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Abstract

Cooperative perception allows a Connected Autonomous
Vehicle (CAV) to interact with the other CAVs in the vicin-
ity to enhance perception of surrounding objects to in-
crease safety and reliability. It can compensate for the lim-
itations of the conventional vehicular perception such as
blind spots, low resolution, and weather effects. An effec-
tive feature fusion model for the intermediate fusion meth-
ods of cooperative perception can improve feature selec-
tion and information aggregation to further enhance the
perception accuracy. We propose adaptive feature fusion
models with trainable feature selection modules. One of
our proposed models Spatial-wise Adaptive feature Fusion
(S-AdaFusion) outperforms all other State-of-the-Arts (SO-
TAs) on two subsets of the OPV2V dataset: Default CARLA
Towns for vehicle detection and the Culver City for domain
adaptation. In addition, previous studies have only tested
cooperative perception for vehicle detection. A pedestrian,
however, is much more likely to be seriously injured in a
traffic accident. We evaluate the performance of cooper-
ative perception for both vehicle and pedestrian detection
using the CODD dataset. Our architecture achieves higher
Average Precision (AP) than other existing models for both
vehicle and pedestrian detection on the CODD dataset. The
experiments demonstrate that cooperative perception also
improves the pedestrian detection accuracy compared to the
conventional single vehicle perception process.

1. Introduction
3D object detection with LiDAR sensor has become

more significant in Autonomous Vehicles (AVs) in the re-
cent years [5, 10, 20, 28, 31], because it can provide more
spatial information about the objects of interest including
their locations, size and orientation. LiDAR can gener-
ate point cloud data which contains accurate depth infor-
mation and is less affected by external illumination condi-
tions. However, point clouds far away from the LiDAR are
extremely sparse which make the detection of further ob-
jects more difficult. Objects that are occluded will generate

Figure 1: One example frame from CODD dataset [2] with
four CAVs. The red arrows indicate the moving directions
of four CAVs, one left turn vehicle and two pedestrians.

fewer points, which makes inference harder especially for
the small objects such as pedestrians.

Cooperative perception enables Connected Autonomous
Vehicles (CAVs) and/or Road Side Units (RSUs) to share
perceived information using the Vehicular Communication
(VC) systems within the communication range [1, 3, 16,
22, 25, 26, 27]. The perceived information can consist of
GPS and a variety of sensor data including RADAR, cam-
era, and LiDAR data. Cooperative perception helps to com-
pensate for the limitations of the current visual perception
techniques such as limited resolution, weather effects, and
blind spots. CAVs are equipped with VC systems to en-
able exchange of traffic information with the surrounding
CAVs. One vehicle can receive and aggregate information
from other CAVs with its own locally perceived data to im-
plement cooperative perception and thereby, improve the
safety and robustness of the automated driving system.

An example from the CODD dataset [2] is shown in Fig.
1. The figure depicts a scene at an intersection with four
CAVs. In this scenario, CAV1 is driving towards the hori-
zontal main street and will interact with other vehicles and
pedestrians. Even if CAV2 is leaving the main street, it
can still provide other CAVs with the view of the intersec-
tion. At the same time, CAV3 and CAV4 will supply CAV1
with the main street view, allowing it to pass the intersec-
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tion safely and efficiently. Furthermore, when CAV4’s vi-
sion is obstructed by CAV3 while the former is detecting
pedestrian crossing, CAV1 and CAV3 will still be able to
share pedestrian crossing information with CAV4. Suppose
CAV1 is selected as the ego vehicle and all predictions are
driven by the ego vehicle. First, the four CAVs process their
LiDAR point clouds and extract the intermediate feature
maps in parallel in their local system. Next, the other three
CAVs broadcast their extracted feature maps to CAV1 along
with the LiDAR pose information. Then, CAV1 projects the
three feature maps to its own coordinate system and aggre-
gates the information with its own perceived information for
3D object detection.

According to the data type that is shared among the
CAVs, three kinds of data fusion methods are found in the
existing literature: 1) early fusion [4] aggregates the raw
input sensor data from other CAVs; 2) intermediate fusion
[3, 16, 22, 27] aggregates the processed feature maps from
other CAVs; and 3) late fusion [9, 30] aggregates the pre-
dicted outputs of object detection from other CAVs. In re-
cent studies, the intermediate feature fusion has repeatedly
proved to be the most efficient fusion method compared
to the early and late fusion methods. We hypothesize that
the intermediate fusion method can be improved further for
real time perception and greater accuracy by implementing
an effective feature selection and fusion module having re-
duced computational cost.

