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Abstract

Neural networks have recently been used to analyze di-
verse physical systems and to identify the underlying dy-
namics. While existing methods achieve impressive results,
they are limited by their strong demand for training data
and their weak generalization abilities to out-of-distribution
data. To overcome these limitations, we propose to com-
bine neural implicit representations for appearance model-
ing with neural ordinary differential equations (ODEs) for
modelling planar physical phenomena to obtain a dynamic
scene representation that can be identified directly from vi-
sual observations. Our proposed model combines several
unique advantages: (i) Contrary to existing approaches
that require large training datasets, we are able to iden-
tify physical parameters from only a single video. (ii) The
use of neural implicit representations enables the process-
ing of high-resolution videos and the synthesis of photo-
realistic images. (iii) The embedded neural ODE has a
known parametric form that allows for the identification of
interpretable physical parameters, and (iv) long-term pre-
diction in state space. (v) Furthermore, the photo-realistic
rendering of novel scenes with modified physical parame-
ters becomes possible.

1. Introduction

For many physical phenomena, humans are able to infer
(a rough estimation of) physical quantities from observing a
scene, and are even capable to predict what is going to hap-
pen in the (near) future. In contrast, physical understanding
from videos is an open problem in machine learning. The
physics of many real-world phenomena can be described
concisely and accurately using differential equations. How-
ever, such equations are usually formulated in terms of ab-
stracted quantities that are typically not directly observable
using commodity sensors, such as cameras. For example,
the dynamics of a pendulum are described by the deflection
angle and the angular velocity as the time-varying state and

the damping coefficient, and the pendulum’s length as pa-
rameters. Automatically extracting those physical parame-
ters directly from video data is challenging. Due to the dif-
ficulties in direct observation of those quantities in images,
and their complex relationship with the physical process,
measuring such quantities in experiments often necessitates
a trained expert operating customised equipment.

Recently, the combination of deep learning and physics
has become popular, particularly in the context of video pre-
diction. While earlier works [31, 16, 43, 11, 59, 10, 20, 44]
require coordinate data, i.e. abstracted physical quantities
that are not directly accessible from the video, more recent
works directly use image data [50, 12, 22, 24, 53, 29, 60, 27,
51]. A major downside of all these approaches is, that they
rely on massive amounts of training data, and exhibit poor
generalization abilities if the observation deviates from the
training distribution, as we experimentally confirm. In con-
trast, our proposed combination of a parametric dynamics
model with a neural scene representation allows for identi-
fication of the dynamics from only a single high resolution
video. Also, due to our per-scene approach, our method
does not suffer from generalization issues either.

Several of the previously mentioned works model phys-
ical systems using Lagrangian or Hamiltonian energy for-
mulations [31, 16, 11, 10, 53, 59, 29, 60], or other gen-
eral physics models [27]. While those are a elegant ap-
proaches that allow the model to adapt to different physical
systems, they have two drawbacks. First, the general mod-
els are part of the reason why large amounts of data are re-
quired. Second, once the system dynamics have been iden-
tified, they are not easily interpretable. Questions like “How
would the scene look like if we double the damping” cannot
be answered. In contrast, we estimate physically meaning-
ful parameters of the underlying dynamics like the length
of a pendulum or the friction coefficient of a sliding block.
We find experimentally that using an ODE-based dynamics
model gives more accurate long-term predictions. More-
over, due to the combination with the photo-realistic render-
ing capacities of our neural appearance representation, we
are able to re-render the scene with adapted parameters.
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Figure 1: Our method infers physical parameters directly from real-world videos, like the shown pendulum motion. Separated
by the red line, the right half of each image shows the input frame, and the left half shows our reconstruction based on
physical parameters that we estimate from the input. We show 6 out of 10 frames that were used for training. The proposed
model can precisely recover the metric length of the pendulum from the monocular video (relative error to true length is less
than 4.1%). Best viewed on screen with magnification. Please also consider the supplementary video.

We summarize our main contributions as follows:
1. We present the first method that uses neural implicit rep-

resentations to identify physical parameters for planar
dynamics from a single video.

2. Our approach infers parameters of an underlying ODE-
based physical model that directly allows for inter-
pretability and long-term predictions.

3. The unique combination of powerful neural implicit rep-
resentations with rich physical models allows to synthe-
size high-resolution and photo-realistic imagery. More-
over, it enables physical editing by rendering novel
scenes with modified physical parameters.

4. Contrary to existing learning-based approaches that re-
quire large corpora of training data, we propose a per-
scene model, so that only a single short video clip that
depicts the physical phenomenon is necessary.

See https://florianhofherr.github.io/phys-param-inference
and the appendix for architecture & training details and the
supplementary video. This work is of fundamental char-
acter and thus has less immediate potential for negative
societal impact. We discuss this in detail in the appendix.

2. Related Work
The combination of machine learning and physics has

been addressed across a broad range of topics. Machine
learning was used to aid physics research [4, 28], and
physics was used within machine learning models, e.g. for
automatic question answering from videos [8, 3]. A great
overview over physics-informed machine learning can be
found in [25]. In this work we focus specifically on extract-
ing physical models from videos, so that we discuss related
works that we consider most relevant in this context.

Physical dynamics in the context of learning.
While neural networks have led to remarkable results across
diverse domains, the inference and representation of physi-

cal principles like energy conservation, is still a challenge in
the context of learning and requires additional constraints.
Generalized energy functions are one way to endow models
with physics-based priors. For example, [16, 10] and [53]
use a neural network to parameterize the Hamiltonian of a
system, which relates the total energy to the change of the
state. This approach allows to infer the dynamics of sys-
tems with conserved energy, like an undamped pendulum.
[48] augment the Hamiltonian by a learned Rayleigh dissi-
pation function to model systems that do not conserve en-
ergy, which are more common in the real world [15].

One disadvantage of the Hamiltionian is that canonical
coordinates need to be used. To eliminate this constraint,
other works use the Lagrangian to model the energy of the
system. Since this formalism is more complex, [31] and
[60] restrict the Lagrangian to the case of rigid-body dy-
namics to model systems with multiple degrees of freedom,
such as a pole on a cart, or a robotic arm. [11] use a neural
network to parameterize a general Lagrangian to infer the
dynamics of a relativistic particle in a uniform potential.

