
DRAFT
Vers

ion

AttTrack: Online Deep Attention Transfer for
Multi-object Tracking

Keivan Nalaie
McMaster University
nalaiek@mcmaster.ca

Rong Zheng
McMaster University
rzheng@mcmaster.ca

Abstract

Multi-object tracking (MOT) is a vital component of in-
telligent video analytics applications such as surveillance
and autonomous driving. The time and storage complexity
required to execute deep learning models for visual object
tracking hinder their adoption on embedded devices with
limited compute power. In this paper, we aim to accelerate
MOT by transferring the knowledge from high-level features
of a complex network (teacher) to a lightweight network
(student) at both training and inference time. The proposed
AttTrack framework has three key components: 1) cross-
model feature learning to align intermediate representa-
tions from the teacher and student models, 2) interleaving
the execution of the two models at inference time, and 3) in-
corporating the updated predictions from the teacher model
as prior knowledge to assist the student model. Experiments
on pedestrian tracking tasks are conducted on the MOT17
and MOT15 datasets using two different object detection
backbones YOLOv5 and DLA34 show that AttTrack can
significantly improve student model tracking performance
while sacrificing only minor degradation of tracking speed.

1. Introduction
Multi-object tracking (MOT) is a fundamental problem

in computer vision that aims to identify trajectories in video
frames. MOT is a key building block of many applications
such as human-computer interaction, surveillance, and au-
tonomous driving tasks. Existing methods handle a MOT
task by treating it as two sub-problems: object detection
and object association. Object detection identifies bound-
ing boxes of objects of interest in each frame whereas object
association links detected objects to form trajectories over
time.

As neural network models for MOT become more com-
plex, improved accuracy usually comes at the cost of longer

inference time. To accelerate the execution of deep mod-
els, techniques such as model quantization [27, 17, 2] and
pruning [20, 25, 41] have been widely utilized to reduce
computations and redundant connections. Computation ac-
celeration from model quantization is generally hardware
dependent [12]. Extensive parameter tuning is required for
network pruning to work without significant loss of accu-
racy [5]. Recently, a few works utilized temporal[6, 24, 22]
and spatial [35] correlations by finding configurations (e.g.,
frame rate, frame resolution) that achieve a good trade-off
between computation complexity and model performance.
Unfortunately, the optimal configuration is not only input
sensitive but also dependent on run time environments such
as the available CPU or memory resources.

Another line of work to reduce model complexity is
through knowledge distillation (KD) [38]. KD uses soft la-
bels generated by a large model (teacher) to train a small
neural network with fewer parameters (student). The soft
labels provide useful information that allows the student
model to learn the behavior of the teacher to improve gen-
eralization. However, the lack of distilled knowledge for
the student model during inference may hinder it from cor-
rectly detecting harder instances (e.g., crowded scenes with
smaller objects).

In this work, we propose an attention transfer approach
for object tracking aiming to exploit the knowledge of a
teacher model at both training and inference stages. The
proposed online deep attention transfer network (AttTrack),
is inspired by the idea of attention transfer first proposed
in [38]. Unlike existing tracking methods, our detection
model receives additional information in the form of pre-
viously detected objects from the teacher model. We only
run the teacher model every few frames (called key frame)
during inference to improve the representation capability
of the student model and help it to discover likely object
positions in the remaining frames. The student model can
gain information about obstructed or barely visible objects
by leveraging extracted information from outputs of the

ar
X

iv
:2

21
0.

08
64

8v
2 

 [
cs

.C
V

] 
 2

7 
O

ct
 2

02
2



DRAFT
Vers

ion

teacher model on prior frames at no extra cost. The student
model is trained to fuse extracted features of input frames
and the detection estimation from the teacher model.

Extensive experiments show that AttTrack improves the
tracking performance of small models with marginal in-
creases at interference time. Choosing the intervals to run
the teaching model, results in different trade-offs between
performance and efficiency. In summary, the main contri-
butions of this paper are as follows:

• We conduct an empirical study to investigate the im-
pacts of model size on tracking performance and
speed.

• We propose an end-to-end trainable AttTrack frame-
work to transfer the knowledge of a complex teacher
model to a lightweight student model at both training
and inference time.

• Extensive testing on the MOT17 and MOT15 datasets
demonstrates the effectiveness of AttTrack. For ex-
ample, our approach can improve the MOTA score on
YOLOv5 and DLA34 architectures by up to 12% with
comparable computation time when compared to ex-
isting attention-based methods.

The remainder of the paper is structured as follows. We first
describe related work in Section 2 and study the impact of
model size in tracking performance and speed in Section 3.
In Section 4 details of AttTrack is presented. We present
experimental results in Section 5, followed by a conclusion
in Section 6.