The Vehicle-to-Vehicle (V2V) communication allows
vehicles to communicate over a wireless network having a
low bandwidth and limited communication range. Because
of this, efficient feature extraction, data dissemination, and
data fusion are essential for cooperative perception. The
PointPillars [10] backbone is applied for encoding point
cloud owing to its short inference time and comparable ac-
curacy. It runs at 62 Hz with 59.20% mAP on the KITTI [7]
dataset. A feature extraction module with 2D Convolutional
Neural Networks (CNNs) is utilized to further extract fea-
tures from the encoded point cloud. AVs must demonstrate
extremely high accuracy and efficiency. With these prereq-
uisites, we propose several feature fusion models with train-
able neural network that can adaptively select features from
multiple CAVs.

Contribution. The contribution of this work are as fol-
lows: 1) we create a lightweight cooperative perception ar-
chitecture with intermediate fusion; 2) we involve 3D CNN
and adaptive feature fusion for cooperative perception and
propose three trainable feature fusion models for cooper-
ative perception; 3) we validate the proposed models us-
ing two public cooperative perception benchmark datasets
(OPV2V dataset [27] and CODD dataset [2]) for multiple
tasks including a) vehicle detection, b) pedestrian detection
and c) domain adaptation; 4) we experiment with different

number of CAVs to observe its influence on cooperative per-
ception.

Our S-AdaFusion model outperforms all the existing
models on the OPV2V Default CARLA Towns for the ve-
hicle detection task, and on the OPV2V Culver City for the
domain adaptation task. We also validate our model on the
CODD dataset for vehicle and pedestrian detection tasks.
Our model achieves higher Average Precision (AP) than
all other state-of-the-art (SOTA) models. Our experiments
also demonstrate that cooperative perception with LiDAR
point clouds can improve the accuracy of pedestrian detec-
tion compared to the conventional perception process.

The paper is organized as follows. Section 2 describes
the related work on cooperative perception and feature fu-
sion models. Our proposed cooperative perception frame-
work and feature fusion models are illustrated in Section
3 and Section 4 respectively. The experimental results are
presented in Section 5. Section 6 concludes the paper with
a list of future works.

2. Background and Related Work

We first present the formal description of cooperative
perception and the relevant feature integration methods as
background concepts. Then the related works are discussed
to highlight the research gap with regard to our research
contribution.

2.1. Cooperative Perception

Formally, the problem of cooperative perception can be
described as follows. We denote the raw input data (camera
data and LiDAR data) as I = {I1, I2, . . . , In} from a set
of surrounding CAVs as V = {v1, v2, . . . , vn}. The corre-
sponding set of extracted intermediate features for the input
data is represented as F = {F1, F2, . . . , Fn}, where the
predicted set of outputs from object detectors is denoted as
O = {O1, O2, . . . , On}. In the traditional visual perception
process, an AV vi receives raw data Ii from sensors such as
camera and LiDAR. This data is then processed to extract a
feature map Fi to be used in computational models for pre-
dicting objects as output Oi. In cooperative perception, an
additional data fusion step is applied to aggregate the data
from other vehicles for improved perception.

Researchers have demonstrated three kinds of data fu-
sion methods (early fusion, intermediate fusion and late fu-
sion) based on the types of information in the data dissemi-
nation stage. CAVs broadcast raw sensor data I in early fu-
sion [4] which incurs highest data transfer cost. Late fusion
[9, 30] shares and aggregates the predictions O from the
CAVs and causes less burden on data transfer, but the ob-
ject detection performance highly relies on the other CAVs’
prediction accuracy and the post-processing of the predic-
tions. The performance of cooperative perception with early



and late fusion can be improved by optimizing the 3D ob-
ject detectors and post-processing method [30]. Interme-
diate fusion is a compromise that leverages the processed
intermediate feature representations F . Therefore, accurate
and optimized integration and processing of the informa-
tion obtained from different locations becomes critical for
effective feature fusion to enable accurate object detection.
Marvasti et al. [16] warp the 3D LiDAR point clouds into
Bird’s-Eye View (BEV) and apply 2D CNN to extract in-
termediate features in each connected AV. The feature maps
from the CAVs are projected on to the ego vehicle’s co-
ordinate system. Then these are aggregated with the ego
vehicle’s feature map. In [16], only two CAVs are utilized
and the summation makes the overlaps have larger weights,
whereas in real-life scenarios, the numbers of CAVs vary.
We compute the mean at the overlaps instead. Chen et al.
[3] propose feature-level fusion schemes, and the maximum
at the overlaps is selected to represent the intermediate fea-
tures.

