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Abstract

Bilateral postural symmetry plays a key role as a poten-
tial risk marker for autism spectrum disorder (ASD) and
as a symptom of congenital muscular torticollis (CMT) in
infants, but current methods of assessing symmetry require
laborious clinical expert assessments. In this paper, we de-
velop a computer vision based infant symmetry assessment
system, leveraging 3D human pose estimation for infants.
Evaluation and calibration of our system against ground
truth assessments is complicated by our findings from a sur-
vey of human ratings of angle and symmetry, that such rat-
ings exhibit low inter-rater reliability. To rectify this, we de-
velop a Bayesian estimator of the ground truth derived from
a probabilistic graphical model of fallible human raters. We
show that the 3D infant pose estimation model can achieve
68% area under the receiver operating characteristic curve
performance in predicting the Bayesian aggregate labels,
compared to only 61% from a 2D infant pose estimation
model and 60% from a 3D adult pose estimation model,
highlighting the importance of 3D poses and infant domain
knowledge in assessing infant body symmetry. Our survey
analysis also suggests that human ratings are susceptible to
higher levels of bias and inconsistency, and hence our final
3D pose-based symmetry assessment system is calibrated
but not directly supervised by Bayesian aggregate human
ratings, yielding higher levels of consistency and lower lev-
els of inter-limb assessment bias|

1. Introduction

Persistent asymmetrical body behavior in early life pro-
vides a prominent prodromal risk marker of neurodevel-
opmental conditions like autism spectrum disorder (ASD),
which affects about 2% of children [[17, (16l 4. [3]]. It is also
symptomatic of congenital muscular torticollis (CMT), a

IDataset and model code available at
https://github.com/ostadabbas/Infant-Postural-Symmetry.

common musculoskeletal condition with an estimated in-
cidence of 3.9% to 16% of infants [§]. Early screening of
ASD and CMT is critical for timely intervention and sup-
port [14]], but currently requires laborious professional be-
havioral assessments, and for ASD, reliable determinations
often only come later in childhood. In this paper, we pro-
pose a computer vision method for assessing bilateral in-
fant postural symmetry from images, based on 3D human
pose estimation, domain adapted to the challenging setting
of infant bodies. Our method appears to be less suscep-
tible to inter-limb biases present in human ratings, and as
such could be used to great effect in telehealth, where even
experts might find it difficult to judge 3D symmetry from
on-screen 2D images. Since our system is based on angles
extracted from pose estimation, it is both privacy-preserving
and highly interpretable, and is adaptable to new definitions
of postural symmetry based on updated scientific hypothe-
ses or discoveries, as well as for different conditions.

Our model assesses bilateral postural asymmetry, first
by employing state-of-the-art 3D body pose estimation de-
signed specifically for infant bodies, and second by learn-
ing a pose-based assessment calibrated to human ratings of
asymmetry. The pipeline is simple but its implementation
is highly nontrivial because reliable ground truth data does
not exist for either task. For pose estimation, there are no
infant datasets labeled with 3D ground truth poses, which
would require apparatus infeasible for infant subjects. We
make some headway by expanding an existing infant body
dataset with new 3D pose labels obtained by manual cor-
rection of predictions attained from a 3D infant pose esti-
mation model. Nonetheless, as this 3D data is guided only
by perception from flat images, these labels can only serve
as weak 3D ground truth. As for symmetry assessment, we
conduct a pioneering survey of 10 human raters for their as-
sessments of pose symmetry and angle differences in four
pairs of limb across 700 infant images, and find low inter-
rater reliability, and suggestions of low internal consistency
and high bias. In both settings, ground truth data is con-
strained by the fundamental challenge of deriving three-
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Figure 1: Examples of discrepancy between 2D pose-based and 3D pose-
based symmetry measurements. Four limb pairs are annotated in different
colors based on the corresponding symmetry label. If the limb pair is sym-
metric, both side of the limb parts are marked in green, otherwise, they are
in red. Except for these four limb pairs, other parts of the body skeleton are
uniformly plotted in gray. (a) Bayesian aggregated symmetry result from
human ratings as weak ground truth on the raw image (the occluded limb
parts are not shown). (b) The 2D posed-based measurement results on 2D
predicted skeleton. (c) and (d) the 3D posed-based measurement results on
3D predicted skeleton under two different viewing angles.

dimensional information from two-dimensional images, es-

pecially in the domain of infant bodies.

The chief technical thrust in this paper is to “bootstrap”
from kernels of reliable information in both tasks to obtain
globally reliable and bias-free computer vision assessments
of body symmetry. Specifically, our strategy is as follows:
* To remedy the lackluster human rater reliability, we em-

ploy a probabilistic graphical model of the human raters
as fallible assessors, and compute a Bayesian aggregate
of the underlying ground truth, which appears to exhibit
a higher level of internal consistency than the human rat-
ings it is derived from. (Full reliability is not assumed.)

