigates the error interference from
the detection and enables the end-to-end representation
learning. (2) We propose a cross-modal semantic enhanced
interaction method (CMSEI) to unite the intra-modal se-
mantic correlation, inter-modal semantic correlation, and
the similarity-based cross-modal alignment to simultane-
ously model the semantic correlations on three grain levels,
i.e. intra-fragment, inter-fragment, inter-instance. Espe-
cially, cross-level interactive attention is proposed to model
the correlations between the fragments and the instance.
(3) The proposed CMSEI is sufficiently evaluated with ex-
tensive experiments on MS-COCO and Flickr30K bench-
marks. The results in seven standard evaluation metrics



demonstrate the superiority of the proposed CMSEI, where
CMSEI achieves the state-of-the-art on the most of metrics.

2. Related Work

The key issue of the image-sentence retrieval is mea-
suring the visual-textual similarity between an image and a
sentence. It can be divided into two main kinds: modality-
independent representation retrieval and cross-modal inter-
action retrieval. CMSEI belongs to the latter one.
Modality-independent representation retrieval. Most
earlier works [11, 19, 27, 10, 34, 37, 36] used independent
processing of images and sentences within two branches to
obtain a holistic representation of images and sentences.
Some works [11, 19, 37, 50] directly extracted the fea-
tures of two modalities from the whole image via CNNs
and from the full sentence via RNNs. Inspired by the de-
tection of object regions, many studies [17, 16] started to
use the pre-extracted salient object region features to repre-
sent images. And fine-grained region-level image features
and word-level text features are constructed and aligned
within the modalities, respectively. For instance, DVSA
in [16] first adopted R-CNN to detect salient objects and
inferred latent alignments between word-level textual fea-
tures in sentences and region-level visual features in im-
ages. Furthermore, to take full advantages of high-level ob-
jects and words semantic information, many recent methods
[28, 42, 12, 8, 22] exploited the relationships between the
objects and words to help the global embedding of images
and sentences, respectively. For instance, [21, 22] proposed
to incorporate the semantic relationship information into vi-
sual and textual features by performing object or word rela-
tionship reasoning by GCNs.
Cross-modal interaction retrieval. Another popular re-
trieval schemes exploit the fine-grained cross-modal inter-
actions [28, 20, 15, 30, 48, 3, 31] to improve the visual-
textual semantic alignments. For instance, [31] proposed
a method for modeling complex dynamic modal interac-
tions based on a three-layer structure with four basic cells
per layer. Recently, some works [21, 44, 25, 38, 26] em-
ployed GCNs to improve the interaction and integrate dif-
ferent item representations by a learned graph. Liu et al.
[25] proposed to learn correspondence of objects and rela-
tions between modalities by two different visual and textual
reasoning graphs, which is difficult to unify the two modal
structures for precise pairing. Long et al. [26] also pro-
posed two-modal graphs to help the interactions between
modalities, however, the post-interaction concatenation did
not substantially improve interactions and additionally in-
troduced word label noise from the scene graph. And some
works [38, 29, 26] also encoded the word labels from the
detected visual scene graphs causing ambiguity, due to the
effect of cross-domain training.

3. Approach
Figure 2 shows the overall pipeline of our proposed CM-

SEI for image-sentence retrieval. In this section, we will
describe the detailed structure of CMSEI.

3.1. Multi-modal Feature Representations

Visual representations. To better represent the salient ob-
jects and attributes in images, we take advantage of bottom-
up-attention model [1] to extract top-K saliently sub-region
features Î = {Ij}, Ij ∈ R2048, based on the category confi-
dence score in an image. Afterward, a fully connected (FC)
layer with the parameter W o ∈ R2048×Dv is used to project
these feature vectors into a Dv-dimensional space. Finally,
these projected object region features V = {v1, · · · , vK},
vj ∈ RDv , are taken as initial visual representations without
semantic enhancement.
Textual representations. For sentence texts, we follow the
recent trends in the community of Natural Language Pro-
cessing and utilize pre-trained BERT [7] model to extract
word-level textual representations. Similar to visual fea-
tures processing, we also utilize FC layers to project the ex-
tracted word features into a Dt-dimensional space, denoted
as T = [t1, t2, · · · , tN ], tj ∈ RDt , with length N .