2. Related Work
2.1. Knowledge distillation

Knowledge Distillation (KD) was first proposed by Hin-
ton et al. [14] , which aims to train a student (a smaller
and faster) model by transferring knowledge from a teacher
(a bigger and slower) model. This knowledge in the form
of softened outputs of the teacher model is more informa-
tive than one-hot vectors in training data. Subsequent stud-
ies improved upon [14] and devised various ways to ease
the training of small models with few trainable parame-
ters. Romero et al. [31] proposed FitNet, which uses the
intermediate representation learned by a teacher model to
change the structure of a small model from being wide and
shallow to narrow and deep. Knowledge transmission was
considered as a distribution matching problem in [16]. De-
spite success of KD in classification problems, the needs for
bounding box regression and heatmaps estimation in object
detection introduce additional obstacles. To extend KD to
object detection Chen et al. [3] included a feature imitation
loss into the detection loss to use the intermediate features
of the teacher as hints for the student model. In [21], the

authors devised MIMIC, an extended KD for detector mod-
els by employing a fully convolutional feature mimic ar-
chitecture to transfer knowledge for each pixel individually.
In order to avoid teacher supervision for background re-
gions, Mehta et al. [23] introduced objectness scaled distil-
lation for one-shot object detectors. Similarly, our method
uses the attention mechanism of the teacher to train the stu-
dent model on softer labels. However, the key distinction
between our AttTrack and the aforementioned approaches
is that during inference time, the student model uses real
teacher outputs, to calibrate tracking outputs and achieve
better accuracy.

2.2. Attention mechanisms in object tracking

There is a long line of studies that combine the con-
cept of attention with machine learning. Human attention
mechanism theories [30] inspired early efforts on attention-
based learning such as [19, 8]. Attention has been used
in a wide range of machine learning tasks including deep
learning-based video object tracking. Fiaz et al. [10] pro-
posed a channel attention method that gives higher weights
to channels that help with target classification and localiza-
tion. Huang et al. [15] proposed an attentional online update
paradigm for siamese visual tracking to improve the perfor-
mance of a tracker by utilizing knowledge extracted from
prior tracking tasks. In [32] residual attention modules are
introduced in similarity tracking at multiple levels of feature
representation, resulting in improved discrimination quality
for similarity searching. Zhang et al. [40] created an atten-
tion retrieval network that uses learning masks to conduct
soft spatial constrains on features from a tracking backbone
network, mitigating the impact of background clutter.

2.3. Trainable attention mechanism for object de-
tection

Researchers have explored attention mechanisms in ob-
ject detection to enhance feature representation. The en-
coder and decoder stages of the object detecting system pre-
sented in [7] use a dynamic attention approach. The atten-
tions are determined by size, feature dimension, and spatial
features using a convolution-based encoder. In [36] the
authors proposed a feature pyramid network to object de-
tection in remote sensing images, adapting two types of at-
tention mechanisms: a) global spatial attention that extracts
spatial location-related features to improve the positioning
ability of the object detector, and b) pixel feature atten-
tion that expands the size of receptive fields that makes the
model learn more image details. Reverse attention was ex-
plored in [4] to assist top-down side-output residual learn-
ing in order to acquire more accurate residual features and
handle missing object areas and details. In [33], Wang et al.
applied a pyramid attention module in their deep saliency
model to give more weight to salient regions while extract-



DRAFT
Vers

ion

ing multi-scale characteristics from input images. In con-
trast to the previous researches, to achieve domain sensitiv-
ity in object detection, Wang et al. [34] utilized a domain
attention module for universal object detection.

AttTrack is orthogonal to the previous attempts and can
be used in conjunction with other attention-based meth-
ods. It takes advantage of the knowledge of more complex
teacher models at both training and inference time.

3. Preliminary Study of Model Sizes on Track-
ing Performance

To motivate our approach we first conduct empirical
evaluations on the MOT17 dataset to assess the performance
of tracking models with different model sizes.

3.1. Computation time break-down

Object detection, feature extraction, and object associa-
tion are the three components of a conventional deep neural
network (DNN)-based tracker. In [26], it has been reported
that object detection is the most time-consuming part of the
tracking process. Therefore, this study focuses on reducing
the computing cost of object detection while maintaining
the overall tracking performance.

3.2. Experimental Setting

Object detection. There are two main categories of ap-
proaches in DNN-based object detection. Two-stage ap-
proaches first extract regions of interest (RoIs) and then
classify and regress the RoIs. R-CNN [13] and Faster-
RCNN [29] are two widely used object detection models in
this category. In the second category, one-stage approaches,
directly identify and regress objects of interest. For exam-
ple, YOLO [28] divides an input image into S×S grids and
performs region classification and regression.