* We show that for infant images, the body joint angles
obtained from the infant 3D pose estimation model can
be used alone to predict the Bayesian ground truth as-
sessments on those images with reasonable accuracy,
about 68% area under the receiver operating characteris-
tic (ROC) curve. By comparison, angles obtained from an
infant 2D pose estimation model only achieves 61% area
under the ROC curve. Some visualized examples of this
discrepancy are shown in Fig. [l The power to predict
a response variable obtained completely independently,
and despite potential noise in both variables, provides ev-
idence of the accuracy of the 3D pose estimated angles.

* Finally, we learn a simple symmetry classifier for in-
fant images based on the 3D pose estimated angles—now
known to be fairly accurate—calibrated by the Bayesian
aggregate symmetry rating. This final classifier is guided
by human intuitions of cutoff thresholds for symmetry as-
sessment, but by design and as we verify quantitatively, is
free from the apparent biases stemming from errant fac-
tors which affect human judgement. We also demonstrate
its superiority over an analogous classifier derived from
2D pose estimates.

, yielding our final product of an end-to-end 3D pose-

based symmetry assessment which emulates human judge-
ments, and is at the same time demonstrably less susceptible
to human biases unearthed by our human survey analysis.

Altogether, we offer an exploration of the challenges of
human and machine-learning assessment of human body
symmetry, and distill our insights into an adaptable, inter-
pretable, end-to-end algorithm for assessing infant symme-
try from still images, with a view towards applications to
the early detection and treatment of ASD, CMT, and other
common neurodevelopmental conditions.

2. Related Work

Over the past decade, computer vision has been used in
the field of automated medical diagnosis, including to dis-
tinguish atypical development through video-based behav-
ior monitoring [18} [2]. These vision-based systems pro-
vide a low-cost and non-invasive approach, developing a
more objective way to analyze data, and potentially reduc-
ing healthcare expenditures when compared to medical ex-
aminations. Among key vision-based biomarkers is persis-
tent body asymmetry in infants, which indicates abnormal-
ities associated with developmental disorders, such as ASD
and CMT [3}[14]].

In [15], as part of the behavioral phenotyping for ASD,
authors examined the arm movement and asymmetry in
children. They extracted arm and shoulder angles of the
child from recorded videos, using a pre-trained real-time
multi-person 2D pose estimation model, OpenPose [1]]. A
computer vision tool to measure and identify ASD behav-
ioral markers based on components of the autism observa-
tion was introduced in [5]]. Authors first applied 2D pose es-
timation, which is proposed by extending the Object Cloud
Model (OCM) segmentation framework [12] to work with
video data, and to produce a 2D stick-man of the toddlers in
video segments in which they were walking naturally. Then
static and dynamic arm symmetry, as one type of the behav-
ior marker, was detected using the absolute 2D angle differ-
ence between corresponding arm parts across time in video
segments. Asymmetry was defined if the angle between two
corresponding arm parts differs by more than 45°. Both of
these papers detected body movement symmetry based on
the measured angle differences of arm pairs.

Meanwhile, in [6]], authors developed a virtual reality
(VR)-based motor intervention methodology by using mo-
tion tracking data to quantify efficiency, synchrony and
symmetry of whole-body movement. They proposed an-
other kind of hand bilateral symmetry definition, which is
the average and standard deviation of the difference in ab-
solute value of horizontal distance between the hands. For
symmetry measurement, the 2D locations of wrists were
predicted by the pose estimator integrated in the Microsoft
Kinect API and then the symmetry score was calculated ac-
cording to their proposed symmetry measurement formula.



A universal shortcoming of all previous computer vision-
based approaches to postural symmetry, however, is their re-
liance on measurements from 2D body poses, even though
human body movement and symmetry is fundamentally
three-dimensional. Postural symmetry measurement via 3D
body poses has yet to be explored.