To facilitate cross-modal interaction and embedding
space consistency, the projected dimensions are same
(Dv=Dt) for visual and textual representations. For sub-
sequent local-global (image-word/sentence-object) inter-
modal interaction and final cross-modal similarity calcula-
tion, we use average-pooling operation to obtain the global
image feature V̄ for sentence-to-image and the global sen-
tence feature T̄ for image-to-sentence.

3.2. Intra-modal Relationship Enhancement

Explicit visual spatial graph. Since features from the top-
K candidate object regions are used for representing the im-
age information, this leads to some regions with semantic
overlap but with minor positional bias. In addition, study
[5] indicated that the regions with larger Intersection over
Union (IoU) as potentially more closely. To this end, fol-
lowing [5], we also construct explicit spatial non-fully con-
nected graph Gs = (V,Es) for each image. The semantic
similarities and spatial IoUs between sub-regions are com-
bined to represent the adjacency matrix As ∈ RK×K as
edges for spatial graphs. In particular, if the IoUij of the
i-th region and the j-th region exceeds the threshold µ, the
semantic similarity between them is treated as a weighted
edge As

ij , otherwise it is 0. The pairwise semantic similar-
ity is updated and calculated between regions as: Sims =
(W v

φV )T (W v
ϕV ) (W v

φ and WV
ϕ denote the mapping param-

eters). For simplicity, we do not explicitly represent the bias
term in our paper.
Explicit visual semantic relationship graph. Different
from existing approaches [21, 5] based on implicit relation-
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Figure 2. The overall framework (image-to-sentence version) of CMSEI. In intra-modal semantic correlation (①), two relationship-
aware GCNs are constructed to respectively integrate the explicit spatial and semantic relationships between each two objects into their
region representations by changing the relationship-determined graph adjacency matrices. In ②, a pre-trained BERT model is used to
obtain high-level semantic embedding features of words, which are then fed to GCNs to enhance them with the context. In inter-modal
semantic correlation (③ and ④), the visual and textual semantic features are further enhanced via object-word interactive attention and the
visual semantic representation is refined via the cross-level object-sentence and word-image based interactive attention. Visual and textual
semantic similarity is finally estimated for the cross-modal alignment.

ship graph reasoning, scene graphs have well-defined ob-
ject relationships, which can overcome the disadvantage of
fusing redundant information. Unlike approaches [38, 26]
based on scene-graph enhancement, we do not encode the
word labels predicted by the pre-trained visual scene-graph
generator, like [46]. We consider word labels from vi-
sual scene graphs of external models have errors and se-
mantically different from the words in the corresponding
sentences. This tends to introduce noise that corrupts the
cross-modal semantic alignment. In this paper, we con-
struct a non-fully connected semantic relationship graph
Gv = (V s, Ev) between the spatially enhanced objects of
each image based on the explicit relationships of the visual
scene graphs. In each relationship graph Gv , the nodes in-
dicate the object features V s updated from spatial graph Gs

and the edges indicate the existence of semantic associa-
tions, as in Figure 1 (b). Here, we construct an adjacency
matrix Av ∈ RK×K to represent these edges for each im-
age, where Av

ij=1 means i-th object is associated with j-th
object in the semantic relations extracted by a pre-trained
visual scene-graph generator and 0 otherwise. Unlike the
spatial graph, since the regions in the scene graph are al-
ready strongly correlated, we no longer exploit their seman-
tic similarity.
Visual Feature Embedding. The currently popular Graph
Convolutional Networks (GCNS) [21] with residuals are
used to obtain the final object region features V f , en-
hanced by updating and embedding of spatial and seman-
tic relationship graphs, named relationship-aware GCNs (R-
GCNs), as shown in Figure 2 ①. Formally,

V s = (AsVW s
g )Wr1 + V, (1)

V f = ((AvVW v
g )Wr2 + V s)Wr3 + V, (2)

where W ∗
g ∈ RDv×Dv are the weight matrix of the GCN

layer, Wr∗ are the residual weights.
Implicit textual graph building and embedding. In con-
trast to the approaches [38, 29, 5, 26] of explicitly model-
ing inter-word dependencies, we construct a fully connected
graph for each sentence, where the semantic features T of
the words serve as nodes and the semantic similarities At

between words serve as edges. We argue that explicit mod-
eling of sentences tends to focus only on the words of object
and relation and loses the benefit of many attribute descrip-
tions. Similar to the visual enhancement process, as shown
in Figure 2 ②, we apply GCNs [21, 22] with residuals to
reason and get the final textual representations T f with the
relationship enhanced, as follows:

At = (W t
φT )

T (W t
ϕT ), (3)

T f = (AtTW t
g)Wrt + T, (4)

where W t
φ and W t

ϕ denote the mapping parameters, Wrt is
the residual weights, W t

g is the weight matrix of the GCN
layer.

