
FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation

Tarun Kalluri *

UCSD
Deepak Pathak

CMU
Manmohan Chandraker

UCSD
Du Tran

Facebook AI

https://tarun005.github.io/FLAVR/

Abstract

Most modern frame interpolation approaches rely on ex-
plicit bidirectional optical flows between adjacent frames,
thus are sensitive to the accuracy of underlying flow estima-
tion in handling occlusions while additionally introducing
computational bottlenecks unsuitable for efficient deploy-
ment. In this work, we propose a flow-free approach that
is completely end-to-end trainable for multi-frame video
interpolation. Our method, FLAVR, is designed to reason
about non-linear motion trajectories and complex occlusions
implicitly from unlabeled videos and greatly simplifies the
process of training, testing and deploying frame interpola-
tion models. Furthermore, FLAVR delivers up to 6× speed
up compared to the current state-of-the-art methods for
multi-frame interpolation while consistently demonstrating
superior qualitative and quantitative results compared with
prior methods on popular benchmarks including Vimeo-90K,
Adobe-240FPS, and GoPro. Finally, we show that frame in-
terpolation is a competitive self-supervised pre-training task
for videos via demonstrating various novel applications of
FLAVR including action recognition, optical flow estimation,
motion magnification, and video object tracking. Code and
trained models are provided in the supplementary material.

1. Introduction
Video frame interpolation [2,9,23,27,33,37,42,43,45,78]

aims to generate non-existent intermediate frames in a video
between existing ones that are spatially and temporally co-
herent with the rest of the video, finding applications in
overcoming the limited acquisition frame rate and exposure
time of commercial video cameras. Traditionally, frame
interpolation has been treated as a predominantly graphics
problem where the approaches are complicated and hard
coded. A large body of prior works use flow warping for
frame interpolation [23, 43, 78], where the input frames are
used to estimate (often bidirectional) optical flow maps from
a pretrained flow prediction network, possibly along with
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Figure 1. Our contributions We propose FLAVR, a simple and efficient
architecture for single shot multi-frame interpolation. The plot of accuracy
(PSNR) vs. inference speed (fps) of FLAVR compared with current methods
on GoPro 8x interpolation with 512×512 input images. FLAVR is 6x
faster than the current most accurate method (QVI) and 2x faster than the
current fastest method (SuperSloMo) while maintains the same quality.
FLAVR is also a useful self-supervised pretext task for various downstream
applications.

additional information like monocular depth maps [2] and
occlusion masks [3]. The frames at intermediate time steps
are then interpolated either by using backward [2, 23] or
forward warping [42,43]. However, these optical flow-based
approaches, as well as proposed alternatives [7,27,44,45,51],
have to confront one or more of the following limitations:
1. Computational Costs: As they rely on optical flow and
pixel level warping procedures, they are inefficient at both
training and inference in terms of speed and efficiency mak-
ing them less suitable for end applications. For example,
QVI [77], DAIN [2] and BMBC [49] take order of seconds
to generate frames for 8×interpolation (Figure 1) while re-
quiring users to deploy custom CUDA kernels that prohibit
seamless deployment across edge devices. 2. Modeling
Complex Trajectories: The modeling capacity is limited to
account for only linear [2,23] or quadratic [8,77] motion tra-
jectories, and extending these to account for more complex
motions is non-trivial using existing approaches. + 3. Repre-
sentation Inflexibility: By accepting pre-computed optical
flows as inputs, current methods focus on learning only
spatial warping and interpolation, thus the representations
learned in the process are not transferable to tasks beyond
frame interpolation.

In this work, we aim to achieve a good trade-off between
visual quality and inference speed for video interpolation.
We do so by proposing FLAVR (Flow-Agnostic Video Rep-
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resentation network), which jointly addresses the aforemen-
tioned limitations. FLAVR is a simple, scalable approach
for frame interpolation that utilizes spatio-temporal convolu-
tions for predicting intermediate frames of a video. Without
demanding access to external flow or depth maps, FLAVR
can make end-to-end multiple-frame predictions in a single
forward pass. It implicitly handles complex motions and
occlusions through learning from large scale video data, sig-
nificantly improving ease of deployment and inference speed
compared to prior approaches (Figure 1, Figure 3a), while
achieving state-of-the art interpolation accuracy (Table 1,
Table 2).

We also posit that models learned from raw videos should
be able to simultaneously reason about intricate synergy
between objects, motions and actions for accurate frame
interpolation. This is because different actions and objects
have different motion signatures, and it is essential to pre-
cisely capture these properties through the representations
learned for accurate frame interpolation. We ground this
argument in the context of self-supervised representation
learning from videos [10, 17, 50, 67]. While popular pre-
text tasks like frame ordering [12, 28, 40, 69, 73], pixel/color
tracking [65, 68] or contrastive learning [14–16] are tailored
to suit specific downstream applications, we show that frame
interpolation offers a more generic representation learning
objective owing to its combined motion and semantic un-
derstanding. To this end, we show the utility of FLAVR
pretraining to improve performance on a variety of down-
stream tasks like action recognition, optical flow estimation
and video object segmentation. In summary:

• We propose FLAVR, a scalable, flow-free, efficient 3D
CNN architecture for video frame interpolation. To the
best of our knowledge, FLAVR is the first video frame
interpolation approach that is both optical flow-free and
able to make single-shot multiple-frame predictions (Sec-
tion 3).

• FLAVR is quantitatively and qualitatively superior or com-
parable to current approaches on multiple standard bench-
marks including Vimeo-90K, UCF101, DAVIS, Adobe,
and GoPro while offering the best trade-off in terms of
accuracy and inference speed for video interpolation (Sec-
tion 5, Figure 1 and 4).

• We demonstrate that video representations self-
supervisedly learned by FLAVR can be useful for various
downstream tasks such as action recognition, optical flow
estimation and video object segmentation (Section 6).