3. Concepts and Methods
3.1. Pose-Based Symmetry Measurement

In this paper, we work with a simple parameterized mea-
surement of symmetry for body limbs based on 2D or 3D
body joint locations, inspired by the definition of pose sym-
metry in [3[]. First, the infant 2D or 3D pose or skeleton,
a collection of human joint locations, is extracted from a
flat image by pose estimation algorithms. There are ma-
ture computer vision algorithms for this task, but their per-
formance is weaker in the data-scarce infant domain, so
we make use of models adapted specifically to infant bod-
ies. For 2D pose extraction, we use the fine-tuned domain-
adapted infant pose (FiDIP) model from [7], which works
by fine-tuning from an adult pose model to the infant do-
main, leveraging a domain adversarial network to learn eq-
uitably from both real and synthetic infant data. For 3D
infant pose detection, a heuristic weakly supervised human
pose (HW-HuP) estimation approach [11] is applied. HW-
HuP learns partial pose priors from public 3D human pose
datasets in flexible modalities, such as RGB, depth or in-
frared signals, and then iteratively estimates the 3D human
pose and shape in the target infant domain in an optimiza-
tion and regression hybrid cycle. These infant 2D and 3D
pose estimators output 17 keypoints and 14 keypoints loca-
tions, respectively, but we restrict our poses to the 12 body
keypoints needed to define the upper and lower arms and
legs (shoulders, elbows, wrists, hips, knees, and ankles),
where asymmetry is most prominently manifested.

From the 12 keypoints in the body pose, we can obtain
measurements of angles and assessments of symmetry ge-
ometrically, as follows, and as illustrated in Fig. @ First,
consider the line segment [; connecting the two shoulder
joints, and then define its mid-perpendicular ps, the line (in
2D) or plane (in 3D) which intersects /s orthogonally at its
midpoint. Then reflect the upper right arm across pj, shift it
so that its shoulder joint is aligned with that of the left up-
per arm, and measure the resulting angle. Similarly, reflect
the right forearm across p, shift it so that its elbow joint is
aligned with that of the left forearm, and measure the angle.
This is repeated for the legs: reflect, align, and compare the
right versus left upper and lower leg angles, this time across
the mid-perpendicular of the segment [;, connecting the hip
joints. If the formed angle of a given limb pair is less than
some fixed predefined angle 0, then the the corresponding
limb pair is considered to be symmetric, and otherwise it

Figure 2: The illustration of our infant pose symmetry measurement.
The right upper arm and lower arm in red are mirrored across the mid-
perpendicular line ps (in 2D) or plane (in 3D) of the two shoulder joints
in green, aligned with their left counterparts at the root joints, resulting in
the phantom limbs in blue. The right upper and lower legs are likewise
mirrored across the mid-perpendicular py, of the two hip joints and aligned
with their left counterparts. All four resulting angles 6 are measured, and
the limb pair is considered pose symmetric if the its calculated angle is less
than a predefined threshold.

is asymmetric. By adopting above proposed approach and
varying angle thresholds, we are able to produce raw angle
values and pose symmetry labels for each limb pair in infant
images based on their 2D and 3D skeletons.

3.2. Human Symmetry Assessment and Bayesian
Aggregation

Pose asymmetry is often assessed by clinical experts to
gauge neurodevelopment, or as a symptom for certain de-
velopmental disorders. To guide our algorithmic efforts in
emulating clinical evaluations, we surveyed a number of hu-
man raters for their assessments of pose angle differences
and symmetry in infant images, for the pairs of limbs from
our symmetry measurement described in Section [3.1] The
raters were asked to assess angle differences for limb pairs
as per our measurement method, and also to make a subjec-
tive judgement of symmetry for each limb pair unguided by
this method, to reduce redundancy and to capture informa-
tion about innate symmetry assessments.

We find that in practise, there is large variation and weak
agreement amongst assessments from human raters, and
this lack of reliability is not alleviated by simple majority
voting, in part because such voting is susceptible to noise
from outliers. To rectify this, we employ a probabilistic
approach to evaluate different annotators and also give an
estimate of the actual hidden labels, as proposed in [13].
When multiple annotators provide possibly noisy labels and
there is no absolute gold standard, a maximum-a-posteriori
(MAP) estimator is proposed to jointly learn the classifier
or regressor, the raters accuracy, and the actual true label.
The performance of each rater is measured by calculating
sensitivity and specificity with respect to the unknown gold
standard, and then a higher weight is assigned to them. We
apply an expectation maximization (EM) algorithm to mea-



Table 1: List of data types associated with each infant image considered in this paper. The underlying 700 real infant images are sourced from the synthetic

and real infant pose (SyRIP) dataset.

Type Data Source

2D body pose 2D coords. of 17  Included in SyRIP ground truth (Section 4)) or inferred from images by 2D pose estimation models
body joints (Section @)

3D body pose 3D coords. of 14  Our weak 3D ground truth labels for SyRIP (Section , or inferred from images by 3D pose estima-
body joints tion models (Section[+.2)

Pose-based raw  Angle in © for 4 limb
angle pairs

Differences between the left and right angles for 4 pairs of limbs (upper arms, lower arms, upper legs,
lower legs), derived from 2D or 3D body pose data (above), either ground truth or predicted

Pose-based 3-level angle class

Class from [<30°, 30°-59°, >60°], either inferred from pose based raw angles (above), or canvassed
from human raters, (Section E]), or voted or Bayesian aggregated from human raters (Section@)

angle class for 4 limb pairs
Pose-based sym-  Binary symmetry
metry class for 4 limb pairs

Either inferred from pose based raw angles (above) based on specified threshold angles, or canvassed from
human raters (Section[d.T), or voted or Bayesian aggregated from human raters (Section[3.2)

sure the performance of raters based on the given standard,
and then optimize the standard based on the new rater per-
formance. The gold standard is initialized by the majority
voting result.