Another problem of many previous approaches is that
they do not allow for interpretation of individual learned
system parameters. For example, [18] learns dynamics in
the form of a general PDE in a latent space, which, like the
aforementioned works based on energy functions, prohibits
interpretation of the learned physical model (e.g in the form
of interpretable parameters). In contrast, there are also ap-
proaches that explicitly incorporate the underlying dynam-
ics into learning frameworks. [22] unroll the Euler integra-
tion of the ordinary differential equation of bouncing balls,
as well as balls connected by a spring, to identify the phys-
ical parameters like the spring constant. [24] and [12] pro-
pose to use a linear complementarity problem to differen-
tiably simulate rigid multi-body dynamics that can also han-
dle object interaction and friction. [42] and [41] add uncer-
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tainty propagation by combining numeric stepping schemes
with Gaussian processes. For our method, we also rely on
the advantages of modelling the underlying physics explic-
itly to obtain interpretable parameter estimates.

Inferring physical properties from video. While
many approaches work with trajectories in state space, there
are also several works that operate directly on videos. In
this case, the information about physical quantities is sub-
stantially more abstract, so that uncovering dynamics from
video data is a significantly more difficult problem. In their
seminal work [55] consider objects sliding down a plane.
By tracking the objects, they estimate velocity vectors that
are used to supervise a rigid body simulation of the respec-
tive object. Similarly, [21] track the trajectories of key-
points for more complex rigid body motions like a bounc-
ing ball, and estimate the physical parameters and the most
likely model from a family of possible models by compar-
ing the tracked trajectory to the projection of a simulated
3D trajectory. Both methods rely on correctly identifying
the object tracks and do not use the rich information con-
tained in the image directly. Also, video extrapolation is not
easily possible. [54] and [23] consider deformable objects
and solve a partial differential equation to simulate the de-
formations. Wile the first method uses depth values as su-
pervision, the second one employs a photometric loss. [14]
extract vibration modes from a video and identify the mate-
rial parameters by comparing to the eigenmodes of the ob-
ject mesh. While those methods show impressive results,
all three require a 3D template mesh as additional informa-
tion, which may limit their practical applicability.

More recently, several end-to-end learning approaches
have been proposed. [27] combine the state prediction of an
LSTM from an image with the prediction of a graph neu-
ral network from the previous state to propagate the state
in time. Using the Sum-Product Attend-Infer-Repeat (Su-
PAIR) model ([49]) they render images from the state pre-
dictions and use the input image sequence as supervision.
[12, 22] and [24] use an encoder to extract the initial state of
several objects from the combination of images and object
masks. After propagating the physical state over time, they
use carefully crafted decoders to transform the state back
into images to allow for end-to-end training. [60] and [53]
use a variational autoencoder (VAE) to predict posterior in-
formation about the initial state and combine this with an
energy based representation of the dynamics and a final de-
coding stage. [51] improve the VAE based approach by us-
ing known explicit physical models as prior knowledge. [6]
combine Mask R-CNN [19] with a VAE to predict symbolic
equations. All of these approaches require large amounts of
data to train the complex encoder and decoder modules. In
contrast, our approach does not rely on trainable encoder or
decoder structures. Instead it combines neural implicit rep-
resentations to model the scene appearance with the estima-

tion of the parameters of a known, parameteric ODE, and is
able to infer physical models from a single video.

Implicit representations. Recently, neural implicit
representations have gained popularity due to their theo-
retical elegance and performance in novel view synthesis.
The idea is to use a neural network to parametrize a func-
tion that maps a spatial location to a spatial feature. For
example occupancy values [32, 9, 39], or signed distance
functions [37, 17, 1] can be used to represent geometric
shapes. In the area of multiview 3D surface reconstruction
as well as novel view synthesis, a representation for den-
sity or signed distance, is combined with neural color fields
to represent shape and appearance [46, 33, 57, 35, 2]. To
model dynamic scenes, there have been several approaches
that parametrize a displacement field and model the scene
in a reference configuration [34, 38, 40]. On the other hand,
several approaches [56, 30, 13] include the time as an in-
put to the neural representation and regularize the network
using constraints based on appearance, geometry, and pre-
trained depth or flow networks – however, none of these
methods uses physics-based constraints, e.g. by enforcing
Newtonian motion. An exeption is the work by Song et al.
that use the solution of an ODE as regularization of a mo-
tion network to crate dynamic NeRFs [47]. In contrast to
our work, this approach does not enforce the physics to be
exact. While the majority of works on implicit representa-
tions focuses on shape, [45] show the generality of implicit
representations by representing images and audio. We com-
bine such representations with explicit physical models.

3. Estimating Physical Models with Neural Im-
plicit Representations

Our main goal is the estimation of physical parameters
from a single video. We focus on the setting of a static
camera, a static background, and rigid objects that are mov-
ing according to some physical phenomenon and exhibit a
motion that can be restricted to a plane. We model the dy-
namics of the objects using an ordinary differential equation
(ODE) and use implicit neural representations to model the
appearance, where the static background and the planar dy-
namics allow us to model the appearance in 2D. Our objec-
tive is to estimate the unknown physical parameters, and the
initial conditions, of the ODE, as well as the parameters of
the appearance representations. For estimating these quan-
tities directly from an input video, we utilise a photometric
loss that imposes similarity between the generated frames
and the input. Due to the parametric dynamics model and
the photorealistic appearance representation, we can use the
result also as a generative model to render videos with vary-
ing physical parameters. We would like to note that neural
radiance fields have shown convincing performance in 3D
and hence the proposed method is a promising step towards
physical parameter estimation in three dimensions.
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Figure 2: Overview of our approach. Dynamics Representation: The dynamics in the video are modelled by an ordinary
differential equation (ODE), which is solved depending on unknown initial conditions z0 and unknown physical parameters
θode. The solution curve z (t; z0, θode) is used to parametrize a time-dependent transformation T (z (t; z0, θode) , θ+) from the
global coordinates XY of the background to the local coordinates xy of the moving object. The (unknown) parameters θ+
encode additional degrees of freedom of the transformation, for example the pivot point of a pendulum. Scene Represen-
tation: The functions F (·; θbg) and G(·; θobj) are neural networks that model the appearance of the background and of the
object, using color c and opacity o (only for the foreground objects). Rendering: Rendering is done by blending the fore-
ground and the background color based on the opacity of the foreground objects. Loss: We can estimate the unknown phys-
ical parameters for a given video based on a rendering loss which penalizes the discrepancy between the input video frames
and the rendered video. All estimated parameters and network weights are shown in green text in the figure.