In this work, we choose FairMOT [39], a state-of-art
(SOTA) one-stage object detection model for three reasons.
First, one-stage object detectors tend to be faster than two-
stage object detectors. Second, with the YOLOv5 [18]
backbone, FairMOT results in a good trade-off between
speed and computation complexity. Third, for each iden-
tified object, FairMOT computes re-ID features, which can
be utilized in object association and tracking.

Model size. We evaluate three models following the
YOLOv5 architecture but with different sizes: YOLOv5,
YOLOv5-mid (a model with half of the channels in each
layer of the base model), and YOLOv5-small (a model with
a quarter of the number of channels in each layer of the
base model). All three models are pre-trained on the COCO
dataset (for object detection task) and then trained on the
MOT-17 dataset (for multi-object tracking task).

Performance metric. MOTA and IDF1(F1) are com-
monly used in MOT to assess tracking performance. An

MOTA score is calculated as follows:

MOTA = 1−
∑

t FPt + FNt + IDSWt∑
tGTt

, (1)

where t denotes the frame index, FPt, FNt, and IDSWt

denote the number of false positive, false negative, and ID
switched objects, respectively, and GT denotes the number
of ground truth bounding boxes.

Experiments are conducted on an NVIDIA GTX 3080
graphical card with 8 GB GDDR6, running a docker on
Ubuntu 20.04. The system is built using Pytorch v1.8 and
CUDA v11.3.

3.3. Results and Observations

The tracking performance of the three models on the val-
idation dataset is shown in Table 1. It is clear that low-
ering model size leads to a decrease in tracking accuracy
but accelerated inference (measured in frame per second
(FPS)). YOLOv5-mid, for example, is faster than the base
model at the cost of a 5.5% drop in MOTA score. Similarly,
YOLOv5-small suffers around a 23.5% drop in MOTA but
is 1.35 times faster than the base model.

Figure 1 illustrates the tracking performance for the full
model and the small model. Compared to the full model, the
small model fails to detect some objects, especially those
that are far away, partially occluded, or small sizes. There-
fore, our main goal is to train an efficient small neural net-
work using knowledge from a big model to attain compara-
ble performance. Unlike existing work on attention-based
approaches, knowledge transfer is performed both during
the training and inference stages.

Table 1: Impact of model size on tracking performance

Model IDF1(%)↑ MOTA(%)↑ FPS↑ Parameter size
YOLOv5 65.90 62.40 43.93 5.01 M

YOLOv5-mid 63.20 56.90 46.16 1.38 M
YOLOv5-small 44.70 38.90 59.32 0.31 M

4. The AttTrack Framework
Figure 2 shows the schematics of the proposed online

attention transfer approach. AttTrack employs a teacher
model to accurately detect objects from every K frames
at the inference time, and a student model combines this
knowledge in its tracking model in the interimK−1 frames
as depicted in Figure 2.

We formulate the video based object detection and track-
ing problem as follows: given a set of N input frames
X = {x1, x2, ..., xN} where xn ∈ R3×H×W , the ob-
jective is to first obtain set of Mi bounding boxes Bi =
{bi,1, bi,2, ..., bi,Mi

}, where bi,j = {recti,j , φi,j}, recti,j
denotes the 4-dim vector (center coordinates, height and



DRAFT
Vers

ion
(a) Extracted trajectories for MOT17-04 using YOLOv5-small
model

(b) Extracted trajectories for MOT17-04 using YOLOv5 model

Figure 1: Demonstration of tracking results from a small and a large model. The YOLOv5-small model performs less
accurately than the YOLOv5 model due to partially occluded or small-size objects.

(a) Teacher/student detection performance compari-
son: a powerful teacher model vs a small student
model

(b) Inference stage: attention transfer for two cycles

Figure 2: Schematic illustration of attention transfer. The
teacher model is used every K = 4 frames.

width) associated with the jth bounding box and φi,j rep-
resents the extracted visual features of the bounding box in
frame i. Consequently, object tracking aims to construct
the set of trajectories Tt = {Bt, idt}, where Bt is the set
of detected bounding boxes in trajectory t, idt denotes the
trajectory ID.

4.1. Online Attention Transfer

Modern object detectors such as FairMOT output
heatmaps in addition to bounding boxes, where the value of
each pixel in the heatmap is its likelihood of being an object
center. Let the heatmap output by the teacher for keyframe
k be htk:

htk = Ht(xk) (2)

where H represents the function associated with the
heatmap head of the teacher model. Then, we denote the
student model output ysk+i at frame k + i as below:

ysk+i = g(f(xk+i),Φ(htk, i)) (3)

where i stands for number of frames after the keyframe
k and Φ(htk, i) extrapolates the the heatmap of teacher in
frame k to get its heatmap in frame k + i, f is the gener-
ated features by backbone of the student model and g is the
fusion function to be explained in Section 4.3.