2. Related Work
Video Frame Interpolation Video frame interpolation is a
classical computer vision problem [35] and recent methods
take one of phase based [37, 38], kernel based [7, 33, 44, 45,
51,55], or flow based approaches, of which flow-based meth-

ods [2, 3, 8, 19, 23, 32, 42, 43, 57, 77–81] are most successful.
The key idea in flow-based methods is to use a flow predic-
tion network, e.g. PWC-Net [59], to compute bidirectional
optical flow between the input frames [23] that guides frame
synthesis along with predicting occlusion masks [3,23,78] or
monocular depth maps [2] to reason about occlusions. While
being largely successful in generating realistic intermediate
frames, their performance is limited by the accuracy of the
underlying flow estimator, which can be noisy in presence of
complex occlusions resulting noticeable artifacts. They also
assume uniform linear motion between the frames which
is far from ideal for real world videos. Most importantly,
the flow prediction and subsequent warping make frame pre-
diction slow prohibiting fast interpolation. Recent works
relax the linear motion assumption using quadratic warp-
ing [31, 77] at the cost of increased model complexity and
inference time. CAIN [9] uses channel attention as suitable
ingredient for frame interpolation but fails to capture com-
plex spatio-temporal dependencies explicitly between input
frames. Moreover, many recent methods are only aimed to-
wards single frame interpolation [19, 57, 63]. We address all
these issues in this work by designing an end to end architec-
ture that directly predicts any number of intermediate frames
from a given video by learning to reason motion trajectories
and properties through 3D space-time convolutions while
jointly optimizing for output quality and inference time.
Spatio-temporal Filtering Due to their proven success in
capturing complex spatial and temporal dependencies, 3D
space-time convolutions are very commonly used in video
understanding tasks like action recognition [5,11, 60,62,72],
action detection [56,74], and captioning [75]. We explore the
use of 3D convolutions for the problem of temporal frame
interpolation which requires modeling complex temporal ab-
stractions between inputs for generating accurate and sharp
predictions.
Video Self-Supervised Representation Learning Self-
supervised learning deals with training unlabeled videos
on artificial pretext tasks [10] to extract semantic representa-
tions that serve as useful priors for sparsely labeled down-
stream tasks. Videos contain rich source of information in
the form of temporal consistency and frame ordering, and
prior works make use of such cues to build pretext tasks
like predicting ordering of frames [12, 28, 40, 69, 73], cor-
respondence across time [22, 67] or contrastive predictive
coding [15, 16]. In contrast to these approaches, we explore
using video frame interpolation as a unified pretext task for
both low-level and high-level downstream tasks like action
recognition and optical flow.

3. Frame Interpolation using FLAVR
In video frame interpolation, the task is to generate a

high frame-rate video from a lower frame-rate input video.
We define k as the interpolation factor, where k×-video
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(a) Overview of the proposed architecture

...

...

FLAVR Network

L1 Loss

Input Frames

Target Frames
Interpolated Frames..

..

Temporal Window
13 frames

(b) Sampling procedure

Figure 2. FLAVR Architecture. (a) Our FLAVR is U-Net style architecture with 3D space-time convolutions (orange blocks) and deconvolutions (yellow
blocks). We use channel gating after all (de-)convolution layers (blue blocks). The final prediction layer (the purple block) is implemented as a convolution
layer to project the 3D feature maps into (k−1) frame predictions. This design allows FLAVR to predict multiple frames in one inference forward pass. (b) A
concrete example of our sampling procedure for 4× interpolation (k=4) with 4-frame input (C=2). Best viewed in color.

frame interpolation corresponds to generating (k−1) ad-
ditional intermediate frames between every pair of origi-
nal frames in the input video, that are both spatially and
temporally consistent with the rest of the video. Prior ap-
proaches are either specifically designed for 2× interpo-
lation [9, 19, 27, 57, 63] or require multiple inferences for
predicting all the k frames [2, 3, 49, 77]. In contrast, our aim
is to design a framework which is simple yet enables single-
shot k×-prediction for any value of k. Since training on, and
generating, long videos are beyond the capacity of current
hardware, we propose a simple sampling procedure for effi-
cient training on raw videos, followed by the construction of
the network architecture.

Sampling Training Data from Unlabeled Videos We
can directly generate inputs and ground truths required for
training from raw videos as follows. Let k be the interpola-
tion factor, V is the original video with a frame rate f FPS.
In order to generate training data for the k×-video frame
interpolation problem, we sub-sample frames of V with a
sampling stride of k to form a low frame rate video V̄ with f

k
fps. Then, to perform interpolation between any two frames
at position (i, i+1), given by Ai, Ai+1, of V̄ , we use a mov-
ing temporal window of size 2C in V̄ centered around Ai

and Ai+1 as the input, and all frames between Ai and Ai+1

in original video V as the ground truth. This produces an
input clip of size 2C frames (including Ai and Ai+1) and
output clip of size k−1. FLAVR is flexible to handle any
temporal context C instead of just the immediate neighbors
Ai, Ai+1, which helps us to model complex trajectories and
improve interpolation accuracy. The sampled input frames
are concatenated in the temporal dimension resulting in in-
put dimension 2C×H×W×3, where H,W are the spatial
dimensions of the input video.

An illustration of this sampling procedure is demonstrated
in Figure 2b for the case of 4× interpolation (k=4) with two
context inputs from the past and future (C = 2). In this

case, the frames {A1, A5, A9, A13} are used as inputs to pre-
dict the 3 intermediate frames of {A6, A7, A8}. Intuitively,
the frames in the immediate neighborhood would be more
relevant for frame interpolation than frames farther out. In
our experiments, we find that for most common settings,
using four context frames (C = 2) is sufficient for accurate
prediction on the datasets considered. We present a detailed
study on the effect of the input context C in supplementary
material.

Architecture Overview We present the proposed archi-
tecture of FLAVR in Figure 2a. FLAVR is a 3D U-Net
obtained by extending the popular 2D Unet [53] used in
pixel generation tasks, by replacing all the 2D convolutions
in the encoder and decoder with 3D convolutions (3DConv)
to accurately model the temporal dynamics between the
input frames, invariably resulting in better interpolation
quality. Each 3D filter is a 5-dimensional filter of size
ci×co×t×h×w, where t is the temporal size and (h,w)
is the spatial size of the kernel. ci and co are the number of
input and output channels in the layer. The additional tempo-
ral dimension is useful in modeling the temporal abstractions
like motion trajectories, actions or correspondences between
frames in the video. We observed that our network indeed
learns non-trivial representations along the temporal dimen-
sions that can be reused in downstream tasks like action
recognition with limited labeled data (Section 6).

Practically any 3D CNN architecture can be used as the
encoder backbone, and we use ResNet-3D (R3D) with 18
layers [62] as our base backbone. We evaluate different vari-
ants of 3D CNNs with group convolutions [61] as backbones
to achieve the best accuracy/speed trade-off and present the
complete analysis and results in Figure 4. We remove the last
classification layer from R3D-18, resulting in 5 conv blocks
conv1 to conv5, each made up of two 3D convolutional layers
and a skip connection. We also remove all temporal strid-
ing, as downsampling operations like striding and pooling
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are known to remove details that are crucial for generating
sharper images. However, we do use spatial stride of 2 in
conv1, conv3 and conv4 blocks of the network to keep the
computation manageable.