3.1. Modeling the Dynamics

For most of the dynamics that can be observed in nature,
the temporal evolution of the state can be described by an
ODE. For example, for a pendulum the state variables are
the deflection angle and the angular velocity, and a two di-
mensional ODE can be used to describe the dynamics.

In general, we write ż = f (z, t; θode) to describe the
ODE1, where z ∈ Rn denotes the state variable, t ∈ R de-
notes time and θode ∈ Rm are the unknown physical pa-
rameters. Using the initial conditions z0 ∈ Rn at the initial
time t0, we can write the solution of the ODE as

z (t; z0, θode) = z0 +

∫ t

t0

f (z(τ), τ ; θode) dτ. (1)

Note that the solution curve z (t; z0, θode) ⊂ Rn depends
both on the unknown initial conditions z0, as well as on the
unknown physical parameters θode.

In practice, the solution to Equation (1) is typically ap-
proximated by numeric integration. In our context of phys-
ical parameter estimation from videos, we build upon [7],
who proposed an approach to compute gradients of the so-
lution curve of an ODE with respect to its parameters. With
that, it becomes possible to differentiate through the solu-
tion in Equation (1) and therefore we can use gradient-based
methods to estimate z0 and θode.

1W.l.o.g. we consider first-order ODEs here, since it is possible to re-
duce the order to one by introducing additional state variables.

3.2. Differentiable Rendering of the Video Frames

To render the video frames, we draw inspiration from
the recent advances in neural implicit representations. To
this end, we combine one representation for the static back-
ground with a representation for appearance and shape of
dynamic foreground objects. By composing the learned
background with the dynamic foreground objects, whose
poses are determined by the solution of the ODE encoding
the physical phenomenon, we obtain a dynamic representa-
tion of the overall scene. Doing so allows us to query the
color values on a pixel grid, so that we are able to render
video frames in a differentiable manner (cf. Figure 2).

Representation of the background. The appearance
of the static background is modeled by a function F (·; θbg)
that maps a 2D location x to a color value c ∈ R3. We
use a neural network with learnable parameters θbg to repre-
sent F (·; θbg). To improve the ability of the neural network
to learn high frequency variations in appearance, we use
Fourier features [52] that map the input x ∈ R2 to a vector
γ (x) ∈ RNFourier , where NFourier is the numbers Fourier fea-
tures used. The full representation of the background then
reads cbg (x) = F (γ (x) ; θbg). For a more detailed discus-
sion of the architecture, we refer to the appendix.

Representation of dynamic objects. To compose
the static background and the dynamically moving objects
into the full scene, we draw inspiration from both [36] and
[58], who use implicit representations to decompose a dy-
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namic 3D scene into a background representation and dy-
namically moving local representations. A drawback of
their works is that they do not use physical dynamics mod-
els to constrain the dynamics, and therefore require strong
supervisory signals like the trajectories and the dimensions
of the bounding boxes in the first case or data from a multi-
camera rig in the second case. In contrast, we use the trans-
formation Tt = T (z (t; z0, θode) , θ+) that is parametrized
by the simulation of a physical phenomenon to position
the dynamically moving local representation in the overall
scene. Besides the unknown initial condition z0 and the
physical parameters θode of the ODE, we can use additional
parameters θ+ for the parametrization. In case of the pen-
dulum z0 are initial angle and anglular velocity, θode con-
tains the length and the damping and θ+ is the pivot point of
a pendulum. See the appendix for more details. Tt is a time
dependent, affine 2D transformation that maps from global
to local coordinates and therefore can model a movements
of the object in a plane that is parallel to the (static) camera.

Similarly to the background, the appearance of each in-
dividual dynamic object is modeled in terms of an implicit
neural representation (in the local coordinate system). In
contrast to the background, we augment the color output
c ∈ RC of the dynamic object representation with an ad-
ditional opacity value o ∈ [0, 1], which allows us to model
objects with arbitrary shape. We write the representation
of a dynamic object in the global coordinate system as
(cobj (x) , o (x)) = G(γ (x′) ; θobj), where G(·; θobj) is rep-
resented as a neural network with weights θobj, γ denotes
the mapping to Fourier features, and x′ = Tt(x) is the lo-
cal coordinate representation of the (global) 2D location x.

Homography to correct for non-parallel planes.
Since Tt is an affine transformation, it can only model
movements that are parallel to the (static) camera plane.
However, in particular for the real world examples, the
plane of the movements does not need to be parallel to the
image plane, but could be tilted. The resulting nonlinear
effects can be modeled by adding a learnable homography
to the transformation from global to local coordinates. For
clarity, we will not explicitly write the homography down,
but rather consider it as a part of Tt. Note that no additional
supervision is necessary to identify the homography.

Differentiable rendering. For rendering we evalu-
ate the composed scene appearance at a regular pixel grid,
where we use the opacity value of the local object represen-
tation to blend the color of the background and the dynamic
objects. To obtain the color for the pixel x, we evaluate

c(x, t) = (1− o(x)) cbg(x) + o(x)cobj(x). (2)

Note that c(x, t) is time dependent due to the time de-
pendence of the transformation Tt. This allows us to render
the frames of the sequence over time.

3.3. Loss Function

We jointly optimize for the parameters of the neural im-
plicit representations θbg and θobj and estimate the physical
parameters θode and z0 and the transformation parameters
θ+ and the homography matrix. To this end, we use a sim-
ple mean squared error loss between the predicted pixel val-
ues and the given images. During training we form batches
of Nbatch pixels. To make the training more stable and help
the model to identify the motion of the objects, we adopt
the online training approach from [58] and progressively in-
crease the number of frames used during the optimization.
More details on the training can be found in the appendix.

4. Experiments
We use four challenging physical models to evaluate our

proposed approach. To analyze our method and to com-
pare to previous work, we first consider synthetic data. Af-
terwards, we show that our method achieves strong results
also on real-world data. For additional implementation de-
tails and results we refer the reader to the appendix.