Figure 3 depicts system architecture of AttTrack. A
non-key frame is processed by the student model, to gen-
erate intermediate features. The student model then incor-
porates updated attention features based on the heatmap of
teacher on the most recent keyframe. With the fused fea-
tures, bounding box regression and re-Id networks are ap-
plied to generate the bounding box and re-ID features of
each object. During tracking, a trajectory is constructed
from detected objects that are similar in appearance-based
re-ID features and have a large intersection of union (IoU).
Specifically, object association is done in two steps: first,
visual features are used to match a trajectory and a detected
object. Second, if a match is found, the IoU measure is ap-
plied to determine whether a true match is obtained. If the
object is matched to a trajectory, the trajectory is extended;
otherwise, a new trajectory is initiated. Cosine similarity is
used in computing the similarity of visual-based features.
A Kalman filter [39] is then applied to update the position
state of each trajectory in the current frame.

Since the teacher model is applied for frames between
two keyframes, the heatmaps (attention) of teacher are out-
dated for any frame in-between. To extrapolate the heatmap
of teacher for these frames, we devise an attention update
approach next.



DRAFT
Vers

ion
Figure 3: System architecture: AttTrack applies a teacher model every K frames, and computes updated states Φ(htk, i)
(attention) for intermediate frames based on the teacher’s predicted heatmap htk for frame k. The updated state is then
fused with the prediction on frame k + i by a student model using a fusion network, resulting in object bounding boxes and
re-identification features for frame k + i.

4.2. Attention Update

The knowledge computed in earlier frames by the
teacher is beneficial to the student model. However, due to
the presence of moving objects, such information becomes
more outdated as the time elapses between the current frame
and the most recent key frame. Therefore, updates need to
be made from the teacher heatmap (Figure 4). Consider Bt

k

the set of objects detected by the teacher model in frame k.
We first estimate the velocity of each identified object based
on bounding box locations from previous frames. The ve-
locity is then used to predict the subsequent locations of the
corresponding object in frame k + i, i = 1, 2, ...,K − 1 us-
ing a simple linear kinematic equation. The heatmaps are
updated accordingly.

The updated heatmaps are most beneficial when the stu-
dent model fails to detect an object due to poor visibility.
However, when object movements are irregular, a new ob-
ject enters the scene or an object exits the scene, the infor-
mation of teacher can still be stale. Therefore, the updated
heatmaps should be combined with the prediction from the
student model for the current frame.

4.3. Network Design

For the teacher model, we can utilize any existing ob-
ject detection backbone such as DLA34 [37]. The student
model, like the teacher model, creates bounding boxes and
re-ID features for observed objects. For faster computa-
tions, the student model employs fewer parameters than the
teacher model in its network backbone. The student model
receives attention features and input image as inputs and
fuses the attention features and its own calculated features
as:

g(f(xk+i),Φ(htk, i)) = (f(xk+i),Φ(htk, i)) (4)

where fusion function g appends the extrapolated features
from teacher with new features calculated by the student

(a) States of outputs of teacher are updated
using linear kinematic equation

(b) Inference stage: attention transfer

Figure 4: Attention state update. We chooseK = 4 as num-
ber of frames between every keyframes. At frame Fk and
Fk+4 teacher model is performed whereas between these
two keyframes the student model is applied.

backbone. The fused features are fed into heatmap and re-
ID branches as defined in [39].

The student model is trained using the following loss
function:

Lstudent =

1

2
(

1

eω1
(Lheatmap + Lbox) +

1

eω2
Lidentity + ω1 + ω2),

(5)

which consists of learnable task based parameters ω1 and
ω2, heatmap loss, box-size loss, and re-identification loss
defined in [39].

4.4. Cross-model Feature Learning

Switching from one model (for example, teacher) to an-
other (for example, student) can result in re-ID features that
follow different distributions. Running AttTrack on a video
clip necessitates multiple transitions between the teacher



DRAFT
Vers

ionFigure 5: Student network architecture. The student model
has fewer parameters and takes two inputs: the input-frame
at time t and estimated heatmaps of teacher up to time t.

Figure 6: Cross model feature learning. In the object asso-
ciation step, pivot features for EFM and re-ID features for
IFM are used. The re-ID features of the student model in
IFM are aligned with the teacher model.

and student models. When re-ID features mismatch be-
tween teacher and predictions of student , identity fragmen-
tation occurs, leading to reduced tracking accuracy. To miti-
gate the domain gap between the re-ID features produced by
the student and the teacher models, we propose two cross-
model feature learning approaches.