3.3. Inter-modal Interactions

After image objects and sentence words are reinforced
with semantic relationships within a modality, we apply two
mainstream inter-modal interaction mechanisms to further
enhance the feature representation of the target modality
with attention-ware information from another modality.
Local-local inter-modal interaction. Similar to literature
[20, 31], we mine attentions between image objects and
sentence words to narrow the semantic gap between two
modalities. As shown in Figure 2 ③, taking the image-to-
sentence example (Due to space limitations and a clearer
presentation), we first calculate the cosine similarities for
all object-word pairs and calculate the attention weights by



a per-dimension λ-smoothed Softmax function [6], as fol-
lows:

cij =
(vfi )

T tfj

||vfi || ||t
f
j ||

, i ∈ [1,K], j ∈ [1, N ], (5)

αij =
exp(λcij)∑N
j=1 exp(λcij)

, (6)

Finally, we obtain the attended object representation vti ∈
V t via a conditional fusion strategy [31] from correspon-
dence attention-aware textual vector qti (qti=

∑N
j=1 αijt

f ),
as follows,

vti = ReLU(W t
1(v

f
i ⊙ Tanh(W t

2q
t
i) +W t

3q
t
i)) + vfi , (7)

where W t
∗ are the mapping parameters, ReLU and Tanh

are activation functions. To fully explore fine-grained cross-
modal interactions, we perform the above process twice.
Local-global inter-modal interaction. As shown in Figure
2 ④, we further discover the salience of the fragments in one
modality guided by the global contextual information of the
other modality, which makes each fragment contains more
contextual features. Specifically, for image-to-sentence, we
first calculate the semantic similarity between the objects
of image V t = {vt1, · · · , vtK} and global textual feature T̄ .
Then, we can obtain the relative importance of each object
via a sigmoid function. Finally, we add residual connec-
tions between the attention-aware object features and the
enhanced object features V t, as well as the original features
V . The above process can be formulated as:

ri = σ(W rvti ⊙ T̄ ), (8)

voi = riv
t
i + vti +ReLU(vi), (9)

where W r denotes the mapping parameter. Similarly, for
sentence-to-image, we enhance the word features via cal-
culating the relative importance of each word between the
words of the sentence and the global image feature V̄ .

To obtain the final match score between image and sen-
tence, we average and normalise the final object features of
the image and calculate the cosine similarity with the global
sentence features.

3.4. Objective Function

In the above training process, all the parameters can
be simultaneously optimized by minimizing a bidirectional
triplet ranking loss [9], when aligning the image and sen-
tence as follows:

Lrank(I, T ) =
∑
(I,T̂ )

[∇− cos(I, T ) + cos(I, T̂ )]+

+
∑
(Î,T )

[∇− cos(I, T ) + cos(Î , T )]+
(10)

where ∇ serves as a margin constraint, cos(·, ·) indicates
cosine similarity function, and [·]+ = max(0, ·). Note that,

(I, S) denotes the given matched image-sentence pair and
its corresponding negative samples are denoted as Î and Ŝ,
respectively.

4. Experiments
In this section, we report the results of our experiments to

evaluate the proposed approach, CMSEI. We will introduce
the dataset and experimental settings first. Then, CMSEI
is compared with state-of-the-art image-sentence retrieval
approaches quantitatively. Finally, we qualitatively analyze
the results in detail.

4.1. Dataset and Evaluation Metrics

Dataset. We evaluate our proposed approach on the MS-
COCO [23] and Flickr30k [45] datasets, which are the most
popular benchmark datasets for image-sentence retrieval
task. There are over 123,000 images in MS-COCO. Follow-
ing the splits of most existing methods [39, 26, 22, 4, 31],
there are 113,287 images for training, 5,000 images for val-
idation and 5000 images for testing. On MS-COCO, we re-
port results on both 5-folder 1K and full 5K test sets, which
are the average results of 5 folds of 1K test images and the
results of full 5K test set, respectively. Flickr30K contains
over 31,000 images with 29, 000 images for the training,
1,000 images for the testing, and 1,014 images for the val-
idation. Each image in these two benchmarks is given five
corresponding sentences by different AMT workers.
Evaluation metrics. Following the standard evaluation
protocol, we employ the widely-used recall metric, R@K
(K=1,5,10) evaluation metric, which denotes the percentage
of ground-truth being matched at top K results, respectively.
Moreover, we report the “rSum” criterion that sums up all
six recall rates of R@K, which provides a more comprehen-
sive evaluation to testify the overall performance.