The models mentioned above utilize simple reduction
operators such as summation, max pooling or average pool-
ing. These operators are able to process the information at
the overlaps and fuse feature maps with negligible compu-
tational cost. However, the selected features are not neces-
sarily the best due to lack of information selection and iden-
tification of data correlation. In V2VNet [22], a Graph Neu-
ral Network (GNN) is applied to represent a map of CAVs
based on the geological coordinates to facilitate data fusion.
The GNN aggregates information received from multiple
vehicles with the vehicle’s internal state (computed from
its own sensor data) to compute an updated intermediate
representation. Xu et al. [27] propose AttFuse and lever-
age self-attention model [21] to fuse the intermediate fea-
ture maps. Transformers are utilized in V2X-Vit [26] and
CoBEVT [25] for cooperative perception with intermediate
feature fusion. We explore the feature fusion models that
can utilize multiple feature maps from the CAVs effectively
and efficiently.

2.2. Feature Learning and Feature Fusion

The attention mechanism has demonstrated its utility in
solving computer vision tasks [8, 18, 21, 23]. By incor-
porating a small module in the neural network, the model
can leverage the channel and/or spatial information, and en-
hance the extracted representation.

Feature learning and feature fusion have also been ex-
plored in the past for camera and LiDAR in 3D object de-
tection. Yoo et al. [29] proposed an adaptive gated fusion
network to combine both LiDAR and image features. Liu et
al. [15] and Liang et al. [11] propose a BEV fusion method
that project intermediate features from the images captured
using a camera and point clouds generated by the LiDAR
into BEV, and concatenate the two feature maps along the

channel axes. Liu et al. [15] utilize a convolutional encoder
to generate a refined fusion based on the BEV feature map.
Liang et al. [11] propose a dynamic fusion module and ap-
ply channel-wise attention to adaptively select features.

Concatenating the intermediate feature maps by the fea-
ture channel in cooperative perception can drastically in-
crease the computational cost with an increasing number
of CAVs. Therefore, instead of concatenating feature maps
and creating an extra large feature extraction network, it is
more efficient to aggregate the feature maps with geometric
and geological information.

3. Overview of the Proposed Framework
The proposed feature fusion based cooperative percep-

tion architecture is extended from the PointPillars [10] as
depicted in Fig. 2. The overall network takes point cloud
as input and processes the data in 5 steps: 1) feature encod-
ing converts the point cloud into a pseudo-image with Pillar
Feature Network (PFN); 2) intermediate feature extraction
extracts multi-scale features from the pseudo-image with a
2D pyramid network; 3) feature projection projects the in-
termediate feature maps from CAVs on to the ego vehicle
coordinate with the LiDAR pose information; 4) intermedi-
ate feature fusion generates the combined feature map with
a feature fusion network; and 5) 3D object detection re-
gresses the bounding boxes with the Single Shot Detector
(SSD) [14] and predicts detected objects’ classes.

3.1. Feature Encoding

The input point cloud with dimension (n×4) consists of
n points, and each point has attributes (x, y, z) coordinates
and intensity. The point cloud is encoded into pillars with
the height equal to the point cloud height in z axis. The
points in each pillar are augmented with 5 extra attributes
including the offsets from the arithmetic mean of all points
in the pillar and the offsets from the pillar center. The point
cloud data is transformed into P pillars with each pillar hav-
ing N points and D features. Then the PointNet [17] is ap-
plied on the pillars to extract features and generate a tensor
of size (Cin × P ). The pillars with Cin features are pro-
jected back on to the original location to generate a pseudo-
image of size (Cin×2H×2W ). We use 2H and 2W here,
since we downsample the feature maps to (C ×H ×W ) in
the next feature extraction step.

