
Nearest Neighbors Meet Deep Neural Networks for Point Cloud Analysis

Renrui Zhang1,2, Liuhui Wang1,2, Ziyu Guo1, Jianbo Shi2,3

1Peking University, 2Heisenberg Robotics, 3University of Pennsylvania
{1700012927, 1900012932}@pku.edu.cn, jshi@seas.upenn.edu

Abstract

Performances on standard 3D point cloud benchmarks
have plateaued, resulting in oversized models and com-
plex network design to make a fractional improvement. We
present an alternative to enhance existing deep neural net-
works without any redesigning or extra parameters, termed
as Spatial-Neighbor Adapter (SN-Adapter). Building on
any trained 3D network, we utilize its learned encoding ca-
pability to extract features of the training dataset and sum-
marize them as prototypical spatial knowledge. For a test
point cloud, the SN-Adapter retrieves k nearest neighbors
(k-NN) from the pre-constructed spatial prototypes and lin-
early interpolates the k-NN prediction with that of the orig-
inal 3D network. By providing complementary character-
istics, the proposed SN-Adapter serves as a plug-and-play
module to economically improve performance in a non-
parametric manner. More importantly, our SN-Adapter can
be effectively generalized to various 3D tasks, including
shape classification, part segmentation, and 3D object de-
tection, demonstrating its superiority and robustness. We
hope our approach could show a new perspective for point
cloud analysis and facilitate future research.

1. Introduction

3D vision has wide usage in robotics and AI. Many
methods have been proposed to tackle 3D tasks, including
object recognition [26, 27, 13, 2, 43, 51] and scene-level
understanding [1, 36, 4, 54, 22, 10]. Existing 3D methods
are built upon the learnable deep neural networks and ben-
efit from their abilities to process the irregular point clouds.
Starting from the concise PointNet [26], later researches up-
grade it with hierarchical architectures [27, 2], point-based
convolutions [21, 32, 44], attention mechanisms [15], and
so on [40, 43].

Recent works focused on inserting complicated mod-
ules or excessively increasing network parameters to boost
benchmark scores. This trend has not only harmed the ef-
ficiency during training and inference, but gradually satu-

rated the benchmarks. As examples for shape classification
on ModelNet40 [41], CurveNet [43] delicately explores a
set of spatial curves for aggregating local geometry, which
leads to 10× slower training and 20× slower inference com-
pared to PointNet++ [27]. PointMLP [2] brings +11.9M
parameters for only +0.5% accuracy boost, which increases
19× more model scales than its elite version [2]. Therefore,
we ask the question: could we boost the performance of ex-
isting 3D networks at the least cost, even without additional
parameters or re-training?

We develop a non-parametric adapter module by retriev-
ing 3D prototypical knowledge from the spatial neighbors,
named SN-Adapter. It refers to the idea of k Nearest
Neighbors algorithm (k-NN) and can directly enhance the
existing trained 3D deep neural networks without extra re-
training. As shown in Figure 1, our SN-Adapter is imple-
mented in two steps: pre-construction of 3D prototypical
knowledge and inference-time enhancement by interpola-
tion. Specifically, we theoretically split a trained network
into two parts. The first is the feature extractor that en-
codes an input raw point cloud into high-dimensional rep-
resentations. The second, usually the last linear layer of the
network, is named the 3D classifier, which categorizes the
encoded vectors with classification logits. Using a trained
extractor, we first obtain all the high-dimensional features
of point clouds from the training dataset. For different 3D
tasks, we summarize the features as various forms of proto-
typical spatial knowledge, e.g., sample-wise, part-wise, and
object-wise prototypes in the top-right of Figure 1. Dur-
ing inference, the SN-Adapter is appended to the feature
extractor and utilizes k-NN to retrieve 3D knowledge from
the pre-constructed prototypes. Finally, we linearly inter-
polate the classification logits concurrently produced from
the SN-Adapter and the trained 3D classifier, by which the
original 3D network can be improved with marginal extra
costs.

Through experimental analysis, we observe the enhance-
ment is resulted from the complementary characteristics be-
tween the trained 3D classifier and our SN-Adapter: the for-
mer is learned to fit the training set but the latter reveals
the feature-level similarities among 3D prototypes. By ex-

ar
X

iv
:2

30
3.

00
70

3v
1

 [
cs

.C
V

]
 1

 M
ar

 2
02

3

Feature

Extractor

3D Classifier

3D Training

Datasets

…

3D Training Features

Summarize

Spatial Prototypical Knowledge

Sample-wise Prototypes

Part-wise Prototypes

Object-wise Prototypes

Feature

Extractor

3D Test Feature

SN-Adapter

𝑘 Nearest Neighbors

Retrieval

Interpolation

Shape Classification

Part Segmentation

3D Object Detection

(a) Pre-construction of Prototypes:

(b) Inference-time Enhancement:

Test Point Cloud

Figure 1. The Pipeline of SN-Adapter by Two Steps: (a) and (b). We divide the already trained deep neural network into the feature
extractor and the 3D classifier, whose weights are frozen without fine-tuning. In a), we extract the 3D training features and construct
the spatial prototypical knowledge. In b), we introduce SN-Adapter to conduct k-NN retrieval from the task-specific prototypes for non-
parametric enhancement.

tensive experiments, our SN-Adapter is verified to widely
improve the performance of existing methods on different
3D tasks, such as +1.34% classification accuracy on Mod-
elNet40 [41], +0.17% segmentation mIoU on ShapeNet-
Part [46], and +7.34% detection AR on ScanNetV2 [7].