Considering that we want to trust some particular raters
more than others, a prior knowledge is imposed to po-
tentially capture the skill of different raters. Beta priors,
randomly initialized, are given as conditional information
when calculating the probabilities of sensitivity, specificity,
and prevalence for our Bayesian aggregation approach.
Specifically, following the data gathered in our survey, there
are two different types of rating labels: (1) binary class la-
bels, as symmetric or asymmetric, and (2) angle class la-
bels [<30°, 30°-59°, >60°], which intrinsically ordered.
For the first binary symmetry labels, we infer the human
true label directly following the EM optimization proce-
dures mentioned above. In terms of the ordinal angle la-
bels, as described in [[13]], we first transform it into two new
binary class labels, and then applying the same estimation
procedure for each binary data to get probability of new la-
bel. After that, the probability of the actual class values can
be calculated when combine these two transformed binary
data. For each instance, we assign the class with the maxi-
mum probability.

4. Annotation from Humans and Machines

In order to evaluate the performances of human rating
and pose-based symmetry measurement, we apply them to
areal infant image set of the publicly released synthetic and
real infant pose (SyRIP) data [[7], which contains 700 real
images with assigned posture labels (supine, prone, sitting,
and standing) and annotated 2D keypoint locations. See Ta-
ble[T]for an overview of the data types and sources discussed
in this paper.

4.1. Human Symmetry Survey

In order to reveal and simulate the mechanism of hu-
man rating for postural symmetry, we conducted an on-

line experiment study to collect the pose symmetry judge-
ment responses of SyRIP real images from 10 raters through
Qualtrics platform. The 700 images were divided into 28
sections, each of which had 25 questions. The questions
in each block were randomly assigned to each participant.
There were two sessions of mandatory resting time (5 min-
utes) assigned after the 10th and 20th sections. Each image
was accompanied by eight questions: four of them regard-
ing the symmetry of the four limb pairs (upper arm, lower
arm, upper leg, and lower leg) and the rest about the pre-
dicted angle class between each of the four pairs of limbs.
There were five demographic questions at the end of the
survey about their major, gender, age, education level, and
experience in computer vision or drawing (23 was the mean
age; there were 5 male and 5 female participants). A ba-
sic snapshot of the survey responses, which plots the mean
rater assessment of symmetry at each assessed angle class,
can be found in Fig.[9]in the Supplementary Material.

4.2. Infant 2D and 3D Pose Estimation

We tested the performance from a number of pose es-
timation models, listed in Table We applied DarkPose
model [19], which is trained on large-scale public human

Table 2: Top: Pose estimation models or ground truth data, from which
symmetry assessments are derived. Middle (see Section : The optimal
threshold angle for each pose estimation model for obtaining symmetry as-
sessments with the highest Cohen’s < agreement with the Bayesian aggre-
gated symmetry assessments. Bottom (see Section : Areas under the
receiver operating curves (Fig. [B) for logistic regression of the Bayesian
aggregated symmetry assessment using the raw angles obtained from each
pose estimation model.

Adult Pose Est.  Infant Pose Est. Ground Truth
S 2D DarkPose FiDIP SyRIP
ource 3D SPIN HW-HuP Corrected HW-HuP
2D 437 420 39.1
Opt. Angle { 3D 178 27.9 277
2D 0.60 0.61 0.62
ROCAUC { 3D 0.60 0.68 073
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Figure 3: Average Cohen’s k agreement of a given individual assessment with the 10 human rater assessments (with self-agreement excluded for the human
raters). Among human raters, Raters 5 and 10 stand out as outliers for angle assessment, as does Rater 5 for symmetry assessments. The Bayesian aggregate
assessment exhibits high average agreement, as expected, but interestingly the human-voted assessment does not. Among the pose-based assessments, those
derived from 3D ground truth or 3D predicted poses by using HW-HuP model agree most strongly with human assessments, especially for the more objective
assessment of angle level. Since the angle class is ordered, we employ the quadratically weighted Cohen’s « for those assessments.

pose datasets, adapted to infant poses using FiDIP model
to predict 2D keypoints for 2D pose-based symmetry mea-
surement. The well-performed human 3D pose estimation
model, SPIN [9]], and the infant-adapted 3D pose estimator,
HW-HuP [11]], are used to infer 3D keypoints for our pro-
poses 3D pose-based symmetry measurement. 2D and 3D
pose ground truth come from SyRIP dataset and corrected
HW-HuP predictions, respectively.