3.2. Feature Extraction

Similar to PointPillars [10], a Feature Pyramid Network
(FPN) [12, 19] is utilized to extract intermediate features
from the pseudo-images. The FPN contains three down-
sample blocks for multi-resolution feature extraction. Each
block contains a 2D convolution layer, a batch normaliza-
tion layer and a ReLU activation function. The three feature
maps obtained from the three downsample blocks are then



Figure 2: Architecture of the cooperative perception model.

upsampled and concatenated. The resulting multiscaled fea-
ture map is refined by a CNN to generate a feature map of
size F

′ ∈ RC×H×W .

3.3. Feature Projection

Feature maps extracted from the different CAVs have
different geological locations and orientations. Therefore,
they need to be transformed into the receiver’s coordinate
system for feature fusion and object detection. The CAVs
disseminate the feature maps along with their LiDAR pose
information containing (X,Y, Z, roll, yaw, pitch). Once
the ego vehicle receives data from the neighboring CAVs,
it is projected into the ego vehicle’s coordinate system and
timestamp. In this work, we use the intermediate feature
projection and integration.

3.4. Feature Fusion

The projected intermediate feature maps from different
CAVs are expanded to 4D tensors and concatenated for fur-
ther processing. As explained in the related work Section
2.2, concatenating the feature maps over the feature chan-
nel generates a 3D tensor with nC channels, which will
increase computational complexity and cost for feature fu-
sion and refinement. Therefore, we aggregate the feature
maps into a 4D tensor F ∈ Rn×C×H×W where n is the
maximum number of CAVs. To fuse the overlapping fea-
ture maps in the geological coordinate system, we propose
spatial-wise and channel-wise feature fusion models as de-
scribed in Section 4.

3.5. Object Detection

The fused features Ffusion are fed into a SSD [14] that
can regress the 3D bounding boxes and predict the confi-
dence scores for the detected object classes. The output is a

H ×W feature map with (c + 7) × B channels. For each
of the B anchor boxes, we predict c class confidence scores
and 7 offsets (x, y, z, w, l, h, θ) to the ground truths.

3.6. Loss

The loss function in [10] consists of focal loss (Eq. 2)
[13] for classification, and smooth l1 loss (Eq. 3) for re-
gression. The complete loss function is given below:

L = βclsLcls + βregLreg

= βclsLfocal(p) + βregsmoothL1
(sin(q − yreg))

(1)

where βcls = 1 and βreg = 2 are the classification loss and
regression loss coefficients respectively, p is the prediction
probability, q is the number of anchor boxes and yreg is the
number of ground truth boxes.

Lfocal(p) = −α(1− p)γ log(p) (2)

where α = 0.25 and γ = 2 are the parameters of the focal
loss.

smoothL1
(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3)

4. Proposed Adaptive Feature Fusion Models
In this study, we focus on intermediate feature fusion for

cooperative perception and specifically on optimizing the
feature fusion module to achieve better performance and
higher accuracy on 3D object detection. We hypothesize
that a trainable neural network can select the features more
effectively than the plain reduction operators. Our proposed
feature fusion models are split into spatial-wise feature fu-
sion and channel-wise feature fusion.



(a) Spatial Fusion with channel-wise
pooling such as Max pooling (MaxFu-
sion) and Average pooling (AvgFusion)
over the channel axis.

(b) Spatial-wise Adaptive feature Fusion (S-AdaFusion).

(c) Channel Fusion with 3D convolu-
tion (C-3DFusion).

(d) Channel-wise Adaptive feature Fusion (C-AdaFusion).

Figure 3: Feature fusion networks for intermediate feature maps aggregation.

Spatial-wise Feature Fusion. To fuse feature maps, a
straightforward reduction operator such as Max [3] or Mean
are applied to the overlapping features as shown in Fig. 3a.
We refer to these two fusion methods as MaxFusion and
AvgFusion in this paper, which compute max pooling and
average pooling respectively, over the channel axis to get
the fused feature map Ffusion ∈ R1×C×H×W .

We propose Spatial-wise Adaptive feature Fusion (S-
AdaFusion) that adaptively utilizes the spatial features gen-
erated by max pooling and average pooling as shown in
Fig. 3b. First, the input feature map F ∈ Rn×C×H×W

is decomposed into Smax ∈ R1×C×H×W and Savg ∈
R1×C×H×W by calculating max pooling and average pool-
ing along the first channel axis. The two feature maps
are concatenated together to get a 4D tensor Fspatial ∈
R2×C×H×W which contains two kinds of spatial infor-
mation from the original concatenated intermediate feature
map. Then, a 3D convolution with ReLU activation func-
tion is utilized for further feature selection and dimension
reduction with the numbers of input channels and output
channels equal to 2 and 1 respectively.