Our main contributions are summarized as follows:

1. We propose SN-Adapter, a plug-and-play module to
assist 3D deep neural networks via k-NN for better
point cloud analysis.

2. By retrieving knowledge from the pre-constructed spa-
tial prototypes, SN-Adapter efficiently improves the
already trained models without any parameters or re-
training.

3. We conduct complete experiments on various 3D
benchmarks to demonstrate the effectiveness and ro-
bustness of our approach.

2. Related Work
Deep Learning for 3D Point Clouds. Point cloud based
shape classification of synthetic data [41] and real-world
data [34] have been widely studied by PointNet [26], Point-
Net++ [27] and so on [43, 40, 2, 21, 13, 53, 49, 52]. Part
segmentation [46] and scene segmentation [7, 30] ask for

the per-point classification, the methods [22, 10, 36, 4, 54]
of which normally extend feature decoders upon the clas-
sification networks to densely propagate the extracted fea-
tures. 3D object detection has wide usages in e.g., au-
tonomous driving [5, 24, 20, 17] and robotics [29, 6, 23].
Our SN-Adapter can be generalized to all 3D tasks, in-
cluding shape classification, part segmentation, and 3D ob-
ject detection, demonstrating our robustness for point cloud
analysis.

Feature Adapters in Computer Vision. The feature
adapter is a light-weight module to efficiently adapt large-
scale pre-trained models for downstream tasks. Moti-
vated by the adapter in NLP [16], CLIP-Adapter [12], Tip-
Adapter [48], and CoMo [47] introduce visual adapters
using CLIP for few-shot image classification: freeze the
pre-trained parameters of CLIP and only fine-tune the
adapters of two-layer MLP. Follow-up works have success-
fully applied adapters to tasks such as 3D open-world learn-
ing [50, 55], image captioning [31], object detection [11],
semantic segmentation [28], and video analysis [38]. Com-
pared to previous works, our SN-Adapter is efficient, non-
parametric, and aims at the tasks for 3D point clouds. We
leverage the idea of k nearest neighbors to enhance the
trained 3D networks without re-training.

Nearest-Neighbor Algorithm. Nearest-Neighbor Algo-
rithm memorizes the training data and predicts labels based
on the k nearest training samples (k-NN). Comparing with
neural networks k-NN is still favored for its simplicity and
efficiency. Models based on nearest-neighbor retrieval are
able to provide strong baselines for many tasks, such as
image captioning [8, 9], image restoration [25], few-shot
learning [39], and representation learning [3, 37]. Besides
computer vision, Nearest-Neighbor Algorithm also plays an
important role for some language tasks, e.g., language mod-
eling [14, 19] and machine translation [18, 33]. Different
from the above domains, for the first time, we explore how
to augment existing deep neural networks with Nearest-
Neighbor Algorithm for 3D point cloud analysis and pro-
pose an SN-Adapter with spatial prototypical knowledge re-
trieval.

3. Method
In this section, we respectively illustrate how our pro-

posed Spatial-Neighbor Adapter (SN-Adapter) benefits the
three 3D tasks: shape classification, part segmentation, and
3D object detection.

3.1. Shape Classification

Task Description. Given a trained 3D network for classi-
fication, we theoretically divide it into two parts: the feature
extractor Φ(·) and the 3D classifier Θ(·). The feature ex-
tractor takes as input a raw point cloud {pi}Ni=1 of N points
and outputs its C-dimensional global feature f ∈ RC . The
3D classifier then maps f into classification logits of K cat-
egories, lcls ∈ RK , which denote the predicted probability
for each category. We formulate them as

lcls = Θ(f); f = Φ({pi}Ni=1). (1)

Normally, Φ(·) is invariant to the permutation of points with
a pooling operation to capture the global characters, and
Θ(·) corresponds to the last linear projection layer of the
network.

Sample-wise Spatial Prototypes. For shape classifica-
tion, we construct the sample-wise spatial prototypes to re-
trieve 3D knowledge for each test point cloud. First, we
utilize the trained feature extractor Φ(·) to obtain the global
features of all M samples from the training set, denoted
as F cls ∈ RM×C . As each training sample is only repre-
sented by a single global vector, we are affordable to store
all M features F cls as the spatial prototypes for reserv-
ing complete prior 3D knowledge, denoted as Protocls ∈
RM×C . To further explore the spatial distributions of differ-
ent point clouds, we also obtain a global positional vector
for each training sample by averaging the 3D positional en-
codings [35] of all input points, which are directly added

to Protocls. Then during inference, we extract the global
feature f of the test point cloud, and linearly interpolate the
two classification logits predicted by the 3D classifier and
our SN-Adapter, formulated as

lcls = Θ(f) + γSN-Adapter(f, Protocls), (2)

where γ denote the relative weights between two logits.