Explicit Feature Mapping (EFM): We use pivot features
to induce correlation between the computed re-ID features
by the teacher and the student models. This is done by
applying a single linear layer to map the re-ID features to
the number of identities (encoded as a one-hot vector) in
the training set. Both student and teacher models are sub-
jected to the linear layer. By mapping each identity to those
learned pivots in the training time, this approach lowers the
distance across two model domains in the inference time.

Implicit Feature Mapping(IFM): the former method re-
quires an additional compute unit in both the student and
teacher models, resulting in increased total computation
costs. In the second approach, we perform feature map-
ping implicitly for the student model by mincing the re-ID

feature layer in the teacher model. During training, the ex-
tracted features from the teacher model are used as an ad-
ditional supervision signal and the loss function is updated
as:

LW = Lstudent(W ) + Lid−att(W ). (6)

where Lstudent is the loss function in Eq.5 and Lid−att is
L2 loss of re-ID features.

5. Performance Evaluation

To qualify the performance of AttTrack, we conduct ex-
periments on a pedestrian tracking task. The MOTA score
is used to evaluate tracking accuracy, while FPS is used to
quantify tracking speed.

5.1. Datasets

We evaluate AttTrack on pedestrian tracking tasks on
two MOT datasets. We use 11 training video clips in the
publicly accessible dataset MOT17. We also provide the
results of AttTrack on MOT15 [1], which in addition to
low-resolution street view videos it includes videos from
PETS [9] and KITTI [11] datasets. Since the ground truth
of test sequences is not made public, each video is split into
two halves with the first half in the training set and the sec-
ond half in the test set. We also use the COCO dataset to
pre-train the models. To evaluate the tracking performance
of our models, we utilize the official evaluation method
from MOT Challenge [1].

5.2. Implementation Details

Experiments are conducted using the same hardware and
software setup as in Section 3.2. We use the Adam opti-
mizer to train our model across 35 epochs, with a starting
learning rate of 1e-5 that lowers every 25 epochs. A batch
size of 12 is used. Rotation and scaling are applied to aug-
ment the training set. The input frame size is 1088 × 608
pixels.

To evaluate the performance of AttTrack, we consider
two backbone models for the student model. The first is
DLA34-small, which offers a good trade-off in tracking per-
formance and speed, and is based on DLA34 used in [39]. It
has in total 16.55M parameters. The second one, YOLOv5-
small, has the same architecture as YOLOv5 [18] but with
only one-fourth of the parameters, allowing for fast compu-
tations and acceptable performance.

5.3. Baseline Methods

To evaluate AttTrack, we consider the following base-
lines: Teacher-only and Student-only: object detection in
the tracking pipeline only uses teacher and student mod-
els, respectively. Naive-Mix: which alternates between a
teacher and a student model every K frames and merge



DRAFT
Vers

ion

the tracking outputs of the two with no further informa-
tion sharing in training or inference; AttTrack w/o atten-
tion update (AttTrack-no-update), which transfers attention
from Teacher to Student at inference but does not update
the attention (i.e., Φ(htk, i) = htk); and Layerwise, which is
similar to Naive-Mix but allows layerwise attention transfer
from the teacher to the student model in training[38].

5.4. Online-based Attention Transfer

Table 2 summarizes the performance of teacher models
with full-fledged DLA34 and YOLOv5 backbones. The
results for the student models with and without AttTrack,
AttTrack w/o attention update are given in Table 3. In Ta-
ble 3, with or without AttTrack, the teacher model is exe-
cuted every 6 frames. The difference between the two lies
in whether attention transfer is performed or not. Similar
to the results in Section 3, smaller models have fast infer-
ence time but suffer from lower accuracy. DLA34-small
without AttTrack, for example, is 1.52× faster at the price
of 6.9 percent MOTA degradation. AttTrack improves the
tracking performance of the student model by 1.6% and 5%
for DLA and YOLOv5, respectively. This shows the effec-
tiveness of attention transfer from the teacher model. Be-
cause AttTrack invokes the teacher model every 6 frames,
the running time of AttTrack is longer than those without.
In Table 3, we further compare AttTrack and AttTrack-no-
update. As expected, AttTrack-no-update is faster due to
less computation but has slightly degraded performance.
The relative small gap between the two can attributed to
small changes in the scenes when K = 6.

To better understand the impact of K on AttTrack, Table
4 lists the results of different student models under various
Ks. As expected a smaller K means more frequent exe-
cution of the teacher model, resulting in slower processing
time and more accurate tracking outputs, and vice versa.
YOLOv5-small runs faster than its DLA34 counterpart but
with lower accuracy.