Channel-wise Feature Fusion. CNNs perform very well
in extracting features from the representations and re-
ducing their dimensions. For an input 4D tensor F ∈
Rn×C×H×W , a 3D CNN can be used to extract the channel
features and reduce the number of input feature channels
as shown in Fig. 3c (C-3DFusion). The number of input
channels of the 3D CNN would be equal to the maximum
number of CAVs with a single output channel representing
a combined feature set.

Inspired by the channel attention module SENet [8],
we propose a Channel-wise Adaptive feature Fusion (C-

AdaFusion) module that can select and fuse the interme-
diate feature maps by using the channel information as
shown in Fig. 3d. Global pooling is utilized to squeeze
the global information in a channel-wise descriptor. We
leverage 3D adaptive max pooling and average pooling to
extract two channel descriptors Cmax ∈ Rn×1×1×1 and
Cavg ∈ Rn×1×1×1. Then, the two vectors are concate-
nated and passed through two linear layers having ReLU
and Sigmoid activation functions respectively. The input
feature map F ∈ Rn×C×H×W channel-wise multiplies the
learned channel weights F

′

channel ∈ Rn×1×1×1 to generate
a new feature representation F

′ ∈ Rn×C×H×W . The fused
feature map Ffusion ∈ R1×C×H×W is obtained by using a
channel reduction 3D CNN.

5. Experiments

We conduct experiments on the publicly available co-
operative perception datasets OPV2V dataset [27] and the
CODD dataset [2]. We compare the prediction accuracy
for different perception tasks to validate the performance of
the proposed models against the conventional single vehi-
cle perception model (no fusion) and multiple cooperative
perception benchmark models.

5.1. Datasets

OPV2V Dataset. The OPV2V dataset [27] is built with
OpenCDA simulation tool [24]. It has two subsets, a
Default CARLA Towns and a Culver City. The Default
CARLA Towns contains 6,765 training samples, 1,980 val-
idation samples, and 2,170 testing samples in eight CARLA
default towns. The Culver City contains 550 samples to test
the domain adaptation ability of the model. The number of



Table 1: Evaluation results on the OPV2V Default CARLA Towns test set for vehicle detection, OPV2V Culver City for
domain adaptation, and CODD dataset for vehicle and pedestrian detection. We compare our proposed models with the
baseline models and the SOTA fusion models of cooperative perception.

Method
OPV2V CODD

Default Towns Culver City Vehicle Pedestrian # Parameters
AP@.5 AP@.7 AP@.5 AP@.7 AP@.5 AP@.7 AP@.1 (Million)

B
as

el
in

e No Fusion 67.9 60.2 55.7 47.1 61.7 55.2 23.6 6.58
Early Fusion 89.1 80.0 82.9 69.6 73.9 68.2 32.2 6.58
Late Fusion 85.8 78.1 79.9 66.8 66.6 61.7 27.2 6.58

SO
TA

F-Cooper [3] 88.7 79.0 84.6 72.8 77.6 74.3 32.8 7.27
AttFuse [27] 90.8 81.5 85.4 73.5 81.4 77.7 38.0 6.58
V2VNet [22] 89.7 82.2 86.0 73.4 80.3 75.8 32.0 14.61
V2X-ViT [26] 89.1 82.6 87.3 73.7 82.3 78.9 33.8 13.45

O
ur

s

AvgFusion 84.3 74.7 80.9 68.0 75.3 65.0 28.1 7.27
C-3DFusion 90.8 83.6 87.0 75.7 82.2 80.1 39.5 7.27
C-AdaFusion 88.5 81.4 85.9 72.4 83.4 80.8 37.5 7.27
S-AdaFusion 91.6 85.6 88.1 79.0 86.2 83.9 45.2 7.27

CAVs in this dataset ranges between [2, 7], and each CAV
has its LiDAR information and labeled 3D bounding boxes.