The decoder essentially constructs the output frames from
a deep latent representation captured by the encoder by us-
ing progressive, multi-scale feature upsampling and feature
fusion. For upsampling, we use 3D transpose convolution
layers (3DTransConv) with a stride of 2. To handle the
commonly observed checkerboard artefacts [47], we add a
3DConv layer after the last 3DTransConv layer. We also
include skip connections that directly combine encoder fea-
tures with the corresponding decoder along the channels to
fuse the low level and high level information necessary for
accurate and sharp interpolation.

The output of the decoder, which is a 3D feature map, is
then passed through a temporal fusion layer, implemented
by a 2D conv, in which the features from the temporal di-
mension are concatenated along the channels and fused into
a 2D spatial feature map. This helps to aggregate and merge
information present in multiple frames for prediction. Fi-
nally, this output is passed through a 7×7 2D convolution
kernel that predicts output of size H×W×3(k−1), which
is then split along the channel dimension to get the (k−1)
output frames. Our network is designed to efficiently handle
interpolation for any value of k with minimum changes to
the architecture.

Spatio-Temporal Feature Gating Feature gating tech-
nique is used as a form of self-attention mechanism in
deep neural networks for action recognition [39, 72], im-
age classification [18] and video interpolation [9]. We
apply the gating module after every layer in our archi-
tecture. Given an intermediate feature dimension of size
fi = C×T×H×W , the output fo of the gating layer is
given by fo = σ(W.pool(fi) + b)� fi where W ∈ RC×C

and b ∈ RC are learnable weight and bias parameters, pool
is a spatio-temporal pooling layer and � is element-wise
product along the channel dimension. Such a feature gating
mechanism would suitably learn to upweight and focus on
certain relevant dimensions of the feature maps that learn
useful cues for frame interpolation, like motion boundaries.

Loss Function We can now train the whole net-
work end to end using a pixel level loss like L1
loss between the predicted and ground truth frames,
L({Î}, {I})= 1

N

∑N
i=1

∑k−1
j=1 ||Î

(i)
j − I

(i)
j ||1 where {Î(i)j }

and {I(i)j } are the j-th predicted and the j-th ground truth
frame of the ith training clip, k is the interpolation factor,
and N is the size of the mini-batch used in training.

Representation Learning using FLAVR In order to suc-
cessfully predict intermediate frames, it is essential for
FLAVR to accurately reason about motion trajectories, es-
timate and capture motion patterns specific to objects, and
reconstruct both high level semantic detail and low level

texture details. It is interesting to understand what types of
motion information the networks learned and which tasks
this representation is useful for. Therefore, we examine the
possibility of using video frame interpolation in the con-
text of unsupervised representation learning by pre-training
FLAVR on the task of frame interpolation, and reusing the
learned feature representations for the tasks of action recog-
nition, optical flow estimation, and motion magnification.
This objective serves the dual purpose of providing insights
into the nature of representations learnt during training frame
interpolation models, while also improving the performance
of downstream tasks compared to random initialization.

4. Experimental Setup
Datasets. We use septuplets from the Vimeo-90K

dataset [78] extracted from 30FPS videos for training single
frame interpolation networks (k=2). We train our model
on the train split and evaluate it on the test split of the
dataset. Following [77], we additionally verify the gen-
eralization capability of our proposed approach. For single
frame interpolation, we report the performance of a model
trained on Vimeo-90K on the 100 quintuples generated from
UCF101 [25] and 2,847 quintuples generated from DAVIS
dataset [52]. For multi frame interpolation, we use Go-
Pro [41] as the training set, and report results on the Adobe
dataset [58] and GoPro dataset [41] for 8× interpolation.

Training Details. We use a R3D-18 backbone as the stan-
dard encoder in FLAVR. We also evaluate different variants
of 3D CNNs with group conv [61] as backbones to achieve
the best accuracy/speed trade-off. For data augmentation, we
exploit the symmetry of the problem by randomly selecting
input sequences during training and inverting the temporal
order of the frames. Also, we also horizontally flip all frames
of randomly selected inputs. Our hyper-parameter choices
and more training details are provided in supplementary.

Evaluation Metrics. Following previous works, we use
PSNR and SSIM metrics to report the quantitative results
of our method. For multi-frame interpolation we report the
average value of the metric over all the predicted frames,
and also additionally report the TCC (Temporal Change
Consistency) [8]. Since these quantitative measures do not
strongly correlate with the human visual system [46], we also
conduct a user study to analyze and compare our generated
videos with other competing approaches.

Baselines. We perform comparisons with the following
baselines that perform single and multi frame video interpola-
tion. (i) DAIN [2] performs depth aware frame interpolation.
(ii) QVI [77] computes quadratic flow prediction and adap-
tive filtering. (iii) DVF [33] uses volumetric sampling to gen-
erate the output frames. (iv) SepConv [45] predicts optimum
pairs of spatially varying kernels for generating frames using
input resampling. (v) SuperSloMo [23] performs warping
based on flow and visibility maps. (vi) CAIN [9] performs
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Method Inputs Vimeo-90K UCF101 DAVIS

PSNR (↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑)
DAIN [2] RGB+Depth+Flow 33.35 0.945 31.64 0.957 26.12 0.870
QVI [77] RGB+Flow 35.15 0.971 32.89 0.970 27.17 0.874

DVF [33] RGB 27.27 0.893 28.72 0.937 22.13 0.800
SepConv [45] RGB 33.60 0.944 31.97 0.943 26.21 0.857
CAIN [9] RGB 33.93 0.964 32.28 0.965 26.46 0.856
SuperSloMo [23] RGB 32.90 0.957 32.33 0.960 25.65 0.857
BMBC [49] RGB 34.76 0.965 32.61 0.955 26.42 0.868
AdaCoF [27] RGB 35.40 0.971 32.71 0.969 26.49 0.866
FLAVR RGB 36.25±0.06 0.975 33.31±0.02 0.971 27.43±0.02 0.874

Table 1. Comparison with state-of-the-art methods for 2x interpolation on Vimeo-90K, UCF101, and DAVIS datasets. The upper table includes the
methods that use additional networks trained to predict optical flows and/or depth maps. The lower table represents the methods the use only RGB as input.
The first and second best methods are marked in bold and underlined text. Our method consistently outperforms prior works which take only RGB as input,
as well as works which additionally require optical flows and/or depth inputs.