Although several learning-based approaches that infer
physical models from image data have been proposed [12,
22, 24, 60, 53], existing approaches are particularly tai-
lored towards settings with large training corpora. How-
ever, these methods typically suffer from decreasing esti-
mation accuracy when training data are scarce or when out-
of-distribution generalization is required, as we show in the
appendix. In contrast, our proposed approach is able to pre-
dict physical parameters from a single short video clip. Due
to the lack of existing baselines tailored towards estimation
from a single video, we adapt the recent work of [22] and
[60] to act as baseline methods.

4.1. Synthetic Data

We compare the proposed method to two published
methods [22, 60] and two baselines on synthetic data.

Two masses connected by a spring. First, we con-
sider the two moving MNIST digits connected by an (in-
visible) spring on a CIFAR background, from [22], see Fig-
ure 3. The dynamics are modeled as a two dimensional two-
body system. We use two separate local representations and
enable the model to identify the object layering by using
the maximum of both occupancy values. Besides the initial
positions and velocities of the digits, the spring constant k,
the equilibrium distance l are the parameters that need to be
identified. To guide the model in learning which local rep-
resentation represents which digit, we use an additional seg-
mentation loss with very rough object masks as supervision
on the first frame of the sequence. This loss is gradually re-
duced to enable the learning of the fine shape of the objects.
For more details see the appendix.

The approach of [22] uses a learnable encoder and ve-
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Figure 3: Two masses spring system in which MNIST dig-
its are connected by an (invisible) spring ([22] sequence
6). The arrow indicates the start of the prediction of un-
seen frames. We compare our results to [22], both trained
on the full dataset (B: Full) and overfitted to sequence 6
(B: Overfit). For the spring constant and equilibrium dis-
tance (k, l) the different methods achieve the relative errors
(2.7%, 81.0%) (B: Overfit); (3.7%, 1.8%) B: Full; and
(0.7%, 0.7%) (Ours). (Best viewed magnified on screen)

PSNR ↑ Param (Mean) ↓ Param (Median) ↓
[22]: Overfit 17.66 64.77 69.55

[22]: Full 21.40 2.55 2.55
Ours 30.30 2.47 0.76

Table 1: PSNR and relative parameter errors (“Param”) in
percent for our method and the overfitted and full baseline
averaged over 10 test seqs. of the MNIST digits by [22].

locity estimator to obtain initial positions and velocities of
a known number of objects from the video. After inte-
grating the known parametric model, they use a learnable
coordinate-consistent decoder in combination with learned
object masks and colors to render frames from the inte-
grated trajectories. Using a photometric loss they require
5000 sequences of the same two masses spring system to
train the model and identify the parameters. We report the
results of their model trained on the full dataset (‘B: Full’).
In addition, to compare to our work in the setting of param-
eter estimation from a single video, we train their model on
individual sequences of the test dataset (‘B: Overfit’).

Figure 3 shows a qualitative comparison of our results
to the method of [22] trained in the two settings explained
above. We observe that for this sequence all approaches
yield reasonable results for the reconstruction of the train-
ing frames. However, for extrapolation to unseen points
in time, the overfitted model of [22] performs significantly
worse, indicating that the physical model is poorly identi-
fied from a single video. While both, the baseline trained on
the full dataset and our method are able to identify the pa-
rameters with high accuracy, our methods achieves an even
lower error, which leads to a more precise prediction of the
future frames. The fact that we achieve comparable results
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Figure 4: Prediction when training on the first 10 frames
of sequence 0 of the pendulum test data by [60]. Each im-
age shows the prediction of the respective method in white,
and the ground truth as green overlay. For both meth-
ods, the prediction of images seen during training (frames
1,7,10) works well. For unseen data (frames 11,12,16,20),
our method leads to more reliable predictions, meaning that
our physical parameter estimation is more accurate.

while using significantly less data highlights the advantage
of combining the explicit dynamics model with the implicit
representation for the objects. Note that we chose sequence
6 in particular, since it yielded the best visual results for the
baseline. Table 1 shows a quantitative analysis of all 10 test
sequences, highlighting again the advantages of our method
in the setting of a single sequence as well as the competi-
tiveness against the usage of considerably more data. More
results can be found in the appendix.

Nonlinear damped pendulum. We now consider the
renderings of a nonlinear pendulum from [60] (cf. Figure 4).
The sequences are created by OpenAI Gym [5] and contain
no RGB data, but only object masks. [60] uses a coordinate
aware variational encoder to obtain the initial state from ob-
ject masks. After the state trajectory is integrated using a
learnable Lagrangian function parametrizing the dynamics
of the system, a coordinate aware decoder is used to render
frames from the trajectories. To compare to our method in
the setting of a single video, we train the model again using
only the first N frames of sequences from the test set.

In contrast to the baseline, we do not assume a known
pivot point and use a more general pendulum model with
damping. For a nonlinear damped pendulum the unknown
parameters are the initial angle and velocity, the pivot point
A, the pendulum length l and the damping coefficient c. For
more details see the appendix. Since this dataset does not
include image data, we employ a binary cross entropy loss
wrt. the object mask using the same frames as the baseline.

Qualitative results for a single sequence are presented
in Figure 4. We observe similar behavior as before: Both
methods fit the given training data very well, however,
in case of the baseline the pendulum motion significantly
slows down for unseen time steps and the predictions for
unseen data are not very accurate. We emphasize that this
happens because due to the general dynamics model used,
the baseline requires significantly larger training datasets,
and it performs poorly in the single-video setting consid-
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Figure 5: Rendered frames for sequence 1 of the wallclock.
The left image is part of the training set, “unseen frame 1”
is between two training frames, “unseen frame 2” is a fu-
ture frame after the interval seen during training. While our
methods makes photorealistic predictions for both unseen
frames, the time-dependent background (“Baseline-t”) fails
in both cases. Note the visible blending between the neigh-
boring frames in the baseline (red arrows) and the fine detail
on the pendulum recovered by our method (green arrow).

ered in this paper. In contrast, our method shows a sig-
nificantly better performance, which highlights the strength
of directly modelling physical phenomena to constrain the
learnable dynamics in an analysis-by-synthesis manner.