4.2. Implementation Details

Our model is trained on a single TITAN RTX GPU with
24 GB memory. The whole network except the Faster-
RCNN model [32] is trained from scratch with the default
initializer of PyTorch using ADAM optimizer [18] a mini-
batch size 64. The learning rate is set to 0.0002 initially
with a decay rate of 0.1 every 15 epochs. Maximum epoch
number is set to 30. The margin of triplet ranking loss ∇
is set to 0.2. The threshold µ is set to 0.4. For the visual
object features, Top-K (K=36) object regions are selected
with the highest class detection confidence scores. The vi-
sual scene graphs are generated by Neural Motifs [46], and
we use the maximum IoU to find the corresponding regions
in the original Top-K salient regions. The initial dimensions
of visual and textual embedding space are set to 2048 and
768 respectively, which are transformed to the same 1024-
dimensional (i.e., Dv= Ds=1024). The most dimensions of
mapping parameters are set to 1024-dimensional.



Table 1. Comparisons of experimental results on MS-COCO 5-folds 1K test set and full 5K test set.

Method
Sentence Retrieval Image Retrieval

rSum
R@1 R@5 R@10 R@1 R@5 R@10

5-folds 1K
SCAN∗

ECCV′18 [20] 72.7 94.8 98.4 58.8 88.4 94.8 507.9
VSRN∗

ICCV′19 [21] 76.2 94.8 98.2 62.8 89.7 95.1 516.8
IMRAM∗

CVPR′20 [3] 76.7 95.6 98.5 61.7 89.1 95.0 516.6
CAANCVPR′20 [48] 75.5 95.4 98.5 61.3 89.7 95.2 515.6
GSMN∗

CVPR′20 [25] 78.4 96.4 98.6 63.3 90.1 95.7 522.5
CAMERA∗

ACMMM′20 [30] 78.0 95.1 97.9 60.3 85.9 91.7 508.9
SGRAF∗

AAAI′21 [8] 79.6 96.2 98.5 63.2 90.7 96.1 524.3
VSE∞CVPR′21 [4] 79.7 96.4 98.9 64.8 91.4 96.3 527.5
DIME∗

SIGIR′21 [31] 78.8 96.3 98.7 64.8 91.5 96.5 526.6
CGMN∗

TOMM′22 [5] 76.8 95.4 98.3 63.8 90.7 95.7 520.7
VSRN++∗

TPAMI′22 [22] 77.9 96.0 98.5 64.1 91.0 96.1 523.6
GraDual∗WACV′22 [26] 77.0 96.4 98.6 65.3 91.9 96.4 525.6
NAAF∗

CVPR′22 [47] 80.5 96.5 98.8 64.1 90.7 96.5 527.2
CMSEI∗ (ours) 81.4 96.6 98.8 65.8 91.8 96.8 531.1

Full 5K
VSE++BMVC′18 [9] 41.3 69.2 81.2 30.3 59.1 72.4 353.5
SCAN∗

ECCV′18 [20] 50.4 82.2 90.0 38.6 69.3 80.4 410.9
VSRN∗

ICCV′19 [21] 53.0 81.1 89.4 40.5 70.6 81.1 415.7
IMRAM∗

CVPR′20 [3] 53.7 83.2 91.0 39.7 69.1 79.8 416.5
CAANCVPR′020 [48] 52.5 83.3 90.9 41.2 70.3 82.9 421.1

CAMERA∗
ACMMM′20 [30] 55.1 82.9 91.2 40.5 71.7 82.5 423.9

VSE∞CVPR′21 [4] 58.3 85.3 92.3 42.4 72.7 83.2 434.3
DIMESIGIR′21 [31] 59.3 85.4 91.9 43.1 73.0 83.1 435.8
CGMN∗

TOMM′22 [5] 53.4 81.3 89.6 41.2 71.9 82.4 419.8
VSRN++∗

TPAMI′22 [22] 54.7 82.9 90.9 42.0 72.2 82.7 425.4
NAAF∗

CVPR′22 [47] 58.9 85.2 92.0 42.5 70.9 81.4 430.9
CMSEI∗ (ours) 61.5 86.3 92.7 44.0 73.4 83.4 441.2