4.3. Infant 3D Pose Correction

The performance of our proposed pose-based symmetry
measurement depends largely on the accuracy of the 2D or
3D pose estimation. The SyRIP dataset, however, only con-
tains ground truth keypoint locations in 2D coordinates, not
3D. To fill this gap, we modified the interactive annotation
tool introduced in [10] to correct poses predicted by the in-
fant 3D pose estimator, HW-HuP. Since this pose estimator
also estimates camera parameters, we overlay its 3D pose
keypoint predictions onto the 2D plane over the original in-
fant image, to ensure 2D pose alignment. We interactively
modify the global pose orientation and the local bone vector
orientation of the 3D skeleton by keyboard inputs to make
both the 3D skeleton and the real-time updated projected 2D
keypoints locations as correct as possible. In this way, we
obtained the weak ground truth of 3D pose because of the
error of inevitable from human vision and camera parameter
estimation. The distributions of predicted angle differences
obtained from various 2D and 3D pose estimation models or
ground truth are exhibited in Fig.[I0]in the Supplementary
Material.

S. Analysis: Computer Vision to the Rescue

We start our analysis by examining shortcomings of hu-
man ratings of symmetry, and illustrate how our Bayesian
aggregation process ameliorates some of these issues. We

then demonstrate the ability of the 3D infant pose estima-
tion models to predict the Bayesian aggregate assessments
of angle and symmetry to a higher degree than adult or
2D pose-based models, increasing our confidence in both
the Bayesian aggregates and the 3D pose estimations. Fi-
nally, we produce our end-to-end symmetry assessments by
calibrating the 3D pose-based symmetry assessments with
the Bayesian aggregate data. We demonstrate performance
gains afforded by the 3D infant pose-based system over 2D
or adult pose-based alternatives, and also illustrate the ad-
vantages offered by our algorithmic pose-based assessments
over the human and even Bayesian aggregate assessments,
both quantitatively and qualitatively. We round out our anal-
ysis with two codas on 3D pose estimation and factors af-
fecting symmetry assessment.

5.1. Amending Incongruent Human Annotations

The average Cohen’s k agreemenﬂ between each human
rater and their other nine fellow human raters, on their as-
sessments of angle class and symmetry across four pairs
of limbs and 700 real images in the SyRIP infant dataset,
can be found in Fig. 3] It attests to generally “fair” av-
erage agreement for angle class assessments and “slight”
to “fair” average agreement for symmetry assessments. In
the same vein, the Krippendorff’s o collective agreement
amongst the entire group of human raters is 0.30 for angle
class and 0.18 for symmetry, attesting respectively to “fair”
and “poor” collective agreement. In addition to lower inter-
rater agreement, human assessments are also afflicted with
high inter-limb assessments agreement for angle class and
especially symmetry, as seen in Fig. il The high arm-to-
leg agreement in symmetry assessments in particular likely
indicate unwarranted bias, given that corresponding arm-to-

2Cohen’s x measures rater agreement on a scale from -1 to 1, while
(unlike correlation) accounting for agreements due to random chance. It is
often interpreted as a measure of inter-rater reliability.
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ments in human assessment of symmetry seem particularly excessive, and
likely attributable to bias.
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Figure 5: Spearman’s p ranked correlation between each assessor’s angle
and asymmetry assessments across all infants and limb pairs. Assessments
with high scores can be interpreted as enjoying high “internal consistency.”
Low scores can be caused either by low internal consistency or by angle
threshold misalignment (as with the 3D adult pose-based model).

leg agreement for angle class are negligible. Finally, Fig.[3]
shows that human ratings of angle class exhibit a low level
of correspondence with human ratings of symmetry, sug-
gesting a low level of “internal consistency” among indi-
vidual human ratings.

Underlying many of these issues is the high variance in
assessments between raters (illustrated starkly in the precis
of individual rater responses in Fig.[9]in the Supplementary
Material), and the high variance of the resulting agreement
and consistency metrics. These issues prompt us to explore
methods of aggregating the human ratings into a more cohe-
sive whole, including a simple voting method and the prob-
abilistic Bayesian aggregation method described in Sec-
tion[3.2] The results in Fig. [3] Fig.[d} and Fig.[5|correspond-
ing to these aggregation methods show that the Bayesian
aggregate in particular enjoys lower inter-limb agreement
and higher angle-asymmetry correspondence than the aver-
age human rater—suggesting respectively, lower levels of
bias and higher internal consistency—all while maintain-
ing a high level of agreement with the average human rater.
Thus, we adopt the Bayesian aggregate assessment as a
weak ground truth representation of human assessment of
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Figure 6: Receiver operating characteristic (ROC) curves indicating test
set performance of logistic regression, of the Bayesian aggregate angle
class and symmetry, from raw angles derived from the indicated pose esti-
mation models. The regression based on our weak 3D ground truth yields
best results, while the 3D infant pose estimation model performs better
than the other estimation models or the 2D ground truth. The angle classes
have been compressed into two, [<30°, >30°], for simplicity. Corre-
sponding areas under the curve (AUCs) can be found in Table|z|