Method Inputs
Adobe GoPro

PSNR SSIM PSNR SSIM

DAIN [2] RGB+Depth+Flow 29.50 0.910 29 0.91
QVI [77] RGB+Flow 33.68 0.97 30.55 0.933

DVF [33] RGB 28.23 0.896 21.94 0.776
SuperSloMo [23] RGB 30.66 0.391 28.52 0.891
FLAVR RGB 32.20 0.957 31.31 0.94

Table 2. Comparison with state-of-the-art methods for 8x interpolation
on Adobe and GoPro datasets. FLAVR outperforms all previous work that
use only RGB as input.

frame interpolation by channel attention and sub-pixel con-
volutions, (vii) AdaCoF [27] uses adaptive collaboration
of flows, and (viii) FLAVR is our proposed approach. We
could not compare against recent works like SoftSplat [43],
AAO [8] and RRPN [82] as their training code is not avail-
able online for retraining on our setting.

Comparison across baseline models. We note that each
of these prior works report their numbers using a differ-
ent training and testing setup in their respective papers, so
the numbers differ among various works. For example,
DAIN [2] and AdaCoF [27] train and test on triplet-split of
Vimeo-90K while SuperSloMo [23] and QVI [77] train their
models on private custom datasets. To ensure fairness and a
unified evaluation testbed, we accounted for all these varia-
tions by retraining baseline models for [2, 9, 23, 27, 33, 77]
till convergence on septuplet-split of Vimeo for comparison
in Table 1. Likewise, in Table 2, we retrained the presented
baselines on GoPro data for fair comparison.

5. How does FLAVR compare with the state-of-
the-art?

Single-Frame Interpolation. We report the results for
single frame interpolation in Table 1, corresponding to
2×(k=2) interpolation from 15 FPS to 30 FPS. We observe
that FLAVR outperforms prior methods by a significant mar-
gin on Vimeo-90K dataset and sets the new state-of-the-art

on this dataset with a PSNR value of 36.25 and SSIM value
of 0.975. FLAVR is a more generally applicable method
and outperforms [23, 33, 45] which assume uniform linear
motion between the frames. FLAVR also performs better
than [9] which uses a similar end to end architecture to pre-
dict output frames, underlining the benefits achieved using
an encoder-decoder architecture with spatio-temporal ker-
nels. More importantly, FLAVR also outperforms DAIN [2]
and QVI [77] without demanding additional knowledge in
the form of bidirectional flow or depth maps.

We test the generalization capability of our method by
evaluating the same trained model on UCF101 and DAVIS
datasets. These are relatively more challenging for video
frame interpolation, containing complex object and human
motions from a range of dynamic scenes. Nevertheless, with
a PSNR of 33.33 on the UCF101 dataset and 27.44 on the
DAVIS dataset, FLAVR clearly delivers better performance
compared to all the baselines methods which take RGB
images as inputs, and performs on par or better than methods
that additionally demand depth or flow maps as inputs. These
datasets together constitute a wide spectrum of difficulty
in terms of complex motions and occlusions, and FLAVR
outperforms other methods on all the settings.

Multi-Frame Interpolation. For multi-frame setting,
we report results on 8× (k=8) interpolation in Table 2, which
corresponds to going from 30 to 240 FPS by generating 7
intermediate frames. Our method yields a PSNR of 31.31
and an SSIM score of 0.94 on the GoPro dataset, which is
better than all the prior approaches proposed for frame in-
terpolation. On the Adobe dataset, our method outperforms
all methods significantly except QVI, but QVI additionally
uses an optical flow estimator which helps on the more chal-
lenging Adobe dataset. Additionally, we evaluate TCC [8]
on GoPro to obtain 0.78, 0.76, 0.73 for FLAVR, QVI, DAIN
respectively. It is evident that FLAVR outperforms those
prior works. AOO [8] reports 0.83, but it is trained on cus-
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Figure 3. Analysis. (a) Inference time (forward pass w/o IO) of different methods on different interpolation factor. FLAVR has almost no change in inference
time due to its design to predict multiple frames per inference. (b) Comparison between FLAVR with Super-SloMo and QVI in a user study on DAVIS.
FLAVR significantly outperforms Super-SloMo, and performs comparable to QVI. (c) Comparison between FLAVR with other methods on SNU-Film dataset.
FLAVR consistently outperforms all comparing methods across all levels of task difficulty.

tom data and uses GAN loss, which is biased in favor of
this metric (and GAN loss is complementary to FLAVR and
other VFI methods). Similar improvements in performance
can also be observed in the case of 4× (k=4) interpolation,
as shown in the supplementary material. Additionally, we
show qualitative results by using FLAVR on few sequences
from DAVIS dataset in Figure 5. These results indicate the
effectiveness of the proposed FLAVR architecture for the
task of multi-frame interpolation.

Results on Middleburry We evaluate FLAVR on the
publicly available test images from Middleburry [1, 54]
dataset on the task of single frame interpolation. FLAVR
is ranked 2nd, 5th, 8th on backyard, evergreen, basketball
sequences respectively, at the time of this submission. The
complete results are available on the public leaderboard
(link). Qualitative comparisons with other approaches on
Middleburry images are provided with the supplementary
material.

Speed vs. Accuracy Trade-off. One major challenge
for realizing the applications of video frame interpolation
for real time applications on low resource hardware is to
optimize the trade off between faster inference speed and
better interpolation quality. Perhaps the most important con-
tribution of our work is to propose an approach that strikes
an optimum balance between both these factors by achieving
best performance with smallest runtime. As shown in Fig-
ure 1, FLAVR offers an improved run time for multi-frame
interpolation models. This improvement is possible mainly
because we require no overhead in terms of computing op-
tical flow or depth, and predict all the frames in a single
forward pass. We also show in Figure 3a that the inference
speed using our method scales gracefully with an increase
in the interpolation factor k, while most prior methods incur
linear growth with k. We achieve runtime improvements of
2.7×, 6.2× and 12.7× for 8×, 16× and 32× interpolation
respectively with respect to QVI, which is the current most
accurate method, while providing much higher interpola-
tion accuracy compared to SuperSlomo, which is the current
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Figure 4. Speed, accuracy and parameter tradeoff comparison. Speed
(in FPS, on x-axis) vs. accuracy (in PSNR, on y-axis) for various baselines
as well as various architecture choices for FLAVR. Number of parameters
in each model is proportional to the size of the marker. (a) is for 2× and (b)
is for 8× interpolation. FLAVR-Gx corresponds to FLAVR with x number
of group convolutions. In summary, FLAVR achieves best speed-accuracy
tradeoffs compared to many recent methods.

fastest.
We also perform an in-depth ablation on the effect of

using group convolutions [61] on the speed-accuracy trade-
offs on FLAVR, and showcase results in Figure 4. Specifi-
cally, for every 3D conv block, we replace the residual block
by a channel separated convolution block [61] with groups
g = 1, 2, 4, 8 and 16, indicated by FLAVR, FLAVR-2x,
FLAVR-4x and so on in Figure 4. Note that g = 1 refers
to our default setting in all other experiments. We show
the results on Vimeo-90K for 2× interpolation as well as
GoPro dataset on 8× interpolation. We find that compared
to baselines that deliver similar performance (eg. QVI),
FLAVR is at least 6× faster on 8×interpolation (refer Fig-
ure 4b, FLAVR-G8 vs. QVI). Furthermore, compared to
baselines that give similar inference time speeds, FLAVR
delivers at least 3dB accuracy gain (refer Figure 4b, FLAVR
vs. SuperSloMo). These results indicate that FLAVR is a
flexible architecture achieving best speed accuracy trade-off
for video frame interpolation compared to existing methods.