4.3. Comparison with State-of-the-art Methods

Baseline and state-of-the-arts. We compare our proposed
CMSEI with several image-sentence retrieval methods on
the MS-COCO and Flickr30K datasets in Table 1 and Ta-
ble 2, including (1) the global matching methods, i.e.,
VSE++ [9], SGRAF [8], VSE∞ [4] (the reported version
with same object inputs), and (2) the attention-based cross-
modal interaction methods, i.e., SCAN∗ [20], CAAN [48],
IMRAM∗ [3], DIME [31] etc., and (3) the graph-based re-
trieval methods, i.e., VSRN [21], CGMN [5] and GraDual
[26], and (4) latest state-of-the-art methods, i.e., DIME [31],
NAAF[47], etc. Note that, the ensemble models with “*”
are further improved due to the complementarity between
multiple models. For fair comparison, we also provide the
ensemble results, which are averaged similarity scores of
image-text model and text-image model. And the results of
each single model are provided in Table 3.
Quantitative comparison on MS-COCO. Table 1 lists the
experimental results on two kinds of MS-COCO test sets,
5-folds 1K (at the top) and full 5K (at the bottom). Specif-
ically, compared with the state-of-the-art model NAAF
[47] on MS-COCO 1K test set, our CMSEI achieves 0.9%

and 1.7% improvements in terms of R@1 on both image
and sentence retrieval, respectively. Compared with the
best cross-modal interaction method DIME [31], CMSEI
achieves 2.6% and 1.0% improvements in terms of R@1
on image and sentence retrieval, respectively. And CMSEI
clearly outperforms the methods GraDual [26] and CGMN
[5], which also employ graph networks, by 5.5% and 10.4%
in terms of rSum, respectively.

Furthermore, on the larger image-sentence retrieval test
data (MS-COCO Full 5K test set), including 5000 images
and 25000 sentences, CMSEI outperforms recent methods
with a large gap. Following the common protocol [31, 47],
CMSEI achieves 5.3%, 15.8%, and 10.3% improvements
in terms of rSum compared with the latest state-of-the-arts
DIME [31], VSRN++ [22] and NAAF [47], respectively. It
clearly demonstrates the powerful effectiveness of the pro-
posed CMSEI model with the huge improvements.

Quantitative comparison on Flickr30K. Quantitative re-
sults on Flickr30K 1K test set are shown in Table 2, where
the proposed approach CMSEI outperforms all state-of-the-
art methods in terms of rSum. Though for individual re-
call metrics, we see variations in performance, however, the



Table 2. Comparisons of experimental results on Flickr30K 1K test set. ’∗’ indicates the performance of an ensemble model.

Method
Sentence Retrieval Image Retrieval

rSum
R@1 R@5 R@10 R@1 R@5 R@10

SCAN∗
ECCV′18 [20] 67.4 90.3 95.8 48.6 77.7 85.2 465.0

VSRN∗
ICCV′19 [21] 71.3 90.6 96.0 54.7 81.8 88.2 482.6

CAANCVPR′20 [48] 70.1 91.6 97.2 52.8 79.0 87.9 478.6
IMRAM∗

CVPR′20 [3] 74.1 93.0 96.6 53.9 79.4 87.2 484.2
GSMN∗

CVPR′20 [25] 76.4 94.3 97.3 57.4 82.3 89.0 496.8
CAMERA∗

ACMMM′20 [30] 78.0 95.1 97.9 60.3 85.9 91.7 508.9
SHAN ∗

IJCAI′21 [14] 74.6 93.5 96.9 55.3 81.3 88.4 490.0
SGRAF∗

AAAI′21 [8] 77.8 94.1 97.4 58.5 83.0 88.8 499.6
VSE∞CVPR′21 [4] 81.7 95.4 97.6 61.4 85.9 91.5 513.5
DIME∗

SIGIR′21 [31] 81.0 95.9 98.4 63.6 88.1 93.0 520.0
CGMN∗

TOMM′22 [5] 77.9 93.8 96.8 59.9 85.1 90.6 504.1
VSRN++∗

TPAMI′22 [22] 79.2 94.6 97.5 60.6 85.6 91.4 508.9
GraDual∗WACV′22 [26] 78.3 96.0 98.0 64.0 86.7 92.0 511.4
NAAF∗

CVPR′22 [47] 81.9 96.1 98.3 61.0 85.3 90.6 513.2
CMSEI∗ (ours) 82.3 96.4 98.6 64.1 87.3 92.6 521.3

Table 3. The results of our single CMSEI model, image-to-
sentence (I-T) and sentence-to-image (T-I) versions, on MS-
COCO and Flickr30K.