symmetry, with potentially undesirable characteristics ex-
cised. Table [3] reports performance metrics of individual
human assessments of symmetry, relative to the Bayesian
aggregate results as ground truth, again demonstrating the
wide variance in human reliability.

5.2. Pose-Based Symmetry Assessment

As promised, we now analyze the extent to which the
pose-based systems can track the Bayesian aggregate sym-
metry assessments, and then calibrate and evaluate our final
automated symmetry assessment system. We first consider
the raw angle data obtained from pose estimation, which, as
described in Section[3.1] consists of set of four angle differ-
ences, in degrees, for the four key pairs of limbs under con-
sideration (upper arms, lower arms, upper legs, and lower
legs). This will soon be converted to the discrete signal of
the angle category and symmetry assessment, but for now
we retain the maximum amount of information and gauge
agreement with the Bayesian aggregate rater assessments
of angle class and of symmetry for each of the four joints
and each infant image (2800 data points in all) by logisti-
cally regressing for them using the raw angles. Fig. [f]shows
the receiver operating characteristic (ROC) curves resulting
from this regression, performed with a 3:1 train-test split.
For the regression of angle class, we compress the three true

Table 3: Performance of each human rater assessment of symmetry rela-
tive to Bayesian aggregate.

Rater # 1 2 3 4 5 6 7 8 9 10

Sensitivity  0.98 0.97 088 054 099 0.61 0.99 0.64 038 0.79
Specificity 0.35 0.38 080 096 0.03 096 030 0.89 0.98 0.80




classes into a binary variable indicating whether the angle
is over 30° for ease of interpretation. The areas under the
curve (AUC) for the ROC curves in the symmetry regres-
sion are provided in Table[2}

These metrics confirm that the raw angles from the weak
3D ground truth can model the Bayesian aggregate assess-
ment of both angle and symmetry to a high degree of fi-
delity. Neither set of data can be taken as fully reliable
ground truth, but since they are derived from different hu-
man annotators performing fairly different tasks, the high
level of agreement exhibited here increases our confidence
in the accuracy of both. Among pose estimation models, the
3D infant-specific models enable the next best predictions
of human symmetry assessments, while the poses from the
remaining models—either 3D pose models for the general
most adult human, or 2D pose models for infants or adults—
offer weaker ability to predict the human assessments.

We now turn to the task of calibrating an end-to-end
pose-based system for the evaluation of symmetry, for use
in practical applications or further researc}ﬂ In concrete
terms, wish to select threshold angles which will allow us to
convert our raw joint angles to binary assessments of sym-
metry per joint, in a way that maximizes concordance with
the Bayesian aggregate. We choose to guide this concor-
dance with the same Cohen’s x agreement score employed
earlier. Fig.[/|shows the Cohen’s s agreement of symme-
try assessments derived from all six of the pose-based esti-
mators at various decision angle thresholds, compared with
both the voted and Bayesian raters; it also shows the mean
Cohen’s k agreement with each of the ten human raters in-
dividually. Incidentally, these results not only confirm again
the supremacy of the 3D ground truth and infant pose pre-
diction methods for tracking human assessments of sym-
metry, but on the flip side, also demonstrate the superior-
ity of the Bayesian aggregation of human symmetry assess-
ments over the voted or the average human assessment for
tracking the 3D weak ground truth assessment, at most rea-
sonable angle thresholds. From these Cohen’s x curves,
we extract the threshold angles maximizing agreement for
each pose-based model, reported in Table[2] These thresh-
olds then define the corresponding symmetry assessment
for each model (or ground truth data).

Metrics quantifying these final assessment models have
already been reported throughout the paper, but we offer
our interpretations here. Fig. (3] confirms, as expected, that
the 3D infant pose estimation assessment offers the highest
average agreement with human rater assessment, compared
to the 3D adult pose estimation or the 2D infant pose es-
timation models; our model also comes close to the level

3For some applications, the output of the four raw angles will suffice
as a multi-dimensional, continuous measure of overall body symmetry, af-
fording the end-user the flexibility to redefine the overall notion of symme-
try for different tasks or in response to advances in scientific understanding.

achieved by the 3D weak ground truth assessment. Fig. []
shows that assessments based on predicted or weak ground
truth 3D poses are relatively free from inter-limb agreement,
compared to individual or aggregate human assessments. In
the absence of fully reliable ground truth assessments, this
circumstantially suggests that human assessments are sus-
ceptible to bias from nearby parts, while our automated ap-
proach is not. Finally, Fig. [5] shows that most of the pose
estimation based models enjoy high internal consistency in
their assessment of angle class versus symmetry, as to be
expected from mechanistic models.