SN-Adapter. Analogous to all 3D tasks, SN-Adapter con-
ducts k-NN algorithm to aggregate k-nearest spatial knowl-
edge and adopts Euclidean distance as the distance metric
between f and Protocls. We represent the retrieved k-
nearest prototypes as N and the category set as C. Then,
the predicted probability of category c ∈ C in the logits is
calculated as

Prob(c|f) =
∑

pt∈Nc
1/d(f, pt)∑

c∈C

∑
pt∈Nc

1/d(f, pt)
, (3)

where Nc denotes the retrieved prototypes of the c category,
and d(f, pt) denotes the distance between test point cloud’s
feature f and the prototype pt.

3.2. Part Segmentation

Task Description. Part segmentation task requires the
network to classify each point in the input point cloud. The
Φ(·) is developed as an encoder-decoder architecture and
outputs the extracted features {fi}Ni=1 for all the N points.
We formulate this as

{lsegi }Ni=1 = {Θ(fi)}Ni=1; {fi}Ni=1 = Φ({pi}Ni=1), (4)

where lsegi ∈ RK denotes the classification logits of the i-
th point. Here, Θ(·) is shared for every point and maps the
point feature into logits of K part categories.

Part-wise Spatial Prototypes. We construct the part-
wise spatial prototypes to retrieve 3D knowledge for every
single point of the test point cloud. Considering the clas-
sification logits are to be made for each point, we need to
extract and memorize the features F of all N points from
M training samples as prototypical knowledge. However,
it would be overloaded to store the F seg ∈ RM×N×C , let
alone the k-NN retrieval. Therefore, for each training sam-
ple, we propose to obtain its part-wise prototypical features
by conducting average pooling on the points of the same
part category, denoted as Part Pooling(·). For example, a
point cloud of a chair is annotated as three parts: leg, seat,
and back. Then, we only need to store three prototypical
features for this training sample, whose dimension is R3×C .
After the pre-construction, we acquire the spatial prototyp-
ical knowledge for part segmentation, Protoseg , which is

space-efficient and still in the same order as Protocls, for-
mulated as

Protoseg = Part Pooling(F seg) ∈ RM×P×C , (5)

where P is the maximum part category number of an ob-
ject in the dataset, which is no more than six in ShapeNet-
Part [46]. During inference, after extracting the features
{fi}Ni=1, we combine the two classification logits for each
N point of the test point cloud, formulated as

{lsegi }Ni=1 = {Θ(fi)

+ γSN-Adapter(fi, P rotoseg)}Ni=1.
(6)

3.3. 3D Object Detection

Task Description. Taking a scene-level point cloud as in-
put, the 3D object detector learns to localize and classify
the objects in the 3D space. The detector would first utilize
the Φ(·) to extract the scene-level 3D features and group
the features for each object proposal, denoted as {fi}Oi=1,
where fi ∈ RC and O represents the proposed object num-
ber of the scene. Then, several parallel MLP-based heads
are adopted to predict the category, 3D position and other
attributes for each object proposal. We formulate the main
process as

{ldeti }Oi=1 = {Θcls(fi)}Oi=1;

{pdeti }Oi=1 = {Θpos(fi)}Oi=1;

{fi}Oi=1 = Φ({pi}Ni=1),

(7)

where Θcls(·) and Θpos(·) are responsible for predicting
the classification logits ldeti ∈ RK and the 3D position
pdeti ∈ R3, which are shared for all object proposals. After
this, the Non-Maximum Suppression (3D NMS) is applied
to discard the duplicated predictions in the 3D space, which
is significant to the final evaluation metric.

Object-wise Spatial Prototypes. We construct the
object-wise spatial prototypes to retrieve 3D knowledge
for each object proposal in the test point cloud. We first
leverage the trained 3D detector to obtain the extracted
object features and predicted 3D positions for all training
samples, denoted as F det, P det ∈ RM×O×3. On top
of that, we adopt positional encodings [35] based on
trigonometric functions to embed P det and add them onto
F det. This provides F det with sufficient 3D positional
information of objects and facilitates the k-NN retrieval
for SN-Adapter. We then calculate the spatial prototypical
knowledge for 3D object detection as

Protodet = F det + PE(P det) ∈ RM×O×C , (8)

where PE denotes the positional encodings function.

Figure 2. Comparison of individual PointNet, SN-Adapter, and
the interpolated model for different categories. We show the
the overall accuracy (OA) of 40 categories on ModelNet40 [41].

PointNet SN-Adapter Interpolation Number

! % ! 72
! % % 36
% ! ! 68
% ! % 10
% % ! 1

Table 1. Statistic of sample numbers where individual mod-
els produce different predictions. !and %denote correct and
wrong predictions, respectively.

During inference, for each object proposal we acquire its
predicted fi, l

det
i , pdeti and aggregate them likewise via po-

sitional encodings. The SN-Adapter retrieves spatial knowl-
edge from nearest neighbors and enhances the classification
logits predicted by Θcls, formulated as

{ldeti }Oi=1 = {Θcls(fi) (9)

+ γSN-Adapter(fi + PE(pdeti), P rotodet)}Oi=1.