Version
Sentence Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10
MS-COCO 5-folds 1K

I-T 78.7 95.9 98.3 62.5 90.5 96.1
T-I 78.7 96.2 98.8 63.6 90.9 96.2

Flickr30K
I-T 78.0 95.2 98.0 59.5 84.2 91.1
T-I 79.0 94.6 97.9 60.4 85.5 90.5

Table 4. Comparison results on cross-dataset generalization from
MS-COCO to Flickr30k. † means the results are obtained from
their published pre-trained model.

Method
Sentence Retrieval Image Retrieval
R@1 R@10 R@1 R@10

VSE++BMVC′18 [9] 40.5 77.7 28.4 66.6
SCAN∗

ECCV2018 [20] 49.8 86.0 38.4 74.4
CVSEECCV′20 [35] 57.8 87.2 44.8 81.1
VSE∞†

CVPR′21 [4] 68.0 93.7 50.0 84.9
DIME∗†

SIGIR′21 [31] 67.4 94.5 53.7 86.5
CMSEI (ours) 69.6 95.2 53.7 87.2

proposed CMSEI shows clear improvements under all most
metrics compared with the latest state-of-the-art methods.
Generalization ability for domain adaptation. We fur-
ther validate the generalization ability of the proposed CM-
SEI on challenging cross-datasets, which is meaningful for
evaluating the cross-modal retrieval performance in real-
scenario. Specifically, similar to CVSE [35], we transfer
our model trained on MS-COCO to Flickr30K dataset. As
shown in Table 4, the proposed CMSEI achieves signifi-
cantly outperforms the baselines. It reflects that CMSEI has
an excellent capability of generalization for cross-dataset
image-sentence retrieval.

Query: There is a cow on the sidewalk standing in front of a door .

Top-1

Top-2 Top-3

Query: A small child in water with a splash encircling him while the 
white clouds float over the mountains .

Top-1

Top-2 Top-3
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0.23

0.45

0.41

0.42 0.38 0.51

0.82 0.79 0.93

0.62

0.79

0.47

0.42

0.66

0.54

0.33
0.45

0.62

1
(‘on’)

0

1
(‘
b
e
h
in
d
’)

1
(‘near’)

1
(‘on’)

1
(‘on’)

1
(‘
b
eh

in
d
’)

0

0
0

0

Figure 3. visualization of Top-3 image retrieval results of our CM-
SEI on MS-COCO (at the top) and Flickr30K (at the bottom). The
correctly matched images are marked in green and the mismatched
images are marked in red. The learned similarities between ob-
jects with high spacial IoUs and the explicit semantic relationship
graphs (blue lines mean semantic correlations (indicated by 1), red
dashed lines are no significant semantic correlations (indicated by
0)) for the matched image fragments are also partially presented
(best viewed in color).

Visualization of results. To better understand the effective-
ness of the proposed CMSEI, we visualize matching results
from image and sentence retrieval on both MS-COCO and
Flickr30K in Figure 3 and Figure 4, respectively. The ex-
ample on top is from MS-COCO and the one below is from
Flick30k. Moreover, we visualize the explicit visual spa-



1. A man with a red helmet on a small moped on a dirt road .
2. A dirt path with a young person on a motor bike rests to the foreground of a 

verdant area with a bridge and a background of cloud-wreathed mountains .
3. A man in a red shirt and a red hat is on a motorcycle on a hill side .

1. Five snowmobile riders all wearing helmets and goggles line up in a snowy 
clearing in a forest in front of their snowmobiles

2. they are all wearing black snow pants and from left to right they are wearing 
a black coat , white coat , red coat , blue coat , and black coat .