5.3. Qualitative Evaluation

We illustrate the performance of the pose-based models
in Fig.[[Jand Fig.[8] These figures visualize the Bayesian ag-
gregate assessments of symmetry on top of the original im-
age, as well as the assessments derived from the 2D and 3D
infant pose models (FiDIP and HW-HuP, respectively) on
top of their respective predicted pose skeletons, with green
indicating symmetric judgements and red indicating asym-
metric judgements.

In Fig.[I] we see examples of infant poses where the 2D
pose-based assessment is mistaken, but the 3D pose-based
assessment is able to make the correct call, according to
the Bayesian aggregate label. We have highlighted multiple
views of the 3D skeleton to highlight the advantage that the
3D pose-based assessment has, and suggest that the mis-
takes made by the 2D pose-based assessment are in a way
understandable, given that it is limited to a single perspec-
tive, so to speak. Fig. [8| shows special case where the 2D
perspective is actually not too limiting, since the infant is
lying flat on its back, so its limbs largely confined to a plane
parallel to the image plane. Indeed, in this case, the 2D and
3D pose-based symmetry assessments agree, but they differ
from the Bayesian assessment, which may reflect human
bias or simply a stricter subjective threshold for symmetry
on the part of the human assessments. More comparisons
between 2D or 3D pose-based assessments are exhibited in
Fig.[TT)in the Supplementary Material.

5.4. Coda 1: Improving 3D Pose Estimation

The main factor limiting performance of state-of-the-art
infant 3D pose estimators such as HW-HuP is the scarcity
of “true” ground truth 3D pose data. We briefly report on
the effect of fine-tuning HW-HuP with the weak 3D ground
truth labels for SyRIP images generated for this paper. We
split the 700 SyRIP images into a 100 image test set, coin-
ciding with SyRIP’s Test100 set, and a 600 image train set,
and fine-tune the infant HW-HuP model on the 600 image
train set with weak 3D labels, for 200 epochs with learning
rate of be — 05. The resulting performance of the fine-tuned
infant HW-HuP model under the mean per joint position
error (MPJPE), as reported in Table [4] is significantly im-
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on the one hand, and the 3D infant pose estimation based model on the other.
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Figure 8: A special example demonstrating the effect of angle threshold
on pose-based measurement results and constraints on the feasibility of 2D
pose-based method. Layout and labels as in Fig. E}

proved over the base infant HW-HuP model, and over the
adult pose SPIN model.

Table 4: 3D pose estimation performance in mean per joint position error
(MPJPE) in mm on the 100 image SyRIP test set with our weak ground
truth 3D labels. We compare our fine-tuned HW-HuP model (HW-HuP-
FT) with the base HW-HuP model, and with the adult-trained SPIN model.

Model SPIN  HW-HuP

MPJPE  105.8 97.2 78.3

HW-HuP-FT

5.5. Coda 2: Factors Affecting Symmetry Assess-
ment

We conclude our study with a supplementary importance
analysis of factors affecting the assessments of symmetry
considered in our work, via logistic regression. We take the
Bayesian aggregate symmetry assessment as the response
variable, and the following as covariate factors: limb part
under consideration (upper arm, lower arm, upper leg, or
lower leg), the infant posture (included in SyRIP), an oc-
clusion label for each limb (which we annotate for this pur-
pose), and finally, an angle variable. We consider two sep-
arate sources for the angle variable, one consisting of the
angle class assessments from all of the human raters, and
one obtained from the 3D infant pose estimation. We find
that both of regressed models are statistically significant.

According to the logistic regression result for Bayesian
aggregation, all four predictors account for between 40.8%
(R%S) and 54.6% (R3) of the variance in the dependent vari-
able and correctly classify 83.2% of cases. From the logistic

regression result for four predictors, we conclude that only
limb part and estimated angle between corresponding limb
part significantly contributed to the asymmetry assessment
model. While for 3D prediction model, the logistic regres-
sion result indicated that all factors expect occlusion signif-
icantly contribute to the model. All four factors explain for
between 45.5% (RZs) and 60.5% (RZ) of the variance in the
dependent variable and correctly classify 90.8% of cases.