Our SN-Adapter is inserted before the 3D NMS operation,
which could rectify some ‘false’ classification made by Θcls

and effectively avoid the removal of ‘true’ bounding boxes.

4. Analysis
4.1. Quantative Analysis

Here, we take PointNet [26] for shape classification on
ModelNet40 [41] as the example. First, we show the per-
formance of individual PointNet’s 3D classifier and SN-
Adapter compared to the interpolated one in Figure 2: the
interpolated model achieves higher accuracy for most cate-
gories. Though SN-Adapter performs much worse than the
learned 3D classifier on some categories, it could reversely
enhance to achieve a better 3D classifier by interpolation.
Specifically, we present the statistic for the interpolated pre-
diction whose individual predictions of 3D classifier and
SN-adapter are inconsistent. As shown in Table 1, when

-1.14

-3.7543

0.2857

0.3810

1.3344

Bench Table TV-stand

-0.4232

-0.6529

-0.7427

0.4286

0.5238

PointNet SN-Adapter

-6.4059 0.0476

3.0543

3.7883

Interpolation

-5.9940

-6.1044

-2.9062

-0.0664

0.0476

0.6667

0.2857

-5.6925

2.8605

2.4050

PointNet SN-Adapter Interpolation PointNet SN-Adapter Interpolation

0.1429

Piano

γ=8.65

Desk

-0.4591

γ=8.65 γ=8.65

+ +

Night-stand Table

+

Table

0.8125

TV-stand

(b)(a) (c)

Figure 3. Classification logits of PointNet, SN-Adapter and the interpolated model. We report the numerical results of logits before the
softmax function and denote different categories with different colors. We highlight the category of the highest value in the logits with a
box and the ground-truth category with a check mark.

the original PointNet is wrong, but SN-Adapter is correct,
our SN-Adapter can help rectify nearly 90%, 68/(68+10),
of the predictions. More surprisingly, we observe that, even
if both PointNet and SN-Adapter are wrong, the interpo-
lated one still obtains the correct results, demonstrating the
implicit complementary knowledge between the learned 3D
classifier and the spatial prototypes.

To further illustrate the complementarity of SN-Adapter,
we present the predicted classification logits before softmax
function, for the cases where SN-Adapter corrects the false
prediction of PointNet. As shown in Figure 3 (a), the Point-
Net’s predicted values of ‘night-stand’ and ‘table’ are close,
indicating it is difficult for PointNet to distinguish them. In
contrast, the SN-Adapter could produce more discrimina-
tive values between the two categories and address the am-
biguity of PointNet by an ensemble with a large weight γ.
As for Figure 3 (b), when PointNet confidently predicts the
wrong category, our SN-Adapter can put the final predic-
tion back on track with the confidence score for the correct
category. Figure 3 (c) shows that when both of their predic-
tions are wrong, the interpolation of SN-Adapter can still
contribute to the right answer.

4.2. Qualitative Analysis

Why does the k-NN retrieval work for point cloud analy-
sis? For one, due to the difficulty of data acquisition, the 3D
community lacks large-scale high-quality training datasets,
and existing methods can only learn from limited samples.
In this situation, the representative 3D prototypes become
much more significant since the construction of prototypes
are not overly dependent on data distribution and can well
represent the typical features of a category. In contrast, the
3D classifiers of deep neural networks greatly suffer from
long-tail distributions of training data. That is to say, when
the 3D samples of some categories are insufficient during
training, the learnable classifier would not form the predic-
tion preference of those unusual categories and fail to recog-
nize them for testing. The k-NN upon spatial prototypes in-

herently overcomes such category imbalance via similarity-
based retrieval, which hardly depends on the amount of
training data.

4.3. Theoretical Analysis

We start from the perspective of learned embedding
space to illustrate how SN-Adapter boosts the learned deep
neural networks. The k-NN algorithm of SN-Adapter is
able to associate pre-constructed spatial prototypes in close
proximity. These adjacent prototypes normally have the
same ground-truth labels and share similar semantic knowl-
edge. Spatially, the entire 3D space can be divided into
many discrete spherical regions. We define a spherical re-
gion in the embedding space as Nϵ(x) = {x′||x′ − x||2 ≤
ϵ}, where x denotes the spherical center and ϵ denotes its
radius. The goal of SN-Adapter is based on the extracted
feature of a test point cloud to retrieve clusters and then ob-
tain representative knowledge from them.

For better retrieval performance, each spherical cen-
ter prefers to have sufficiently pure spherical regions. In
other words, the information of the representative proto-
types should be convincing enough, formulated as ∀x′ ∈
Nϵ(x), gt(x

′) = gt(x), where gt(·) denotes the ground-
truth label. We then define C(Nϵ) and P (Nϵ) as the cover-
age and purity of all spherical regions. The optimal C(Nϵ)
desires ϵ to be large enough to cover the entire space, while
the purity requires a smaller ϵ to contain as few deviating
prototypes as possible. Therefore, we need to consider the
trade-off between both coverage and purity. Formally, we
expect to obtain the specific ϵ that satisfies ϵ∗ = max{ϵ :
P (Nϵ) ≥ α}, where α serves as a threshold for P (Nϵ) and
also the maximum function that helps increase C(Nϵ). In
our experiments, we do not explicitly set the value α, but
leverage an appropriate number of k nearest neighbors to
implicitly obtain the optimal trade-off for better retrieving
prototypical knowledge.