Robustness to Task Difficulty. We validate the robust-
ness in performance of our method using the SNU-Film
dataset [9] consisting of videos with varying difficulty for in-
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Model PSNR SSIM

R2D-18-2I 33.98 0.966
R2D-18-4I 34.97 0.967
R3D-18-4I 36.3 0.975

(a) Effect of encoder arch.

Model PSNR SSIM

No fusion 35.1 0.9713
fusion - add 35.7 0.9737
fusion - concat 36.3 0.975

(b) Type of feature fusion

Model PSNR SSIM

w/o stride 36.3 0.975
w/ 2x stride 35.4 0.961
w/ 4x stride 35.21 0.96

(c) Effect of temporal striding

Model PSNR SSIM

L1 Loss 36.3 0.975
L2 Loss 35.3 0.965
Huber Loss 35.3 0.964
L1+VGG Loss 35.91 0.962

(d) Effect of loss function
Table 3. Ablation results for FLAVR architecture on (a) different backbones, (b) fusion methods, (c) temporal striding, and (d) loss functions.

(a) Overlay (b) GT (c) SSM [23] (d) QVI [77] (e) FLAVR

Figure 5. Qualitative comparison with state-of-the-art methods. We
qualitatively compare FLAVR with Super-SloMo (SSM), QVI on a few
video sequences on DAVIS. More qualitative results and generated videos
are provided along with the supplementary material.

terpolation depending on the temporal gap between the input
frames. The four settings we use are easy (120-240 FPS),
e.g. predicting 240 FPS video from 120 FPS input, medium
(60-120 FPS), hard (30-60 FPS) and extreme (15-30 FPS).
In Figure 3c, we compare the performance of our method
with prior works including CAIN [9] and AdaCoF [27], and
report better performance than all the methods consistently
across all the difficulty settings. Specifically, we see a gain of
1.28dB and 1.62dB compared to the next best approach [9]
in the hard and medium settings respectively, which are con-
sidered challenging for video frame interpolation because
of large motions and longer time gaps between the frames
indicating robustness to video frame rates.

User Study. We conduct a user survey on Amazon Me-
chanical Turk to analyze the performance of our method in
comparison to [77] and [23] on the 90HD videos from Davis
dataset for 8× interpolation. We explain the details of the
survey in supplementary, and summarize the results in Fig-
ure 3b. Firstly, when the comparison is between our method
against Super-SloMo, users overwhelmingly preferred our
videos as the generated videos looked more realistic with
minimum artefacts around edges and motion boundaries ow-
ing to accurate interpolation. In comparison with QVI, users
choose FLAVR in 35% of videos compared to QVI, which
was chosen in 40% of the videos; and for 20% of videos
the differences came out to be negligible. These results
further support our hypothesis that in the interest of real

world deployment, optical flow and warping based frame
interpolation methods can be substituted with our learning
based approach that offers faster inference (Figure 3a) with
minimal loss in performance.

Ablations. We provide detailed ablation into various
design choices of the architecture, network and loss func-
tions on the Vimeo-90K dataset in Table 5, and enlist the
salient observations here. Firstly, we find that compared to
an encoder with 2D Resnet-18 which takes a channel-wise
concatenation of 4 images, FLAVR gives a 1.3dB gain on
PSNR (Table 5a) validating our choice of spatio temporal
network. Also, we find that using no striding in the tempo-
ral dimension (36.3dB) performs better than using stride of
2 (35.4dB) or 4 (35.21dB), supporting the hypothesis that
temporal striding hurts in capturing sharp pixel level detail
(Table 5c). Likewise, we observe that adding VGG-based
perception loss [24] to the L1 losses during training is in-
ferior in terms of PSNR (Table 5d). We include additional
results on the effects of channel gating along with supporting
qualitative results with the supplementary material.

6. How useful is FLAVR in enabling down-
stream applications?

Action Recognition We evaluate the semantic properties
of the internal representations learned by FLAVR by reusing
its trained encoder on a downstream action recognition task.
We remove the decoder and attach a classification layer to
the network. The whole network is then finetuned end to
end on UCF101 and HMDB51 datasets. In order to isolate
the benefits arising from pretraining the encoder on video
interpolation task, we train a 3D resnet (R3D) baseline com-
pletely from scratch and observe from Table 4a that FLAVR,
which is pretrained on Vimeo-90K dataset on frame interpo-
lation task clearly outperforms random initialization baseline
by 13.08% on UCF-101 and 4.48% on HMDB-51. FLAVR
also significantly outperforms prior self-supervised meth-
ods on video which use low level pretext tasks like Video-
GAN [64] and flow descriptors [34] indicating that frame
interpolation can learn useful motion representations. Fi-
nally, FLAVR also achieves better accuracy than pretraining
using DVF [33] which underlines that our particular method
for video frame interpolation invariably benefits downstream
action recognition more than voxel flow.

Optical Flow Estimation It is known that successful
frame interpolation intrinsically depends on reliable opti-
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Method pretrained on Arch. UCF101 HMDB51

Random Init. - R3D-18 50.02 19.00
Supervised Kinetics-400 R3D-18 87.70 59.10
Contrastive [15] Kinetics-400 R3D-18 68.20 34.50

Video-GAN [64] UCF101 Custom 52.10 -
LMD [34] NTU RGB Custom 53.00 -
DVF [33] UCF101 Custom 52.40 -
FLAVR Vimeo-90K R3D-18 63.10 23.48

(a) Action recognition.

Dataset FlowNet
[20]

Random
Init.

Finetune on
FLAVR

MPI-Clean [4] 2.02 4.41 2.92
MPI-Final [4] 3.14 5.27 3.90
Kitti-12 [13] 4.09 9.25 5.23
Kitti-15 [36] 10.06 17.22 13.68

(b) Optical flow estimation.

15→ 30 FPS
J&Fm Jm Fm

CRW 65.5 62.8 68.2
FLAVR+CRW 66.6 63.9 69.4

8→ 30 FPS
CRW 61.9 59.3 64.5
FLAVR+CRW 62.8 60.5 65.1

(c) Video object segmentation mask prop-
agation.