Table 2: Performance of Teacher-only and Student-only
baselines on the MOT17 dataset

Baseline Model MOTA (%) FPS

Teacher-only DLA34 68.30 20.78
YOLOv5 62.40 40.46

Student-only DLA34 61.40 37.69
YOLOv5 38.90 59.32

Table 3: AttTrack model experiments with K = 6 on the
MOT17 dataset

Model AttTrack AttTrack-no-update Naive-mix
MOTA FPS MOTA FPS MOTA FPS

DLA34 63.00 30.80 62.90 31.30 61.40 31.65
YOLOv5 43.60 50.90 43.40 52.24 38.60 53.13

Table 4: YOLOv5 and DLA34 models with IFM on the
MOT17 dataset

K YOLOv5-small DLA34-small
MOTA FPS MOTA FPS

2 48.50 45.09 64.50 26.24
4 43.90 49.96 63.20 29.28
6 43.60 50.91 63.00 30.80

5.5. Alternative teacher

We conduct further investigations to see whether the rep-
resentational power of teachers can affect the performance
of the student model. Specifically, we compare the use of
DLA34 in the teacher model and transfer the knowledge to
YOLOv5-small student model. The heatmap computed by
a DLA34 teacher can still be useful to the YOLOv5-small
student model, and the re-Id features can be aligned using
the mechanism in Section 4.4.

The DLA34 teacher provides better tracking perfor-
mance than the YOLOv5-based equivalent, as shown in Ta-
ble 5, although it runs slower than the YOLOv5 teacher.
The gap in tracking performance between YOLOv5 and
DLA teacher-based models reduces as K increases as the
impact of YOLOv5-small becomes more dominant. Over-
all, the results in Table 5 show that tracking performance
and processing time can be considerably impacted by the
choice of the teacher architecture.

Table 5: Compression of Different Teacher Models using
EFM on the MOT17 dataset.

K YOLOv5 →YOLOv5-small DLA34 →YOLOv5-small
MOTA FPS MOTA FPS

2 50.40 44.69 52.00 28.72
4 46.90 47.60 47.70 36.41
6 45.90 48.83 46.20 40.32

Table 6: Importance of cross-model feature learning on the
MOT17 dataset. EFM: employing an additional convolu-
tion layer to translate characteristics from the teacher and
student models to the common features space. IFM: student
model mimics re-ID feature generated by the student model.

Model K EFM IFM No Fea. Learning
MOTA FPS MOTA FPS MOTA FPS

DLA34
2 65.30 25.40 64.50 26.24 64.30 26.30
4 64.10 28.36 63.20 29.28 63.20 29.59
6 63.80 29.99 63.10 30.80 63.20 31.01

YOLOv5
2 50.40 44.69 48.50 45.09 47.50 45.57
4 46.90 47.60 43.90 49.96 43.20 50.22
6 45.90 48.83 43.60 50.91 42.90 51.03

5.6. Cross-model feature learning

The usefulness of the learned features for transferring
knowledge between teacher and student models is evaluated



DRAFT
Vers

ion

in Table 6. In the experiments, EFM is done by applying a
single linear layer on the generated re-ID features. As can
be observed, the inclusion of this extra layer reduces the
visual feature distance between the teacher and the student,
and produces more precise tracking output. The use of EFM
for K = 4 has the greatest influence on the YOLOv5 stu-
dent model, accounting for 3.7% of more accurate tracking
performance. As we can see, cross-model feature learning
is beneficial and has more impacts on YOLOv5 than it does
on DLA34-small. Furthermore, EFM yields better track-
ing performance than IFM but incurs higher computation
costs. On DLA34-small, for instance, utilizing EFM with
K = 2 achieves a 65.30% MOTA score and 25.40 frame
rate, whereas the use of IFM results in a 0.9% lower MOTA
score and a 0.84 faster FPS.

5.7. Comparison with layer-wise attention transfer

In this set of experiments, we compare AttTrack with
the layer-wise attention transfer proposed in [38] (baseline
Layerwise). The main difference between our approach
and [38] is that the layer-wise solution transfers attention
knowledge to the student model during the training time
only, and the student model performs tracking entirely on
its own, while our AttTrack leverages teacher knowledge in
both training and inference phases. We implement a layer-
wise attention approach for the MOT task since [38] is orig-
inally built for object classification tasks. The results are
shown in Figure 7 for 11 different Ks between two and
twelve. For fair comparison, in the baseline layer-wise at-
tention transfer, we also invoke the teacher model every K
frames though there is no knowledge transfer between the
teacher and the student models at inference time. 2nd order
polynomial fitting functions for the AttTrack and baseline
results are also displayed in the figures. When comparing
AttTrack to layer-wise attention, we find that AttTrack ex-
ceeds the baseline significantly with comparable processing
time on tracking accuracy. The difference with YOLOv5 is
more pronounced. For example, AttTrack is 4 percent better
with only 2 percent lower FPS when K is between two and
four. The gap in computation time between AttTrack and
baseline drops for the DLA34-based tracker. This is be-
cause the overhead of attention transfer in AttTrack is shad-
owed by the high compute cost of the DLA34 backbone.