Method OA (%) mAcc (%) k

PointNet [26] 89.34 85.79 -
+ SN-Adapter 90.68 86.47 21

PointNet++ [27] 92.42 89.22 -
+ SN-Adapter 93.48 90.00 77

DGCNN [40] 92.18 89.10 -
+ SN-Adapter 92.99 89.70 24

PCT [15] 93.27 89.99 -
+ SN-Adapter 93.56 90.17 110

CurveNet [43] 93.84 91.14 -
+ SN-Adapter 94.25 91.50 2

Table 2. Shape classification on ModelNet40 [41] dataset.

Method OA (%) mAcc (%) k

PointNet [26] 68.2 63.4 -
+ SN-Adapter 70.1 64.2 128

SpiderCNN [45] 73.7 69.8 -
+ SN-Adapter 74.4 70.5 68

PointNet++ [27] 77.9 75.4 -
+ SN-Adapter 79.2 76.2 16

DGCNN [40] 78.1 73.6 -
+ SN-Adapter 78.9 74.0 140

PointMLP [2] 85.7 84.0 -
+ SN-Adapter 86.3 84.6 5

Table 3. Shape classification on ScanObjectNN [34] dataset.

5. Experiments
5.1. Shape Classification

Settings We evaluate our SN-Adapter on two widely
adopted datasets for shape classification: ModelNet40 [41]
and ScanObjectNN [34]. We select several representa-
tive methods and append SN-Adapter upon them: Point-
Net [26], PointNet++ [27], SpiderCNN [45], DGCNN [40],
PCT [15], CurveNet [43], and PointMLP [2]. We set the last
linear layer as Θ(·) and all the precedent layers as Φ(·). The
overall accuracy (OA) and class-average accuracy (mAcc)
are adopted as evaluation metrics. Note that, as our SN-
Adapter requires no training time, we utilize simple loops
to search for the best k within minutes.

Performance In Table 2 and Table 3, we show the en-
hancement results of SN-Adapter on the two datasets, re-
spectively. On ModelNet40 [41] of synthetic data, Point-
Net++ is boosted by +1.06% mAcc, which has surpassed
the more complicated DGCNN by +1.30%. On ScanOb-
jectNN [34] of real-world data, SN-Adapter shows stronger
complementary characteristics to the trained networks,
which boosts PointNet by 1.9% OA and PointNet++ by

Method mIoUI (%) k

DGCNN [40] 85.17 -
+ SN-Adapter 85.26 22

PointNet++ [27] 85.40 -
+ SN-Adapter 85.47 1

PointMLP [2] 85.69 -
+ SN-Adapter 85.86 1

CurveNet [43] 86.58 -
+ SN-Adapter 86.69 64

Table 4. Part segmentation on ShapeNetPart [46].

Method AP25 (%) AR25 (%)

VoteNet [10] 57.84 80.92
+ SN-Adapter 58.46 83.74

3DETR-m [22] 64.60 77.22
+ SN-Adapter 65.16 84.56

Table 5. 3D object detection on ScanNetV2 [7].

+1.3% OA. For the state-of-the-art PointMLP, our SN-
Adapter improves it by +0.6% OA and +0.6% mAcc.

5.2. Part Segmentation

Settings For part segmentation, we test our SN-Adapter
on ShapeNetPart [46] dataset and select the four baseline
models: DGCNN [40], PointNet++ [27], PointMLP [2] and
CurveNet [43]. We follow other settings the same as the
shape classification experiments and report the mean IoU
across all instances in the dataset, denoted as mIoUI .

Performance As the part segmentation benchmark has
long been saturated, a slight improvement for mIoUI is also
worth mentioning. In Table 4, we observe the biggest im-
provement of +0.17% mIoUI is on PointMLP, compared to
Curvenet’s +0.11% and DGCNN’s +0.09%. This indicates
that the stronger feature encoder Φ(·) contributes to better
part-wise prototypes for the retrieval of SN-Adapter.

5.3. 3D Object Detection

Settings For 3D object detection on ScanNetV2 [7], we
select VoteNet [10] and 3DETR-m [22] as the baseline mod-
els to test our SN-Adapter. We set the MLP-based classifi-
cation head as Θ(·) and the scene-level feature extractor as
Φ(·). The SN-Adapter is inserted after Θ(·) and before the
3D NMS. We report the mean Average Precision (AP25) and
mean Average Precision (AR25) at 0.25 IoU threshold. For
time efficiency, the hyperparameter k is simply set as 32 for
the two detectors.

Figure 4. Ablation study of interpolation ratio γ.

Metric PointNet DGCNN CurveNet

Manhattan 90.36 92.63 94.00
Chebyshev 88.29 92.26 93.56
Hamming 88.37 92.22 93.72
Canberra 90.07 91.82 93.92
Braycurtis 90.24 92.46 94.04
Euclidean 90.68 92.99 94.25

Table 6. Different distance metrics for SN-Adapter on Model-
Net40 [41] dataset with overall accuracy (OA) (%).