For a quantitative evaluation of the prediction quality,
we report the intersection over union (IoU) averaged over
all frames of the test sequences. Averaged over the first 20
sequences of the test set, the overfitted baseline achieves
an IoU of 0.54 while our method achieves a score of 0.76.
If we predict the test sequences using the baseline trained
on the full dataset, we obtain an IoU of 0.73. We point
out again, that our method achieves results that are en par
with the baseline trained on the full dataset, while requiring
only a single sequence. Moreover, as we show in the ap-
pendix, that the baseline exhibits poor generalization abili-
ties for observations that deviate from the training distribu-
tion, while our method does not encounter such problems.

Nonlinear damped pendulum - high resolution. In
contrast to the approaches of [22] and [60], we also tackle
high-resolution videos with complex background and tex-
tured objects with our approach, see Figure 5. To analyze
our method, we created several synthetic videos by simu-
lating a pendulum motion with known parameters and then
rendered the images of 3 different pendulums on top of
each of 3 different images, creating 9 sequences per back-

ground image. The simulated sequences allow us to com-
pare against groundtruth parameters and object masks. We
select 15 frames for training and use 26 frames for evalu-
ation. The latter frames are selected both between training
frames as well as after the training interval.

To show the advantage of explicitly modelling the phys-
ical dynamics, we compare against two baselines. First, we
augment the background representation by an additional in-
put for positional-encoded time (“Baseline-t”). This gives a
simple representation for a dynamic scene without any local
representations. Second, we follow the idea from [58] and
use a blending of background and foreground representa-
tion, where we position the foreground by learnable SE(2)
transformations for each training frame (“Baseline-p”). To
obtain time continuous transformations, we interpolate lin-
early between the poses estimated for the frames.

Qualitative results for a single scene can be seen in Fig-
ure 5, Table 2 shows a quantitative evaluation over all se-
quences. For more results we refer to the appendix. We
see that our model produces photorealistic renderings of the
scene, even for the predicted frames. While both baselines
yield similar results on the training frames, the quality of the
prediction on the test frames reduces for both methods. As
can be seen in Figure 5, the time dependent background ef-
fectively blends between the training images, which means
that for unseen time instances, the two pendulum positions
from the neighboring training frames can be seen in the
blending process. While the posed baseline does not suffer
from such effects, the linear interpolation of the poses does
not reflect the physical process well, and therefore the pre-
diction quality reduces, as can be seen in Table 2. While the
time dependent baseline shows undefined behavior for the
prediction in the future, it is not even clear how to extrap-
olate the posed baseline beyond the training interval (and
therefore we did not include such frames in the evaluation
for this method). In contrast, our method shows physically
correct prediction between the training frames and, due to
the parametric physical model, is also able to make accurate
predictions for future observations. We also would like to
point out, that the results show, that our methods allows ac-
curate object segmentation for the given physical systems.

4.2. Real World Data

To show the capabilities of our approach on real world
data, we captured videos of three physical systems: A block
sliding on an inclined plane, a thrown ball, see Figure 6, and
a pendulum, see Figure 1. For the block, the initial position
and velocity, the angle of the plane and the coefficient of
friction are the unknown parameters. For the ball, the ini-
tial position and velocity, need to be identified. We use the
model for the damped pendulum introduced earlier. See the
appendix for the full dynamics models.

The real world data is more challenging than the syn-
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Woodwall Stonewall Wallclock
PSNR ↑ IoU ↑ Param ↓ PSNR ↑ IoU ↑ Param ↓ PSNR ↑ IoU ↑ Param ↓

Baseline-t 29.29 - - 25.00 - - 26.36 - -
Baseline-p 33.48 0.86 - 31.73 0.88 - 32.82 0.86 -

Ours 42.07 0.98 0.01 36.40 0.99 0.02 40.98 0.99 0.05

Table 2: Reconstruction quality on the test frames for the synthetic examples. We report IoU of the predicted vs. groundtruth
masks and the relative error of all estimated physical parameters in percent (“Param”) averaged over the 9 sequences of
each dataset. Our method achieves excellent reconstruction quality, mask consistency and parameter estimation, while the
baselines perform worse or do not identify those quantities, which is indicated by “-“.

Pendulum Sliding Block Ball
PSNR↑ ∆H PSNR↑ ∆H PSNR↑ ∆H

w/o hom. 32.74 - 35.34 - 29.47 -
Full 32.91 0.07 36.57 0.18 31.74 0.29

Table 3: Reconstruction quality for the real world examples.
The PSNR is averaged over all unseen test frames. We also
show an ablation of the homography and report the Frobe-
nius norm of the difference between the estimated homog-
raphy matrix and a unit matrix (∆H). The results show that
the homography does improve the reconstruction.
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Figure 6: Reconstruction results for the sliding block and
the thrown ball on three test frames. Our method produces
realistic predictions for previously unseen frames, confirm-
ing that the physical parameters have been identified well.

thetic data, due to image noise and motion blur. We employ
the homography to account for a plane of movement that is
not parallel to the image plane. For training, we extract a
subset of the frames and evaluate on the remaining frames.

Table 3 shows, that we achieve very good reconstruc-
tion on previously unseen frames, which also confirms, that
the physical parameters have been well identified. While
groundtruth for most of the parameters is hard to acquire,
the length of the pendulum, and the angle of the inclined
plane are quantities that can be obtained using a ruler. The
estimated quantities deviate from our measured values by

4.1% and 3.6%, respectively (relative errors). We would
like to emphasize, that this shows, that for certain physi-
cal phenomena, we are able to estimate real world scale in
a monocular video. To show the effectiveness of using the
homography, we ablate it and report the results in Table 3.

5. Conclusion
In this work we presented a solution for identifying the

parameters of a physical model from a video while also cre-
ating a photorealistic representation of the appearance of the
scene objects. To this end, we proposed to combine neu-
ral implicit representations and neural ODEs in an analysis-
by-synthesis fashion. Unlike existing learning-based ap-
proaches that require large training corpora, a single video
clip is sufficient for our approach. In contrast to prior works
that use encoder-decoder architectures specifically tailored
to 2D images, we build upon neural implicit representations
that have been shown to give impressive results for 3D scene
reconstruction. Therefore, the extension of the proposed
method to 3D is a promising direction for future work.