Table 4. FLAVR for various downstream applications. (a) FLAVR as a self-supervised pretext task for action recognition on UCF101 and HMDB51. (b)
for optical flow prediction on MPI (Sintel [4]) and Kitti [36] datasets. (c) for video object segmentation mask propagation for low fps DAVIS videos. Jm
measures the region similarity as mean IoU, while Fm is a boundary alignment metric.

Input @ 15 FPS CRW @ 15FPS 2x FLAVR @ 15FPS + CRW Input @ 15 FPS CRW @ 15FPS 2x FLAVR @ 15FPS + CRW

Figure 6. Video object segmentation mask propagation on DAVIS. FLAVR helps to improve video object tracking in low fps videos. FLAVR is first used
to up-sample video into higher frame rate, then a standard object segment propagation, e.g., CRW [21], is applied on interpolated videos. Refer Table 4c for
quantitative improvements.

cal flow estimation [71]. We investigate this hypothesis by
finetuning our trained network for optical flow estimation
on MPI Sintel [4] and Kitti [13, 36] datasets, and report
the corresponding EPE (end point error) in Table 4b. Fine-
tuning using FLAVR achieves much lower EPE compared
with random initialization using the same backbone archi-
tecture, proving that our model learns useful flow features.
We note that we do not aim to outperform more complex,
flow-dedicated architectures [20,30] but aim to understand if
we can learn useful flow features using a simple architecture
like ours by pre-training on frame interpolation.

FLAVR improves VOS at low fps So far we evaluated
FLAVR’s representation quality for downstream task but
how good is its raw output in improving downstream ap-
plications? To study this, we consider the task of video
object segmentation label propagation where the task is to
propagate object masks throughout the video by extracting
visual correspondences [21, 29, 68, 76]. Most of current ap-
proaches which perform label propagation assume access
to 30FPS videos during training and testing (for example,
from DAVIS), but the ability to find correspondences, and
hence the accuracy of label propagation, falls considerably
if the inputs are from low fps videos. We show that in such
cases, FLAVR can be used to improve the accuracy of video
object segmentation (VOS). To this end, we subsample the
test videos from DAVIS dataset by 2× (30FPS→ 15FPS)
and 4× (30FPS→ 8FPS) factors, and then apply the label
propagation algorithm proposed in CRW [21]. Additionally,
we also apply FLAVR for frame interpolation with k = 2, 4
to recover the original 30FPS videos in each case respec-
tively, and apply the CRW algorithm again on the upsampled
videos. From Table 4c and Figure 6, we observe that FLAVR
can be effectively used as an intermediate step to improve the

results of label propagation on low fps videos. More details
regarding the experiment are present in the supplementary.

Motion Magnification Motion magnification [48, 70] is
a complementary problem to frame interpolation, in which
the task is to magnify the subtle motions from the input
video. Using FLAVR as pre-training, we fine-tune a motion
magnification network for a fixed magnification factor of 10.
FLAVR achieves an SSIM of 0.801 on the synthetic CoCo-
Synth dataset [48] with a simple architecture. More details
and qualitative results are presented in the supplementary.

7. Discussion
We present FLAVR for flow-free and end-to-end video

frame interpolation. FLAVR uses 3D convolutions to model
the spatio-temporal relations between the input frames im-
proving interpolation accuracy under challenging motion
profiles across various input frame rates. In extensive ex-
periments and analysis presented across the main paper and
the supplementary, we show that FLAVR offers best trade-
off in terms of inference speed vs. interpolation accuracy
compared to many existing approaches. We show that the
representations learned by FLAVR are useful for various
downstream tasks such as action recognition, optical flow
estimation, video object segmentation mask propagation and
motion magnification. We also invite the reviewers to look
at more qualitative results and generated videos which are
provided along with the supplementary material.

FLAVR still requires retraining for each interpolation fac-
tor k although for most of the practical applications, it is well
known beforehand what would be the desired interpolation
factor. Being a data-driven end-to-end approach, FLAVR
shares with other deep learning based approaches the limited
generalization capability to data outside the training distri-
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bution. Nevertheless, we expect FLAVR to stimulate new
directions for frame interpolation with ample opportunity for
simpler and efficient methods to address these limitations.

8. Ablations
In Table 5, we present a detailed ablation study of the

proposed architecture design in terms of the skip connections,
strides and loss functions. In addition to the brief insight
provided in the main text, we explain each of them in detail
next. We conduct all the ablation studies on the Vimeo-90K
dataset.

Backbone Architecture In this work, we propose us-
ing 3D convolutions that model space-time relations for
improved frame interpolation. To verify this hypothesis, we
train a video interpolation network using 2D convolutions
instead, and present the results in Table 5a. While training
2D Resnet, we concatenate RGB channels of the input before
feeding into the network. We observe that the R2D-18-2I
baseline, which uses a 2D ResNet-18 encoder decoder with
2 input frames (C = 1) performs worse than 2D-R18-4I
baseline, which uses 4 input frames (C = 2) justifying the
need for a larger input context. Next, our proposed archi-
tecture 3D-R18-4I which uses 3D convolutions along with
4 inputs, clearly outperforms both these baselines by 1.3
and 2.3dB, respectively. This indicates the importance of
temporal modeling for the task.

In Figure 7, we present a more detailed ablation about
the effect of input context (C) on the performance of inter-
polation. From Figure 7, we observe that for both 2× and
8× interpolations, using two input frames (C = 1), one
each from past and present is sub-optimal, as it fails to accu-
rately reason about complex motion profiles and occlusions.
Furthermore, for 2× interpolation, we found that a value of
C = 2 gave the best result, and beyond that the performance
saturates. This is because the outer frame generally contain
less useful information for interpolation and in some cases
might contain significant scene shifts which hurts the inter-
polation accuracy. In the case of 8× interpolation, the time
gap between the frames is tinier, so we find that a value of
C = 3 performs the best, while any larger value of C hurts
the accuracy.

Choice of Fusion Table 5b compares and reports the dif-
ferent choices for the skip connection (in Figure 2 of the
main submission) used for combining features across en-
coder and corresponding decoder. No fusion corresponds to
having no skip connection between the layers of the encoder
and decoder. While fusion - add corresponds to adding
the features from the encoder to the decoder, fusion - con-
cat refers to concatenating the corresponding feature maps
along the channels. We find that using some kind of feature
transfer across encoder and decoder is essential, than having
No fusion (PSNR of 36.11 vs. 35.1), as the complementary
information learnt in the low level and high level features

1 2 3 4 5
Input Context (C)
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Figure 7. Effect of Input Context Comparison of the effect of input con-
text, C, for video frame interpolation. For 2× interpolation, we observed
that a value of C = 2 which corresponds to using 4 input frames, 2 each
from the past and future, gives best results. Beyond C = 3, we observe
no further improvements. For 8× interpolation, a value of C = 3 gave the
best accuracy.

needs to be aggregated for accurate interpolation. We settle
on using fusion - concat in our final model as it gives better
performance than fusion - add.