Performance Table 5 presents the enhanced detection
performance by SN-Adapter. For AR25, we significantly
improve by +2.82% on VoteNet and +7.34% on 3DETR-
m. This indicates that the spatial prototypical knowledge
can effectively avoid the removal of false duplicated bound-
ing boxes in 3D space. More specifically, some spatially
neighboring boxes, which have incorrectly similar scores
and should have been removed by 3D NMS, can be recti-
fied and reserved as outputs.

5.4. Ablation Study

Main hyperparameters We here conduct the ablation
study concerning two hyperparameters: γ and k. We adopt
PointNet [26] with SN-Adapter and experiment shape clas-
sification on ModelNet40 [42]. As the γ varies from 0 to 50
in Figure 4, the enhancement of SN-Adapter peaks around
8, but becomes harmful after 10. This indicates the SN-
Adapter would adversely affect the baseline model under a
too large proportion, and requires a proper interpolation ra-
tio for best introducing the spatial prototypical knowledge.
The results in Figure 5 show that our SN-Adapter is not very
sensitive to k when it is large enough (over 80), which has
already covered the most contributing prototypes to the final
classification.

Distance metrics for retrieval. Different distance met-
rics for SN-Adapter affect the retrieval of nearest spatial

Figure 5. Ablation study of the number of nearest neighbors, k.

PE Pooling PointNet PointNet++ PCT

- - 90.11 93.19 93.52
Fourier Avg. 89.99 93.11 93.52
Fourier Max. 89.95 93.23 93.48
Sin/cos Avg. 90.03 93.48 93.56
Sin/cos Max. 90.68 93.15 93.48

Table 7. Different positional encodings (PE) and pooling opera-
tions of SN-Adapter for on ModelNet40 [41] dataset with overall
accuracy (OA) (%). ‘Fourier’ and ‘Sin/cos’ denote Fourier and
trigonometric encoding functions [22], respectively. The first row
denotes SN-Adapter without any positional encodings.

prototypes, which further leads to different performance en-
hancement over the baseline models. We evaluate our SN-
Adapter with different distance metrics for shape classifica-
tion on ModelNet40 [42] and adopt three baseline models:
PointNet [26], DGCNN [40], and CurveNet [43]. As re-
ported in Table 6, for three baseline models, Euclidean dis-
tance performs better, which can be better reveal the point
distribution in the 3D space.

Positional encodings. For shape classification, we equip
the sample-wise Protocls with global positional vectors to
preserve the spatial distributions of points. In Table7, we
explore the best way to obtain such vectors concerning the
encoding functions and pooling operations. We evaluate
three baseline models: PointNet [26], PointNet++ [27] and
PCT [15] for shape classification on ModelNet40 [42]. As
reported, ’Sin/cos’ encoding function has more advantages,
which can bring favorable performance boost to the ‘SN-
Adapter without PE’.

3D Object Detection We insert our SN-Adapter into the
trained object detectors before 3D NMS, and summarize the
object-wise prototypes with positional encodings. We here
explore the effectiveness of both insert position and posi-
tional encodings. In Table 8, we select 3DETR-m [22] as

v

(a) CurveNet

(b) With SN-Adapter

Figure 6. Visualization of part segmentation without (a) and with (b) our SN-Adapter on ShapeNetpart [46] dataset. We select
CurveNet [43] as the baseline model and highlight the differences by red circles (Zoom in for a better view).

Method AP25 (%) AR25 (%)

3DETR-m 64.60 77.22
3DETR-m + SN-Adapter 65.16 84.56
After 3D NMS 64.62 78.19
Without PE 65.02 83.48

Table 8. Ablation study of SN-Adapter for 3D object detection
on ScanNetV2 [7]. For last two rows, we respectively insert SN-
Adapter after 3D NMS and discard the positional encodings.

our baseline on ScanNetV2 [7] dataset. As shown, if after
3D NMS, the SN-Adapter cannot bring noteworthy boosts,
since the remaining 3D boxes filtered by NMS are already
the most confident ones for the detector. Also, blending the
positional encodings can improve the performance of SN-
Adapter for introducing more positional knowledge into the
prototypes.

Extra Costs of SN-Adapter. Besides the enhancement on
scores, we explore if our SN-Adapter would cause too much
extra time and memory costs over baseline models. We uti-
lize a single RTX 3090 GPU with batch size 64 for testing
and select two baseline models: DGCNN [40] for shape
classification on ModelNet40 [41] and CurveNet [43] for
part segmentation on ShapeNetPart [46]. As shown in Ta-
ble 9, our non-parametric SN-Adapter can achieve superior
performance-cost trade-off to enhance already trained net-
works without re-training.

5.5. Visualization

In Figure 6, we visualize the results of CurveNet [43]
with and without our SN-Adapter for part segmentation
on ShapeNetPart [46] dataset. As shown, our SN-Adapter

Method Score (%) Latency Memory

DGCNN 92.18 0.022s 9.74 GiB
+ SN-Adapter 92.99 0.046s 10.06 GiB

CurveNet 86.58 0.607s 10.93 GiB
+ SN-Adapter 86.69 0.834s 11.50 GiB

Table 9. The extra costs of SN-Adapter for time and memory.
We test on a single RTX 3090 GPU with batch size 64 and report
the OA/ mIoUI for DGCNN/ CurveNet.

mainly improves the segmentation of points located in the
connection areas between different object parts. Such points
normally contain the semantic knowledge of both object
parts and would confuse the learned 3D classifier of deep
neural networks. In contrast, our SN-Adapter could allevi-
ate such issue by retrieving from the prototypes to obtain
better part-wise discrimination capability.