CODD Dataset. The CODD dataset [2] is built with
CARLA simulation tool [6] and contains 108 snippets in
eight CARLA towns where each snippet has 125 frames.
The first 100 frames are used for training and the last 25
frames are used for testing. The numbers of vehicles and
pedestrians of this dataset range between [4, 15] and [2, 8].
The dataset contains all vehicles’ LiDAR information and
labeled vehicle and pedestrian 3D bounding boxes, and this
is the only cooperative perception dataset that contains the
pedestrian class so far.

5.2. Implementation Details

During training, a random group of CAVs are selected
from the scene with a defined upper limit of CAVs including
an ego vehicle. For validation purposes, the ego vehicle and
the CAVs are fixed for a fair comparison.

To compare with other benchmarks, we follow the pa-
rameter settings in [27]. The ranges of x, y, z are [(-140.8,
140.8), (-40, 40), (-3, 1)] meters on the OPV2V dataset. We
set the x, y, z ranges to [(-140.8, 140.8), (-40, 40), (-6, 4)]
meters on the CODD dataset. The x and y resolutions of the
pillar are 0.4 meters in both datasets. The vehicle anchor
and pedestrian anchor have a (length, width, height) of (3.9,
1.6, 1.56) meters and (0.6, 0.6, 1.7) meters respectively.

Our model is implemented using the PyTorch frame-
work, trained and evaluated on Tesla V100 GPU having 32
GB RAM, CUDA v10.1 and cuDNN v9.1. Early stopping,
multi-step scheduler, and Adam optimizer with an ϵ of 0.1
and a weight decay of 0.0001 are used to train the network.

At inference stage, we use a confidence score thresh-

old of 0.2. Non-maximum Suppression (NMS) with an
Intersection-over-Union (IoU) threshold of 0.15 is applied
to remove the redundant predictions. The effectiveness of
the model is evaluated with the common metric Average
Precision (AP) of vehicle with 0.5 and 0.7 IoU thresholds
(AP@0.5 and AP@0.7) as well as the AP of pedestrian with
0.1 IoU threshold (AP@0.1).

5.3. Results

The evaluation results on the OPV2V and CODD
datasets are shown in Table 1. We compare our proposed
models with the baseline models including no fusion, early
fusion and late fusion, and multiple SOTA fusion models
of cooperative perception [3, 22, 26, 27]. Fig. 4 displays
the cooperative perception results with different number of
CAVs. When the number of CAVs is one, it is the tradi-
tional perception process. The maximum number of CAVs
is seven and five on the OPV2V and CODD datasets respec-
tively.

Some prediction outputs from our S-AdaFusion are
shown in Fig. 5 and Fig. 6. Without cooperative percep-
tion, the no fusion model incorrectly identifies bushes and
constructions as vehicles and generates more false positives
as shown in Fig. 5a. Comparing the predictions in the yel-
low rectangles, cooperative perception is more robust than
no fusion in regressing the bounding boxes for the vehicles
further away from the ego vehicle. Regardless of whether
the vehicles are occluded, other CAVs can assist the ego ve-
hicle to perceive occluded objects and get a better overall
perception result. Fig. 6 shows that with the assistance of
the other two CAVs, the ego vehicle can still detect the ve-
hicle and pedestrian even when they are fully occluded on
the vertical street.
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(a) Cooperative perception results on OPV2V dataset.
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(b) Cooperative perception results on CODD dataset.

Figure 4: The influence of the number of CAVs for Cooperative perception with S-AdaFusion model architecture.

5.4. Discussion

From Table 1 we can find that most of the intermediate
fusion models outperform the early and late fusion. Our
S-AdaFusion outperforms all the models on all the percep-
tion tasks including vehicle detection, pedestrian detection
and domain adaptation. The SOTA models and our pro-
posed adaptive feature fusion models all achieve around or
over 90% AP@0.5 on OPV2V Default CARLA Towns set,
whereas our S-AdaFusion model obtains 85.6% AP@0.7
which is the highest among the existing models. This means
even if all the models can achieve high precision in classi-
fication, our model is much better on the 3D bounding box
regression. The S-AdaFusion model achieves more signif-
icant improvements in domain adaptation which is at least
5.3% higher in AP@0.7 than other models. The large mar-
gin of improvement in domain adaptation illustrates the ad-
vantage of using pooling and the generalization of our pro-
posed models in feature fusion.