We present diverse experiments in which the ODE
parametrizes a rigid-body transformation of the foreground
objects. We emphasize that conceptually our model is not
limited to rigid-body motions, and that it can directly be
extended to other cases, for example to nonlinear transfor-
mations for modelling soft-body dynamics. The focus of
this work is on learning a physical model of a phenomenon
from a short video. Yet, the high fidelity of our model’s ren-
derings, together with the easy modifiability of the physical
parameters, enables various computer graphics applications
such as the artistic re-rendering of scenes, which we demon-
strate in our video. Overall, our per-scene model com-
bines a unique set of favorable properties, including the in-
terpretability of physical parameters, the ability to perform
long-term predictions, and the synthesis of high-resolution
images. We believe that our work may serve as inspiration
for follow-up works on physics-based machine learning us-
ing neural implicit representations.
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Westermann, and Nils Thuerey. Correspondence-free mate-
rial reconstruction using sparse surface constraints. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[55] Jiajun Wu, Ilker Yildirim, Joseph J. Lim, Bill Freeman, and
Joshua B. Tenenbaum. Galileo: Perceiving physical object
properties by integrating a physics engine with deep learn-
ing. In Conference on Neural Information Processing Sys-
tems (NeurIPS), 2015.

10



[56] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint
video. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[57] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Ronen Basri, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. In Conference on Neural Information Processing
Systems (NeurIPS), 2020.

[58] Wentao Yuan, Zhaoyang Lv, Tanner Schmidt, and Steven
Lovegrove. Star: Self-supervised tracking and reconstruc-
tion of rigid objects in motion with neural rendering. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2021.

[59] Yaofeng Desmond Zhong, Biswadip Dey, and Amit
Chakraborty. Symplectic ode-net: Learning hamiltonian dy-
namics with control. In International Conference on Learn-
ing Representations (ICLR), 2020.

[60] Yaofeng Desmond Zhong and Naomi Ehrich Leonard. Un-
supervised learning of lagrangian dynamics from images for
prediction and control. In Conference on Neural Information
Processing Systems (NeurIPS), 2020.

11



x γ(x)...
c(x), o(x)

FC FC FC FC FC FC

FF

FF

1 22 NFC

...

Figure 7: Overview of our architecture for the implicit shape and appearance representations. The input vector x is passed
through a layer of NFourier Fourier features (FF) to obtain the encoding γ(x). The following neural network is constructed
from NFC fully connected layers (FC) of width WFC with ReLU activations between the layers. We feed the output of the last
layer through a sigmoid function, to achieve values for the color c and the opacity o (only for the local representation) in the
range [0, 1]. We indicate the values chosen for each experiment in the respective sections.

Appendix
In this section we give further details on the architecture and the dynamics models (Appendix A) as well as on the training

procedure (Appendix B) to ensure reproducibility of the work. Moreover, we indicate chosen parameter values for all
experiments in Appendix C, where we also show additional results and figures for all experiments. This section also includes
details on the additional loss terms for the spring example (Appendix C.1) as well as the analysis on the generalization
ability of the Lagrangian variational autoencoder (Appendix C.2). Finally, we discuss potential negative societal impact in
Appendix C.5.

A. Model Details
A.1. Architecture Background and Object Representation

We adopt the architecture used in [33] for both the representation of the background as well as the representations of the
objects. See Figure 7 for the basic structure. Since the skip connection did not seem to give a noticeable benefit in our case
we did not include it. We follow [52] to obtain the Fourier mapping for x ∈ Rd as

γ(x) = [cos(2πBx), sin(2πBx)]⊤, (3)

where B ∈ RNFourier×d ∼ N (0, σ2) is sampled from a Gaussian distribution and σ ∈ R is a hyperparameter that is chosen
for each scene. We state the values chosen for each experiment in the respective sections.

A.2. Modeling the dynamics

Two Masses Spring system The system is modeled as two-body system where the dynamic of each object is described by
Newton’s second law of motion, i.e. F = mẍ, where F is the force. Since only the ratio between force and mass can be
identified without additional measurement, we fix m = 1, analogously to the work of [22]. Using Hooke’s law, we write the
force applied to object i by object j as

Fi,j = −k

(
(pi − pj)− 2l

pi − pj
∥pi − pj∥

)
, (4)

where k > 0 is the spring constant and l > 0 is the equilibrium distance. Using the position pi(t; k, l) ∈ R2 of the objects
to parametrize the trajectory of two local coordinate systems, we can write the time-dependent 2D spatial transformation to
the local coordinate system i as T (i)

t (x) = x − pi(t; k, l). Besides the initial positions and velocities, l and k are learnable
parameters.
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Nonlinear damped pendulum The dynamics of a damped pendulum can be modelled as

˙[φ
ω

]
=

[
ω

− g
l sin (φ)− cω

]
, (5)

where φ ∈ R is the deflection angle, ω ∈ R is the angular velocity, g is the (known) gravitational acceleration, l > 0 is
the (physical) length of the pendulum, and c > 0 is the damping constant. For the sake of simplicity we assume that the
gravitational acceleration g always points downwards in the global image coordinate system. We use the solution curve
φ (t; l, c) to parameterize the time-dependent 2D spatial transformation as Tt (x) = R (φ (t; l, c))x+ A, where R ∈ SO (2)
is a rotation matrix and A ∈ R2 is the pivot point of the pendulum. For the full model A, l, c as well as the initial angle and
angular velocity are learnable parameters.

Sliding block We model the sliding block using Newton’s second law and gravity that is pointing downward in the global
image coordinate system. We model the dynamics as a 1D movement along the inclined plane. Using a friction term with
the friction coefficient µ > 0, the ODE for a block on a plane inclined by α reads

˙[x
v

]
=

[
v

g(sin(α)− µ cos(α)

]
, (6)

where x ∈ R is the position along the inclined plane, v ∈ R is the velocity in this direction and g is again the gravitational
acceleration.

Thrown ball We model a thrown object using again Newton’s law where only gravity is acting on the object. We assume
again, that gravity is pointing downwards in the global image coordinate system. The ODE describing the resulting 2D
motion reads

˙
x
y
vx
vy

 =


vx
vy
0
g

 , (7)

where x and y are the positions in the image coordinate system, vx and vy are the velocities in the respective directions and
g is the gravitational acceleration.