3. Five people wearing winter jackets and helmets stand in the snow , with
snowmobiles in the background .
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Figure 4. visualization of Top-3 sentence retrieval results of our
CMSEI on MS-COCO (at the top) and Flickr30K (at the bottom).
The corresponding explicit relationship graphs with the relevant
and correlation weights among fragments of images are also par-
tially presented (best viewed in color).

cial and semantic relationship graphs (due to limitations of
space we show the graphs partially) for the corresponding
images for both retrieval directions, which are used in CM-
SEI. We also show the learned similarities between objects
with high spacial IoUs in space. And the structured corre-
lations among the objects (explicit correlation weight is 1,
otherwise 0) can be maintained with the explicit semantic
correlation graph guidance. It can be observed that the pro-
posed relationship graphs provide more precise spatial and
semantic correlations between the object regions, which can
help the model to interact more comprehensively.

4.4. Ablation Studies

We perform detailed ablation studies on Flickr30K to in-
vestigate the effectiveness of each component of our pro-
posed CMSEI.
Effects of visual spatial graph. In Table 5, CMSEI de-
creases absolutely by 2.3% on Flickr30K in terms of rSum
when removing the visual spatial graph (w/o VSG). It sug-
gests that the spatial graph reasoning plays an important
role in concentrating on spatially relevant regional features
for fragments in images. In addition, we achieved slightly
lower results using self-attention networks (w. SA) [33],
an implicit relationship modeling method, as an alternative
to VSG. It demonstrates that our proposed visual spatial
graph reasoning can effectively aggregate spatially relevant
regional features compared to implicit relational reasoning
based on self-attention.
Effects of explicit visual semantic relationship graph. As
shown in Table 5, CMSEI decreases absolutely 3.5% in
terms of rSum on Flickr30k when replacing explicit visual
semantic relationship graph (VSRG) by a fully-connected

Table 5. Ablation studies on Flickr30K 1K test set. All values are
ensemble results by averaging two models’ (I-T and T-I) similarity.

Method
Sentence Retrieval Image Retrieval

rSum
R@1 R@5 R@10 R@1 R@5 R@10

w/o VSG 81.5 95.8 98.6 63.5 87.1 92.5 519.0
w. SA (VSG) 81.2 96.2 98.3 63.5 87.2 92.6 519.0
w/o VSRG 79.5 95.2 98.0 62.3 87.0 92.3 514.8

w. FG (VSRG) 81.0 95.4 98.6 63.0 87.3 92.5 517.8
w/o TG 79.7 95.0 97.9 61.8 86.7 92.2 513.3

w. DTG (TG) 79.6 95.7 97.7 61.6 86.9 92.4 513.9
w/o LLII 73.5 93.6 96.7 57.5 84.2 90.5 496.2
w/o LGII 80.0 95.2 98.2 62.9 87.2 92.3 515.8
CMSEI 82.3 96.4 98.6 64.1 87.3 92.6 521.3

graph (indicated by w. FG) for images. When dropping
VSRG directly (indicated by w/o VSRG), it degrades the
rSum by a clear 7.0%. These observations suggest that our
explicit VSRG effectively improve visual semantic feature
embedding and avoid irrelevant feature incorporation.
Effects of implicit textual graph. When dropping the tex-
tual graph reasoning (w/o TG) of sentences, a significant
drop in results can be observed. Without implicit semantic
reasoning on a fully connected textual graph, we construct a
semantic dependency text graph (indicated by w. DTG) by
the same way as in method [5], resulting in great degrada-
tion. We speculate that these dependencies lose some tex-
tual information when interacting across modalities.
Effects of local-local and local-global inter-modal inter-
actions. We evaluate the impact of the local-local and local-
global inter-modal interaction (LLII and LGII) for CMSEI.
As shown in Table 5, the absence of LLII and the absence
of LGII reduce 4.2% and 1.0% in terms of the average of
all metrics on Flickr30k, respectively. It is obvious that the
multiple inter-modal interactions play a vital role in image-
sentence retrieval process, which also suggests that cross-
modal interactions effectively narrow the semantic gap be-
tween the two modalities.

5. Conclusion
In this paper, we present a cross-modal semantic en-

hanced interaction method (CMSEI) for image-sentence re-
trieval. CMSEI engages in (i) enhancing the visual semantic
representation with the inter-object relationships and (ii) en-
hancing the visual and textual semantic representation with
multi-level joint semantic correlations on intra-fragment,
inter-fragment, and inter-instance. To this end, we pro-
pose the intra- and inter-modal semantic correlations and
optimize the integrated structured model with cross-modal
semantic alignment in an end-to-end representation learn-
ing way. Extensive quantitative comparisons demonstrate
that our CMSEI achieves state-of-the-art performance on
the most of standard evaluation metrics across MS-COCO
and Flickr30K benchmarks.
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