6. Conclusion

We propose Spatial-Neighbor Adapter (SN-Adapter), a
plug-and-play enhancement module for existing 3D net-
works without extra parameters and re-training. From the
pre-constructed prototypes, SN-Adapter leverages k near-
est neighbors to retrieve spatial knowledge and effectively
boost the 3D networks by providing complementary char-
acteristics. Limitations. Although our SN-Adapter can be
generalized to various tasks, e.g., shape classification, part
segmentation, and 3D object detection, the performance en-
hancement for part segmentation is relatively lower than
others. Our future work will focus on designing more ad-
vanced part-wise prototypes for better segmentation results.

References
[1] Aitor Aldoma, Zoltan-Csaba Marton, Federico Tombari,

Walter Wohlkinger, Christian Potthast, Bernhard Zeisl,
Radu Bogdan Rusu, Suat Gedikli, and Markus Vincze. Tuto-
rial: Point cloud library: Three-dimensional object recogni-
tion and 6 dof pose estimation. IEEE Robotics & Automation
Magazine, 19(3):80–91, 2012. 1

[2] Anonymous. Rethinking network design and local geometry
in point cloud: A simple residual MLP framework. In Sub-
mitted to The Tenth International Conference on Learning
Representations, 2022. under review. 1, 2, 6

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9650–9660, 2021. 3

[4] Jingdao Chen, Zsolt Kira, and Yong K Cho. Deep learning
approach to point cloud scene understanding for automated
scan to 3d reconstruction. Journal of Computing in Civil
Engineering, 33(4):04019027, 2019. 1, 2

[5] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 1907–1915, 2017. 2

[6] Nikolaus Correll, Kostas E Bekris, Dmitry Berenson, Oliver
Brock, Albert Causo, Kris Hauser, Kei Okada, Alberto Ro-
driguez, Joseph M Romano, and Peter R Wurman. Analysis
and observations from the first amazon picking challenge.
IEEE Transactions on Automation Science and Engineering,
15(1):172–188, 2016. 2

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 2, 6, 8

[8] Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta,
Li Deng, Xiaodong He, Geoffrey Zweig, and Margaret
Mitchell. Language models for image captioning: The quirks
and what works. arXiv preprint arXiv:1505.01809, 2015. 3

[9] Jacob Devlin, Saurabh Gupta, Ross Girshick, Margaret
Mitchell, and C Lawrence Zitnick. Exploring nearest
neighbor approaches for image captioning. arXiv preprint
arXiv:1505.04467, 2015. 3

[10] Zhipeng Ding, Xu Han, and Marc Niethammer. Votenet: A
deep learning label fusion method for multi-atlas segmenta-
tion. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 202–210.
Springer, 2019. 1, 2, 6

[11] Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao,
and Guoqi Li. Learning to prompt for open-vocabulary ob-
ject detection with vision-language model. arXiv preprint
arXiv:2203.14940, 2022. 2

[12] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao
Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao.
Clip-adapter: Better vision-language models with feature
adapters. arXiv preprint arXiv:2110.04544, 2021. 2

[13] Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia
Deng. Revisiting point cloud shape classification with a sim-
ple and effective baseline. arXiv preprint arXiv:2106.05304,
2021. 1, 2

[14] Edouard Grave, Moustapha M Cisse, and Armand Joulin.
Unbounded cache model for online language modeling with
open vocabulary. Advances in neural information processing
systems, 30, 2017. 3

[15] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7(2):187–199,
2021. 1, 6, 7

[16] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine
Learning, pages 2790–2799. PMLR, 2019. 2

[17] Peixiang Huang, Li Liu, Renrui Zhang, Song Zhang, Xinli
Xu, Baichao Wang, and Guoyi Liu. Tig-bev: Multi-view bev
3d object detection via target inner-geometry learning. arXiv
preprint arXiv:2212.13979, 2022. 2

[18] Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettle-
moyer, and Mike Lewis. Nearest neighbor machine transla-
tion. arXiv preprint arXiv:2010.00710, 2020. 3

[19] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettle-
moyer, and Mike Lewis. Generalization through memoriza-
tion: Nearest neighbor language models. arXiv preprint
arXiv:1911.00172, 2019. 3

[20] Kiyosumi Kidono, Takeo Miyasaka, Akihiro Watanabe,
Takashi Naito, and Jun Miura. Pedestrian recognition us-
ing high-definition lidar. In 2011 IEEE Intelligent Vehicles
Symposium (IV), pages 405–410. IEEE, 2011. 2

[21] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. Advances in neural information processing systems,
31:820–830, 2018. 1, 2

[22] Ishan Misra, Rohit Girdhar, and Armand Joulin. An end-to-
end transformer model for 3d object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 2906–2917, October 2021. 1,
2, 6, 7