Temporal Striding Striding or pooling in CNNs are
known to remove lot of fine level details in images, which are
essential for generative tasks like frame interpolation. We
verify this with experiments using 2×(1/2×) and 4×(1/4×)
temporal striding in the encoder(decoder), and observe from
Table 5c that the performance decreases from 36.3 to 35.2
with larger temporal striding. We conclude that temporal
striding hurts, and use a temporal stride of 1 in all the 3D
convolution layers.

Channel Gating We visualize the role of channel gating
module in the network in Figure 8. We show the overlapped
input frames in Figure 8a to highlight the parts which have
motion. In Figure 8b and Figure 8c, we plot the feature maps
corresponding to the channel dimension with the largest
activation while using and without using the feature gating
respectively. We observe that the network trained with spatio-
temporal gating (Figure 8b) learns to focus on parts of input
with visible motions (high activations in red), thus resulting
in confident predictions of the interpolated motion estimates
compared to Figure 8c. In fact, training without spatio-
temporal gating results in a drop in PSNR value from 36.3
to 36.1, further validating the utility of having the gating
module.

Loss Function Many previous works [45] have studied
the effect of using purely pixel loss vs. perception based
losses [24]. Using only L1 or L2 loss would improve on
the PSNR metric, but would cause blur in predictions. On
the other hand, adding VGG based perception loss would
result in sharper images visually. We observe from Table 5d
that we did not improve upon the PSNR or SSIM metric by
using any additional loss functions like VGG loss or Huber
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Model PSNR SSIM

R2D-18-2I 33.98 0.966
R2D-18-4I 34.97 0.967
R3D-18-4I 36.3 0.975

(a) Effect of encoder arch.

Model PSNR SSIM

No fusion 35.1 0.9713
fusion - add 35.7 0.9737
fusion - concat 36.3 0.975

(b) Type of feature fusion

Model PSNR SSIM

w/o stride 36.3 0.975
w/ 2x stride 35.4 0.961
w/ 4x stride 35.21 0.96

(c) Effect of temporal striding

Model PSNR SSIM

L1 Loss 36.3 0.975
L2 Loss 35.3 0.965
Huber Loss 35.3 0.964
L1+VGG Loss 35.91 0.962

(d) Effect of loss function
Table 5. Ablation results for FLAVR architecture on (a) different backbones, (b) fusion methods, (c) temporal striding, and (d) loss functions.

(a) Overlayed inputs (b) Activation w/ gating (c) Activation w/o gating

Figure 8. Visualization of attention weighted feature maps (a) The overlayed input frames. (b) The feature map of the channel with the highest attention
weight in the network with feature gating. (c) The same feature map without using the gating module. We observe higher activation (red) in (b) along the
motion boundaries. Best viewed in color.

loss, apart from just L1 loss which also resulted in visually
sharper images in our case.

9. Experiment Settings for downstream appli-
cations

9.1. Low-fps video object segmentation details

To examine the effectiveness of using the outputs of
FLAVR, we choose the task of object segmentation in videos
using mask propagation.

Motivation Achieving good label (or mask) propagation
requires estimating perfect pixel level correspondences be-
tween frames of a video, using similarity between the re-
spective feature maps. However, estimating such correspon-
dences might be challenging if the frame sequences are ex-
tracted from low-fps videos. We want to validate if using
FLAVR can improve low-fps video object segmentation.

Setup and baseline. DAVIS is the standard benchmark
popularly used for video object segmentation which include
videos at 30FPS. To adopt to low-fps setup, we purposely
downsample DAVIS videos into lower frame rates, e.g.,
15FPS or 8 FPS, and evaluate different object segmentation
approaches on these low-fps videos. We choose CRW [21],
the current state-of-the-art method for video object segmenta-
tion, as a baseline which is applied directly on downsampled
low-fps videos. We then compare this baseline with using
the same method, i.e. CRW, on interpolated videos gener-
ated by FLAVR by 2x or 4x interpolation from 15FPS or
8FPS videos. Results are shown in the main submission

showing that FLAVR helps to improve low-fps video object
tracking. The label propagation mechanism is the same as
used in [21].

9.2. Motion magnification

Motion Magnification [48, 66, 70] deals with magnifying
subtle yet important motions from videos, which are often
imperceptible by human eyes. From [48], we define motion
magnification as follows. For an Image I(x, t) = f(x +
δ(x, t)), the goal of motion magnification is to generate an
output image Ĩ(x, t) such that

Ĩ(x, t) = f(x + (1 + α)δ(x, t)) (1)

for a magnification factor α. For frame interpolation, α < 1,
since we are interested in what happens between two frames
while for motion magnification, α > 1, since we look to
extrapolate existing motions beyond visible regime. While
prior works [48,66,70] used custom architectures along with
various post processing filters for this task, we offer a com-
plementary perspective and look into how much a simple
architecture like FLAVR pretrained on frame interpolation
helps motion magnification. For this purpose, we use the
synthetic dataset CoCo-Synth [48] to perform the training.
We train the network for a fixed magnification factor of 10
(α = 10). On this dataset, when compared to no pretraining
at all, pretraining on FLAVR improved the SSIM values on
a held-out validation set from 0.732 to 0.801. We provide
sample videos after magnification and compare it with phase
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based approach [70] in our supplementary video. We em-
phasize that we do not apply any post processing such as
temporal or spatial filters for removing noise on the outputs.
The videos are generated directly as an output of the FLAVR
architecture pretrained on frame interpolation, and finetuned
for motion magnification.

9.3. Experiment setting for action recognition

For downstream experiments on action recognition, we
use the train and validation split 1 of UCF101 [25] and
HMDB51 [26]. We remove the decoder from the architec-
ture and use the pretrained encoder along with a classifier
(a global average pooling, a fully-connected layer, and a
softmax) for training on downstream actions and add a tem-
poral stride of 4. For UCF101, we use an input size of
32× 3× 224× 224 and for HMDB51 we use an input size
of 16× 3× 224× 224 with a batch size of 16. The networks
are fine-tuned using SGD with batch norm with a learning
rate of 0.02 for 40 epochs. During inference, we sample
10 consecutive overlapping clips of length 32 from the test
video and average predictions over all the clips.