The evaluation results on the CODD dataset further val-
idate the effectiveness of our proposed models on both ve-
hicle and pedestrian detection. Our C-AdaFusion outper-
forms other models for vehicle detection. Our S-AdaFusion
model surpasses other benchmark models by at least 3.9%
AP@0.5 and 5.0% AP@0.7 for vehicle detection, and 7.2%
AP@0.1 for pedestrian detection which are impressive im-
provements. Additionally, our architecture has fewer pa-
rameters than current SOTA V2VNet and V2X-ViT.

Fig. 4 demonstrates that vehicle detection accuracy and
domain adaptation accuracy are both improved along with
the increasing number of CAVs. The accuracy of pedestrian
detection is positively correlated to the number of CAVs.
The cooperative perception improves over 20% AP@0.7 on
vehicle detection and over 20% AP@0.1 on pedestrian de-
tection comparing to the traditional perception (no fusion).
Although cooperative perception can enhance pedestrian
detection accuracy, it does not achieve the accuracy we ex-

Table 2: Ablation studies of proposed models with different
kernel sizes on the OPV2V dataset.

Method Default Culver
AP@.5 AP@.7 AP@.5 AP@.7

C-3DFusion (ks=1) 83.7 73.6 79.2 63.0
C-3DFusion (ks=3) 90.8 83.6 87.0 75.7
S-AdaFusion (ks=1) 91.8 83.0 86.1 70.4
S-AdaFusion (ks=3) 91.6 85.6 88.1 79.0

”ks” stands for kernel size

pected. We presume two possible reasons led to this obser-
vation. First, the number of pedestrians in CODD dataset is
low and the distribution is sparse which make the detection
very difficult. Second, the model has limitations in small
object detection. As a result, the margin of improvement is
not as significant as vehicle detection.

5.5. Ablation Study

The F-Cooper [3] (MaxFusion), AvgFusion, and our pro-
posed C-3DFusion and S-AdaFusion are used in a set of
experiments conducted for an ablation study. As shown in
Table 1, the F-Cooper method applying MaxFusion model
achieves much better results than the AvgFusion model,
since it selects the most distinctive features from multiple
feature maps. Without using the spatial information, the C-
3DFusion model with trainable 3D convolution layer can
select and fuse features from multiple CAVs. Additionally,
switching the kernel from 1× 1× 1 channel reduction ker-
nel (stride=1, padding=0) to 3 × 3 × 3 kernel (stride=1,
padding=1) enhances the accuracy by about 10% AP@0.7
on vehicle detection as shown in Table 2. This is because
the larger kernel not only focus on one cell and reduce the
channel, it can also increase the perception field and extract
some spatial features from the neighboring cells. It is in-
teresting to note that the C-3DFusion already surpasses all



(a) Single vehicle perception (no fusion). (b) Cooperative perception with intermediate fusion.

Figure 5: Examples of single vehicle perception (no fusion) and cooperative perception on OPV2V dataset. The ground truth
and predicted 3D bounding boxes are depicted in green and red respectively. Yellow rectangles highlight the vehicles that are
occluded or further away from the ego vehicle.

Figure 6: An example of solving occlusion situation with
cooperative perception.

other models in most experiments. By incorporating these
modules, S-AdaFusion, the adaptive feature selection and
fusion model, achieves the highest AP on all the validation
datasets for cooperative perception.

6. Conclusion

With the advancements in sensing technology for AVs
and VC systems, novel techniques are being explored to

address the challenges in vehicular perception especially
in traffic object detection. In this research, we study co-
operative perception using LiDAR point cloud data to ad-
dress some limitations of the conventional object detec-
tion process such as sensor resolution and object occlusion.
We propose adaptive feature fusion models with trainable
neural network for intermediate fusion of cooperative per-
ception and validate the superiority of the models through
a number of experiments using two benchmark datasets.
The research validates the hypothesis that a trainable neu-
ral network module for intermediate feature fusion can im-
prove the object detection accuracy in cooperative percep-
tion. Our S-AdaFusion model outperforms the SOTA in-
termediate feature fusion cooperative perception models on
the two benchmark datasets.

To improve the accuracy of pedestrian detection, a dif-
ferent point encoding or object detection network can be
explored to improve the pedestrian detection accuracy. Ad-
ditionally, images can include more human features which
may be helpful for pedestrian and cyclist detection.
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