B. Additional training details
B.1. Optimization

We train our model using the Adam optimizer [26] with exponential learning rate decay, which reads

r(e) = r0 · βe/ndecay (8)

where r(e) is the learning rate depending on the epoch e, r0 is the initial learning rate, β is the decay rate and ndecay is the
decay step size.

One important aspect of the training is to use different learning rates for the parameters θbg and θobj of the implicit
representations on the one hand and the physical parameters θode, z0 and θ+ on the other hand.

Due to the solution of the ODE, our objective function is generally non-convex and non-linear. Therefore, we rely on
a good initialization for the ODE parameters and the parameters of the transformation to achieve good convergence in the
optimization. In an earlier version of this work, we used object masks in addition to the images of the sequence to supervise
the occupancy values by an additional loss term. While we were able to remove the masks for the supervision, we kept the
previous approach to estimate initial values for position and velocities based on the masks.

For the initialization of the pendulum we estimate the pivot point A by averaging all masks and use the the pixel with the
highest value. Note that this approach will fail when the pivot point is not contained in the image. To obtain an estimate
for the initial angle, we perform a principal component analysis (PCA) on the pixel locations covered by the mask and use
the angle between the first component and the vertical direction. The angular velocity is estimated as the angular difference
between the first principal components of the first and the second frame divided by the time difference. For the synthetic
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Figure 8: Coarse occupancy masks used as supervision in the first frame for the spring sequences. We use the masks shown
as overlay in the image to supervise the occupancy of the respective local representation using a binary cross entropy loss.
This supervision makes the assignment of the two representations to the digits unique. The weighting of the loss is reduced
during training to enable the learning of the fine object structures. Note that the rough object masks are only required in the
first frame of the sequence.

experiments, averaged over all 27 sequences, this leads to an initialization with a relative error of 14% for the pivot point A
and of 40% for the initial values (initial angle and angular velocity).

For the remaining systems, we initialize the initial positions at the center of the masks and the initial velocity as positional
difference between the first two frames divided by the time difference. We report the initialization of the remaining parameters
in the respective subsection of Appendix C.

B.2. Loss term

We use a mean squared error photometric loss defined over all the pixel values, which reads

Lphotometric =
1

|I| |T |
∑
t∈T

∑
x∈I

∥I (x, t)− c (x, t)∥2 , (9)

where T is the set of all given time steps, I is the set of all pixel coordinates and I (x, t) are the given images. We found,
that for some backgrounds with little distinguishable details, a regularization of the mask is helpful. We use the term

LmaskReg =
1

|I| |T |
∑
t∈T

∑
x∈I

o(x)(1− o(x)), (10)

that encourages the occupancy o predicted by the local representation to be either close to 1 or close to zero 0. To avoid
“burning” artefacts into the masks, we activate this term after Nreg epochs. To balance the term with the photometric loss we
use a weight of λreg . This additional loss is only used for the real world examples and the high resolution synthetic data.

For the training, we randomly sample batches of up to Nbatch = 216 = 65536 pixels for each optimization iteration. We
found that this large batch size has a stabilizing effect on the optimization.

B.3. Online Training

We adopt the approach from [58] and increase the number of frames used for the loss term during the optimization.
Starting from nfr,0 we increase the number of frames by 1 every nincrT steps. We found that this strategy improves the
convergence behavior of the approach and seems to make it more robust to the initialization of the parameters.

C. Further experimental details and results

In the following we consider specific details for the different experiments.

C.1. Two Masses Spring System

Experimental details As described in Appendix A.2, we employ two independent local representations to model the two
digits. By using the maximum of both occupancy values, we enable the model to identify the layering of the objects. Since
the two local representations are not explicitly assigned to the digits, we found that we need to guide the model with an
additional loss term. We use a binary cross entropy loss on very coarse object masks in the first frame of the sequence, see
Figure 8. The loss is initially weighted by a factor of 0.01 compared to the photometric loss. We reduce this loss term every
100 epochs by a factor of 0.2 to enable the model to learn the fine structures.

14



B
:O

ve
rfi

t
B

:F
ul

l
O

ur
s

G
T

1 4 7 10 13 16 19 22 25

Figure 9: Two masses spring system, where MNIST digits are connected by an (invisible) spring. Reconstruction and predic-
tion for test sequence 0. The arrow indicates where the prediciton starts. For the spring constant and equilibrium distance (k,
l) the different methods achieve the following relative errors respectively: (19.7%, 57.6%) (B: Overfit), (3.7%, 1.8%) (B:
Full), and (0.3%, 0.7%) (Ours).

The physical system appears to have a scale freedom in terms of equilibrium length and the points where the spring is
attached to the digits.2 We observe similar effects when overfitting the model of [22] to a single sequence. When training on
the full dataset, the effect seems to be averaged out, and is not observed. We add an additional MSE loss to keep the spring
attachment close to the origin of the local coordinate system. This loss is weighted by 0.05.

Finally, we use another MSE loss term to keep the opacity value close to zero outside of (but close to) the visible area.
We found this to be necessary, since otherwise artefacts might appear in the prediction, when previously unseen parts of the
mask appear in the visible area. This term is weighted by a factor of 1.0.

Model parameters For the background we use an MLP with NFC = 6 fully connected layers of width WFC = 64 and a
Fourier mapping with NFourier = 64 Fourier features and variance σ = 5.0. To represent the local objects we use NFC = 6
fully connected layers of width WFC = 64 and a Fourier mapping with NFourier = 64 Fourier features and variance σ = 2.2.

We use an initial learning rate of rMLP, 0 = 0.001 for the parameters of the implicit representations and rparam, 0 = 0.005
for the physical parameters. We set βMLP = 0.99954, ndecay,MLP = 50. We do not decay the learning rate for the physical
parameters.

For the online training scheme, we start with nfr,0 = 2 frames and increase the number of frames by one every nincrT =
30 steps. We train for 1200 epochs, where one epoch is completed, when all the pixels have been considered.

The initial spring constant is set to k = 1.5 and the equilibrium distance is initialized as the distance between the estimates
of the initial positions.