9.4. Experiment setting for optical flow estimation

One crucial point to consider in downstream training on
optical flow is that the flow networks generally take only
two input frames which is considered too short for 3D CNN.
Nevertheless, to examine the effectiveness of features learnt
using frame interpolation for optical flow, we use the same
encoder and decoder, and initialize the last prediction layer
to output two channels instead (corresponding to x and y
values of flow at each pixel). Since the interpolation network
was trained to take 4-frame inputs, we apply copy padding
to the inputs, e.g. repeating each input frame 2 times. We
use an EPE (end point error) loss and train our network for
200 epochs. We report numbers using 5-fold cross validation
over the MPI-Sintel clean and fina as well as Kitti subsets.

10. Qualitative Results

We show additional qualitative results by applying frame
interpolation technique on insect motion videos in Figure 9.
We believe that this application is of immense use for closer
inspection of biological properties from videos. We obtain
videos from AntLab Youtube channel1 that have insect take-
off and flying captured at very high FPS. We down-sample
the frame rate to 15FPS and apply our interpolation network
to recover videos of higher frame rate. We apply our 8×
model once to obtain videos of 120FPS. The images are
shown in Figure 9. Complete videos are available in our
supplementary video.

Middlebury Dataset.

1https://www.youtube.com/user/adrianalansmith

We evaluate FLAVR on the publicly available test im-
ages from Middleburry dataset [54] on the task of single
frame interpolation. However, Middleburry has test sam-
ples with only two input frames while FLAVR requires 4-
frame inputs. In those examples, we simply duplicate them
into 4 frames and evaluate with FLAVR. For two frame
sequences like teddy, duplicating inputs is obviously sub-
optimal. On sequences where multi-frame inputs are avail-
able, FLAVR outperforms most prior interpolation works
like SuperSloMo [23], BMBC [49] and EDSC [6]. Quali-
tative results for some such sequences are presented in Fig-
ure 10. The complete results are available on the public
leaderboard.

11. User study

We carry the user study on the Amazon Mechanical Turk
(AMT) platform. We select two representative works that
belong to two broad families that perform linear (Super-
SloMo [23]) and quadratic (QVI [77]) warping for multi-
frame interpolation. Then, we compare each video generated
by FLAVR with videos generated using each of SuperSloMo
and QVI separately. For this purpose we use all 90 HD
videos from the DAVIS dataset, generate 8× interpolated
videos and place the two interpolated videos one beside the
other and randomly shuffle the order of videos. We then
show each pair of videos to 6 AMT workers and ask them
to choose which video, right or left, looked more realistic.
The method preferred by more users is chosen as a win-
ner for that particular video. In case of tie, that is if each
method is chosen by 3 users, we place the video under “no
preference” category. Workers are paid in accordance with
minimum wages rules. With this setting, we find that users
overwhelmingly chose our videos in preference against Su-
perSloMo [23]. More details are provided in subsection 5.1
of the main paper.

12. Training details

We train the 2× interpolation network on Vimeo-90K
dataset and 4× and 8× interpolation networks on the Go-
Pro dataset and use the official train and validation splits
with the sampling strategy explained in subsection 3 of the
paper. We use a crop size of 256×256 and 512×512 for
Vimeo-90K and GoPro datasets, respectively. We employ
random frame order reversal and random horizontal flipping
as augmentation strategies on both the datasets. We use use
an initial learning rate of 2× 10−4 and divide the learning
rate by 2 whenever the training plateaus. We train the 2×
interpolation network for 200 epochs, while 4× and 8× in-
terpolation network were trained for 120 epochs. We use
a mini-batch size of 64 on Vimeo-90K dataset and 32 on
GoPro dataset, and train our network on 8 2080Ti GPUs.
We reduce the learning rate by half whenever the training
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(a) t=0 (b) t=0.125 (c) t=0.25 (d) t=0.375 (e) t=0.5 (f) t=0.625 (g) t=0.75 (h) t=0.875 (i) t=1

Figure 9. Qualitative Results for 8× video frame interpolation on Insect Motion Videos. Frame at t = 0 and t = 1 are given as inputs to the network to
predict the remaining 7 intermediate frames. Original Videos acquired from AntLab Youtube Channel.

plateaus which is cross-validated by the validation set. We
apply mean normalization once for every mini-batch of input
frames separately rather than using global mean normaliza-
tion or batch normalization inside the network to achieve
training stability. We use 8 GPUs and a mini-batch of 32
to train each model, and training is completed in about 36
hours for 2× and 22 hours for 8× interpolation networks.

13. Benchmarking inference time
The inference time benchmarking was performed using

an NVIDIA-2080Ti GPU with 12GB memory. The calcu-
lated time only includes forward pass excluding the data
pre-processing time and CPU/GPU transfer. The results
were obtained by averaging over 100 samples from Adobe-
240FPS dataset using 512×512 crop size. For multi-frame
interpolation, the time required is calculated as the aggregate
time required for interpolating all the frames. Non-blocking
CUDA operations as well as GPU warm start time were
accounted for during inference time computation.

14. Statement on potential negative impact
Frame interpolation aims to generate non-existent frames

between existing frames of a video. While achieving state-
of-the-art performance using simple architectures through
FLAVR is a plus, any kind of generative models can be
misused to forge or tamper a video which may have a nega-
tive impact on applications where outputs of FLAVR have
a bearing on reliability. Moreover, one of the applications
of FLAVR is to improve object tracking in videos, which
might have a potential to be used in surveillance for nefarious
purposes.
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ing ssim. arXiv preprint arXiv:2006.13846, 2020. 4

[47] Augustus Odena, Vincent Dumoulin, and Chris Olah.
Deconvolution and checkerboard artifacts. Distill,
2016. 4

[48] Tae-Hyun Oh, Ronnachai Jaroensri, Changil Kim, Mo-
hamed Elgharib, Fr’edo Durand, William T Freeman,
and Wojciech Matusik. Learning-based video motion
magnification. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 633–648,
2018. 8, 10

[49] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su
Kim. Bmbc: Bilateral motion estimation with bilateral
cost volume for video interpolation. arXiv preprint
arXiv:2007.12622, 2020. 1, 3, 5, 11, 13

[50] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor
Darrell, and Bharath Hariharan. Learning features by
watching objects move. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 2701–2710, 2017. 2

[51] Tomer Peleg, Pablo Szekely, Doron Sabo, and Omry
Sendik. Im-net for high resolution video frame in-
terpolation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2398–2407, 2019. 1, 2

[52] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams,
Luc Van Gool, Markus Gross, and Alexander Sorkine-
Hornung. A benchmark dataset and evaluation method-
ology for video object segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 724–732, 2016. 4

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer, 2015. 3

[54] Daniel Scharstein, Heiko Hirschmüller, York Kitajima,
Greg Krathwohl, Nera Nešić, Xi Wang, and Porter
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