In order to assess predictor importance, we use the de-
crease of R%g approach to calculate the A RZg when remov-
ing one of the predictor. A larger decrease indicates more
contribution of the removed predictor to explain the model.
The results of decreasing R2g are reported in Table When
the angle estimation was taken out of the model, the RZg
value declined by -0.342 for the Bayesian model and by -
0.366 for the 3D prediction model correspondingly. Thus,
angle estimate is the most important predictor of all the vari-
ables that have been found, and it is used in both the human
rating model and the 3D prediction model.

Table 5: Parameter importance evaluation for logistic regression of
Bayesian aggregate symmetry class from human rater and 3D infant pose
estimate assessments.

Human Raters 3D Infant Pose Est.
Excluded Feature R%,  ARZ R%g ARZ
None (Full Model) 0.408 0.455
Limb Part 0.402 -0.006 0.418 -0.037
Posture 0.408  0.000 0.448 -0.007
Angle 0.066 -0.342 0.089 -0.366
Occlusion 0.408  0.000 0.455 0.000

6. Conclusion

We have presented a computer vision based method for
assessment of postural symmetry in infants from their im-
ages, with the goal of enabling early detection and timely
treatment of issues related to infant motor and neural devel-
opment. We found human ratings of symmetry to be unreli-
able, and rectified them with a Bayesian-based probabilistic
aggregate rating. We demonstrated that automatic assess-
ments based on pose estimation avoid some of the pitfalls



of human assessments, while retaining the ability to predict
the Bayesian aggregate ratings to a strong degree, with 3D
infant pose models performing stronger than 2D models or
adult pose models.
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7. Supplementary Materials

In this section we offer figures and analyses supplementing our discussion from the main paper. Fig. |§|and Fig. @provide overviews of
the human rater survey data, and the pose-based angle assessments, respectively. Fig.[TT|shows further skeleton visualizations of human and
machine assessments of symmetry, highlighting comparative differences. Finally, Table [g] contains one more regression variance analysis.
These results further reinforce our findings regarding the advantages of 3D pose-based symmetry assessment over both human ratings
(individual or in aggregate) and 2D pose-based systems.

Bayesian 2D Infant 3D Infant
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Figure 9: Mean assessments of symmetry level by assessed angle difference level, for all 10 raters plus the Bayesian aggregate rater and the predicted 2D-
and 3D-pose-based models. Means are taken over all 700 SyRIP infant images per each of four pairs of limbs, with confidence intervals of one standard
deviation at each angle level indicated. These statistics reveal wide variance in determination of symmetry versus angle difference across human raters,
although most raters are fairly consistent across limbs. An upwardly sloped segment, as seen most prominently in Rater 8’s upper arm assessments and
or Rater 10’s lower arm assessments, indicates an apparent inconsistency in aggregate assessments. Note that while small confidence intervals indicate
consistent assessments, the converse does not necessarily hold.
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Figure 10: Distribution of raw angle differences, across four pairs of limbs and 700 real SyRIP infant images, as reported by a range of pose-based models.
Models based on 3D poses yield far more consistent and seemingly realistic angles, compared with models based on 2D poses.
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Figure 11: Comparison of the performance of different pose-based symmetry measurement results. In each row we compare symmetry assessments for each
pair of limbs from the following models: /st row: SyRIP 2D ground truth pose (2D GT) vs. weak 3D ground truth pose (3D GT); 2nd row: 3D predicted
pose by using infant HW-HuP model (3D Infant Est.) vs. weak 3D ground truth pose (3D GT); 3rd row: 3D predicted pose by using adult SPIN model
(3D Adult Est.) vs. 3D predicted pose by using infant HW-HuP model (3D Infant Est.). Bayesian aggregate results are overlaid on the original images, as
a kind of weak ground truth. Labeling conventions as in Fig.m 3D infant pose estimation yields better results than those obtained from the 3D adult pose
estimation, but the best results come from the weak 3D ground truth. The Bayesian result of left-side example in the 3rd row is incorrect, possibly, due to
the effects of occlusion on human judgement. Our pose-based methods have been trained to be robust to occlusion, and can produce objective evaluations
where human assessments falter.

Table 6: Proportion of variance R? values from three linear regression models, all with the 3D weak ground truth raw angle as the dependent variable
(and each of four pairs of limbs across 700 infants as the sample space). All three models include the labels for the limb part, the posture, and occlusion
as independent variables, together with an angle class label drawn respectively the 2D infant pose estimation, 3D infant pose estimation, or the Bayesian
aggregate assessment. The resulting R? and adjusted R? scores can be interpreted as gauging the predictive power of each respective model, with our 3D
infant pose estimation method holding a clear advantage.

Model R?  Adjusted R?
Bayesian Aggregate 0.365 0.360
2D Infant Pose Estimation  0.229 0.223

3D Infant Pose Estimation  0.496 0.492