5.8. Experiments on MOT15

To verify the generalizability of AttTrack to other
datasets, we further conduct experiments on MOT15. The
performance of Teacher-only and Student-only is given in
Table 7, and the comparison between AttTrack and Layer-
wise for different K’s is given in Table 8. Similar to the
trends with MOT17, we observe that AttTrack outperforms
Layerwise and Student-only in MOTA, and is considerably

(a) Tracking performance comparison
for DLA34 architecture

(b) Tracking performance comparison
for YOLOv5 architecture

Figure 7: Results of attention transfer for AttTrack and
Layerwise under 11 different Ks ∈ [2, 12] on the MOT17
dataset

faster than Teacher-only.

Table 7: Performance of Teacher-only and Student-only
baselines on the MOT15 dataset

Baseline Model MOTA (%) FPS

Teacher-only DLA34 68.80 21.70
YOLOv5 61.00 54.41

Student-only DLA34 66.90 41.47
YOLOv5 52.70 58.80

Table 8: AttTrack and Layerwise on the MOT15 dataset

Model K AttTrack-EFM Layerwise
MOTA FPS MOTA FPS

DLA34
2 67.60 27.99 65.90 28.64
4 67.40 32.32 65.70 32.55
6 67.30 35.19 65.60 35.90

YOLOv5
2 56.50 55.17 55.00 56.63
4 54.10 56.13 52.60 57.93
6 52.90 56.46 52.30 58.39

6. Conclusion
AttTrack is a teacher-student attention transfer approach

for accelerating multi-object tracking tasks. It transfers
knowledge from a complex teacher to a lightweight student
model in both the training and inference stages. AttTrack is
model agnostic and can be used in conjunction with other
techniques to accelerate neural network inference. Because
AttTrack adopts cross-model feature learning, it is capable
to transfer knowledge from any teacher to any student net-
work with different network architectures (e.g. YOLOv5
or DLA34). When compared with traditional attention-
based methods, our work improves tracking accuracy with
marginal degradation in inference time. As part of future
work, we are interested in investigating attention mecha-
nisms with adaptive window sizes.



DRAFT
Vers

ion

References
[1] MOT Challenge Website. https://motchallenge.net.
[2] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep Learning With Low Precision by Half-wave Gaus-
sian Quantization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5918–5926,
2017.

[3] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-
mohan Chandraker. Learning efficient object detection mod-
els with knowledge distillation. Advances in neural informa-
tion processing systems, 30, 2017.

[4] Shuhan Chen, Xiuli Tan, Ben Wang, and Xuelong Hu. Re-
verse attention for salient object detection. In Proceedings of
the European conference on computer vision (ECCV), pages
234–250, 2018.

[5] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model
Compression and Acceleration for Deep Neural Networks:
The Principles, Progress, and challenges. IEEE Signal Pro-
cessing Magazine, 35(1):126–136, 2018.

[6] Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. Adas-
cale: Towards Real-time Video Object Detection Using
Adaptive Scaling. arXiv preprint arXiv:1902.02910, 2019.

[7] Xiyang Dai, Yinpeng Chen, Jianwei Yang, Pengchuan
Zhang, Lu Yuan, and Lei Zhang. Dynamic detr: End-to-
end object detection with dynamic attention. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 2988–2997, 2021.

[8] Misha Denil, Loris Bazzani, Hugo Larochelle, and Nando
de Freitas. Learning where to attend with deep architectures
for image tracking. Neural computation, 24(8):2151–2184,
2012.

[9] Anna Ellis and James Ferryman. PETS2010 and PETS2009
evaluation of results using individual ground truthed single
views. In 2010 7th IEEE international conference on ad-
vanced video and signal based surveillance, pages 135–142.
IEEE, 2010.

[10] Mustansar Fiaz, Arif Mahmood, Ki Yeol Baek, Se-
har Shahzad Farooq, and Soon Ki Jung. Improving object
tracking by added noise and channel attention. Sensors,
20(13):3780, 2020.

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012.

[12] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of Quan-
tization Methods for Efficient neural Network Inference.
arXiv preprint arXiv:2103.13630, 2021.

[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing The Knowledge In A Neural Network. arXiv preprint
arXiv:1503.02531, 2015.

[15] Bo Huang, Tingfa Xu, Ziyi Shen, Shenwang Jiang, Bingqing
Zhao, and Ziyang Bian. Siamatl: online update of siamese
tracking network via attentional transfer learning. IEEE
Transactions on Cybernetics, 2021.

[16] Zehao Huang and Naiyan Wang. Like what you like: Knowl-
edge distill via neuron selectivity transfer. arXiv preprint
arXiv:1707.01219, 2017.