[23] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof
graspnet: Variational grasp generation for object manipula-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2901–2910, 2019. 2

[24] Luis E Navarro-Serment, Christoph Mertz, and Martial
Hebert. Pedestrian detection and tracking using three-
dimensional ladar data. The International Journal of
Robotics Research, 29(12):1516–1528, 2010. 2

[25] Tobias Plötz and Stefan Roth. Neural nearest neighbors net-
works. Advances in Neural information processing systems,
31, 2018. 3

[26] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1, 2, 4, 6, 7

[27] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 1, 2,
6, 7

[28] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong
Tang, Zheng Zhu, Guan Huang, Jie Zhou, and Jiwen Lu.
Denseclip: Language-guided dense prediction with context-
aware prompting. arXiv preprint arXiv:2112.01518, 2021.
2

[29] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and
Michael Beetz. Close-range scene segmentation and recon-
struction of 3d point cloud maps for mobile manipulation
in domestic environments. In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1–6.
IEEE, 2009. 2

[30] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 567–576, 2015. 2

[31] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter:
Parameter-efficient transfer learning for vision-and-language
tasks. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5227–5237,
2022. 2

[32] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6411–6420, 2019. 1

[33] Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang.
Learning to remember translation history with a continuous
cache. Transactions of the Association for Computational
Linguistics, 6:407–420, 2018. 3

[34] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification
model on real-world data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1588–
1597, 2019. 2, 6

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 3,
4

[36] Francesco Verdoja, Diego Thomas, and Akihiro Sugimoto.
Fast 3d point cloud segmentation using supervoxels with ge-
ometry and color for 3d scene understanding. In 2017 IEEE
International Conference on Multimedia and Expo (ICME),
pages 1285–1290. IEEE, 2017. 1, 2

[37] Bram Wallace and Bharath Hariharan. Extending and ana-
lyzing self-supervised learning across domains. In European
Conference on Computer Vision, pages 717–734. Springer,
2020. 3

[38] Mengmeng Wang, Jiazheng Xing, and Yong Liu. Actionclip:
A new paradigm for video action recognition. arXiv preprint
arXiv:2109.08472, 2021. 2

[39] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Lau-
rens van der Maaten. Simpleshot: Revisiting nearest-

neighbor classification for few-shot learning. arXiv preprint
arXiv:1911.04623, 2019. 3

[40] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 1, 2, 6, 7, 8

[41] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 1, 2, 4, 6, 7, 8

[42] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 7

[43] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and
Weidong Cai. Walk in the cloud: Learning curves for point
clouds shape analysis. arXiv preprint arXiv:2105.01288,
2021. 1, 2, 6, 7, 8

[44] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiao-
juan Qi. Paconv: Position adaptive convolution with dy-
namic kernel assembling on point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3173–3182, 2021. 1

[45] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 87–102, 2018.
6

[46] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics (ToG), 35(6):1–12, 2016. 2, 4, 6, 8

[47] Renrui Zhang, Hanqiu Deng, Bohao Li, Wei Zhang, Hao
Dong, Hongsheng Li, Peng Gao, and Yu Qiao. Collaboration
of pre-trained models makes better few-shot learner. arXiv
preprint arXiv:2209.12255, 2022. 2

[48] Renrui Zhang, Rongyao Fang, Peng Gao, Wei Zhang,
Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li.
Tip-adapter: Training-free clip-adapter for better vision-
language modeling. arXiv preprint arXiv:2111.03930, 2021.
2

[49] Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin
Zhao, Dong Wang, Yu Qiao, and Hongsheng Li. Point-m2ae:
multi-scale masked autoencoders for hierarchical point cloud
pre-training. arXiv preprint arXiv:2205.14401, 2022. 2

[50] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xu-
peng Miao, Bin Cui, Yu Qiao, Peng Gao, and Hongsheng Li.
Pointclip: Point cloud understanding by clip. arXiv preprint
arXiv:2112.02413, 2021. 2

[51] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xu-
peng Miao, Bin Cui, Yu Qiao, Peng Gao, and Hongsheng
Li. Pointclip: Point cloud understanding by clip. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8552–8562, 2022. 1

[52] Renrui Zhang, Liuhui Wang, Yu Qiao, Peng Gao, and Hong-
sheng Li. Learning 3d representations from 2d pre-trained
models via image-to-point masked autoencoders. arXiv
preprint arXiv:2212.06785, 2022. 2

[53] Renrui Zhang, Ziyao Zeng, Ziyu Guo, Xinben Gao, Kexue
Fu, and Jianbo Shi. Dspoint: Dual-scale point cloud
recognition with high-frequency fusion. arXiv preprint
arXiv:2111.10332, 2021. 2

[54] Bo Zheng, Yibiao Zhao, Joey C Yu, Katsushi Ikeuchi, and
Song-Chun Zhu. Beyond point clouds: Scene understanding
by reasoning geometry and physics. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3127–3134, 2013. 1, 2

[55] Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyao Zeng,
Shanghang Zhang, and Peng Gao. Pointclip v2: Adapting
clip for powerful 3d open-world learning. arXiv preprint
arXiv:2211.11682, 2022. 2