[17] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Quantized Neural Networks:
Training Neural Networks With Low Precision Weights and
Activations. The Journal of Machine Learning Research,
18(1):6869–6898, 2017.

[18] Glenn Jocher, Alex Stoken, Jirka Borovec, Ayush Chaurasia,
L Changyu, AV Laughing, A Hogan, J Hajek, L Diaconu,
YK Marc, et al. ultralytics/yolov5: v5. 0-yolov5-p6 1280
models aws supervise. ly and youtube integrations. Zenodo,
11, 2021.

[19] Hugo Larochelle and Geoffrey E Hinton. Learning to
combine foveal glimpses with a third-order boltzmann ma-
chine. Advances in neural information processing systems,
23, 2010.

[20] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning Filters for Efficient Convnets.
arXiv preprint arXiv:1608.08710, 2016.

[21] Quanquan Li, Shengying Jin, and Junjie Yan. Mimicking
very efficient network for object detection. In Proceedings
of the ieee conference on computer vision and pattern recog-
nition, pages 6356–6364, 2017.

[22] Miaomiao Liu, Xianzhong Ding, and Wan Du. Continuous,
Real-Time Object Detection on Mobile Devices without Of-
floading. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), pages 976–986.
IEEE, 2020.

[23] Rakesh Mehta and Cemalettin Ozturk. Object detection at
200 frames per second. In Proceedings of the European Con-
ference on Computer Vision (ECCV) Workshops, pages 0–0,
2018.

[24] Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna
Sattigeri, Leonid Karlinsky, Aude Oliva, Kate Saenko, and
Rogerio Feris. Ar-net: Adaptive Frame Resolution For Effi-
cient Action Recognition. In European Conference on Com-
puter Vision, pages 86–104. Springer, 2020.

[25] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. Pruning Convolutional Neural Net-
works for Resource Efficient Inference. arXiv preprint
arXiv:1611.06440, 2016.

[26] Keivan Nalaie, Renjie Xu, and Rong Zheng. DeepScale:
Online Frame Size Adaptation for Multi-object Tracking on
Smart Cameras and Edge Servers.

[27] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet Classification Using
Binary Convolutional Neural Networks. In European con-
ference on computer vision, pages 525–542. Springer, 2016.

[28] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You Only Look Once: Unified, Real-time Object
Detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 779–788, 2016.

https://motchallenge.net


DRAFT
Vers

ion

[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards Real-time Object Detection with
Region Proposal Networks. IEEE transactions on pattern
analysis and machine intelligence, 39(6):1137–1149, 2016.

[30] Ronald A Rensink. The dynamic representation of scenes.
Visual cognition, 7(1-3):17–42, 2000.

[31] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.

[32] Kokul Thanikasalam, Clinton Fookes, Sridha Sridharan,
Amirthalingam Ramanan, and Amalka Pinidiyaarachchi.
Target-specific siamese attention network for real-time ob-
ject tracking. IEEE Transactions on Information Forensics
and Security, 15:1276–1289, 2019.

[33] Wenguan Wang, Shuyang Zhao, Jianbing Shen, Steven CH
Hoi, and Ali Borji. Salient object detection with pyramid at-
tention and salient edges. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1448–1457, 2019.

[34] Xudong Wang, Zhaowei Cai, Dashan Gao, and Nuno Vas-
concelos. Towards universal object detection by domain
attention. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7289–
7298, 2019.

[35] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin,
and Xuanzhe Liu. DeepCache: Principled Cache for Mo-
bile Deep Vision. In Proceedings of the 24th Annual Inter-
national Conference on Mobile Computing and Networking,
pages 129–144, 2018.

[36] Xiang Ying, Qiang Wang, Xuewei Li, Mei Yu, Han Jiang, Jie
Gao, Zhiqiang Liu, and Ruiguo Yu. Multi-attention object
detection model in remote sensing images based on multi-
scale. IEEE Access, 7:94508–94519, 2019.

[37] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Dar-
rell. Deep Layer Aggregation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2403–2412, 2018.

[38] Sergey Zagoruyko and Nikos Komodakis. Paying more at-
tention to attention: Improving the performance of convolu-
tional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928, 2016.

[39] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,
and Wenyu Liu. FairMOT: On The Fairness Of Detection
And Re-Identification In Multiple Object Tracking. arXiv
preprint arXiv:2004.01888, 2020.

[40] Zhipeng Zhang, Yufan Liu, Bing Li, Weiming Hu, and
Houwen Peng. Toward accurate pixelwise object tracking
via attention retrieval. IEEE Transactions on Image Process-
ing, 30:8553–8566, 2021.

[41] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski.
Deconstructing Lottery Tickets: Zeros, Signs, and the Super-
mask. Advances in neural information processing systems,
32, 2019.