Additional results In Figure 9 and Figure 10 we present additional results for sequence 0 and sequence 1 of the test dataset.
We see, that for both sequences, overfitting the baseline is not able to produce a reasonable extrapolation of the data and
even produces severe artifacts for the reconstruction part of the sequence. One reason for this is that the model is unable to
identify the physical parameters correctly as can be seen by the large relative errors. Our model, on the other hand, is able
to estimate the parameters with high accuracy that is even slightly better than the baseline trained on the full training dataset,
which again shows the strength of our approach, considering, that we use a single video as input.

2Intuitively, if the motion is only in one direction (linear), we can vary the equilibrium length and adjust the spring attachments without changing the
motion. Similar effects are present in particular 2D motions.
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Figure 10: Two masses spring system, where MNIST digits are connected by an (invisible) spring. Reconstruction and pre-
diction for test sequence 1. The arrow indicates where the prediciton starts. For the spring constant and equilibrium distance
(k, l) the different methods achieve the following relative errors respectively: (13.6%, 90.9%) (B: Overfit), (3.7%, 1.8%)
(B: Full), and (0.1%, 4.9%) (Ours

B
:O

ri
gi

na
l

B
:S

hi
ft

ed

1 4 7 10 11 12 16 18 20

Figure 11: Prediction of the fully trained model of [60] for sequence 3 of the test dataset. While the prediction for the original
data is perfect, the prediction for the frames shifted by one pixel in each direction is significantly worse. This shows, that the
model does not generalize well to input frames where the pivot point of the pendulum is not in the center of the frame.

C.2. Comparison with the Lagrangian Variational Autoencoder

Experimental details Since the data used in this experiment does not include image data, we use a binary cross entropy loss
to penalize the discrepancy between the given object masks and our rendered occupancy values. Since the predicted masks
are obtained only from the local representation, we do not use an implicit representation for the background in this example.

Model parameters For the local representation we use an MLP with NFC = 6 fully connected layers of width WFC = 64
and a Fourier mapping with NFourier = 64 Fourier features and variance σ = 0.1.

We use an initial learning rate of rMLP, 0 = 0.005 for the parameters of the implicit representations and rparam, 0 = 0.01 for
the physical parameters. We do not use any learning rate decay in this example.

For the online training scheme, we start with nfr,0 = 5 and increase the number of frames every nincrT = 20 steps. We
train for 2000 epochs, where one epoch is completed, when all the pixels have been considered.

We initialize the damping as c = 0.25 and the pendulum length as 1.5.

Generalization of the Lagrangian Varational Autoencoder One drawback of learning-based approaches for visual esti-
mation of physical models is the poor generalization to data that deviates from the training data distribution. We confirm this
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for the model of [60] trained on the full dataset. While the IoU averaged over the first 20 sequences of the test set is 0.73,
the value drops to 0.21 when we shift the frames of the test dataset by as much as 1 pixel in each direction. This shift corre-
sponds to the case of input videos, where the pivot point of the pendulum is not in the center of the image, which is different
from the training data. This effect is visualized in Figure 11, which shows the output of the model for sequence 3 of the test
data set with zero control input, both in the original version and in the shifted version. We observe that the small shift of only
one pixel in each direction leads to results that are significantly off, and not even the first frame is predicted correctly. While
[60] propose to use a coordinate-aware encoder based on spatial transformers, this introduces additional complexity to the
model. In contrast, our approach does not suffer from such issues, as we estimate the parameters per scene.

C.3. Synthetic Experiments - High Resolution

Model parameters For the background we use an MLP with NFC = 8 fully connected layers of width WFC = 512 and a
Fourier mapping with NFourier = 256 Fourier features and variance σ = 30.0. For the representation of the local objects we
use NFC = 8 fully connected layers of width WFC = 128 and a Fourier mapping with NFourier = 256 Fourier features and
variance σ = 10.0.

We use an initial learning rate of rMLP, 0 = 9e−4 for the parameters of the implicit representations and rparam, 0 = 1e−3 for
the physical parameters. We set βMLP = 0.9, ndecay,MLP = 25. We do not decay the learning rate for the physical parameters.
We activate the mask regularization after Nreg = 400 epochs and use λreg = 5e − 4 to balance the regularization with the
photometric loss.

For the online training scheme, we start with nfr,0 = 5 frames and increase the number of frames by one every nincrT =
10 steps. We train for 1200 epochs, where one epoch is completed, when all the pixels have been considered.

We initialize the damping as c = 0.6 and the pendulum length as 1.9.

Additional Results Figures 13 and 14 show additional results on the stonewall and woodwall background, also showing the
predicted and the groundtruth masks. Figure 12 shows the masks for the sequence considered in the main text, the rendered
images are repeated for convenience. The results show, that our method is able to produce excellent reconstruction for unseen
time instances, both in terms of visual quality as well as in terms of predicting accurate object masks.

C.4. Real World Examples

Experimental details The pendulum video is recorded at a rate of 30 fps. We extract every third frame into the dataset. For
the training we select every second frame of this set and train on 10 frames, covering 1.8 seconds. This leaves frames between
the training frames as well as frames to evaluate the extrapolation qualities. We use 31 frames for evaluation, covering 3.9
seconds.

For the sliding block and the ball, the relevant dynamics happen in a significantly shorter amount of time. We record the
block at 30 fps and the ball at 120 fps. In both cases the frames cover a time interval of 0.4 seconds. We use again every
second frame for training, and use 6 training frames each. This leaves 7 frames for evaluation of the block and 8 for the ball.

Model parameters For the background we use an MLP with NFC = 8 fully connected layers of width WFC = 512 and a
Fourier mapping with NFourier = 256 Fourier features and variance σ = 30.0 for the ball and the sliding block, and σ = 50.0
for the pendulum. For the representation of the local objects we use NFC = 8 fully connected layers of width WFC = 128
and a Fourier mapping with NFourier = 128 Fourier features and variance σ = 5.0 for the ball and σ = 15.0 for the sliding
block and the pendulum.

We use an initial learning rate of rMLP, 0 = 9e−4 for the parameters of the implicit representations and rparam, 0 = 1e−3 for
the physical parameters. We set βMLP = 0.9, ndecay,MLP = 25. We do not decay the learning rate for the physical parameters.
We activate the mask regularization after Nreg = 100 epochs and use λreg = 1e − 3 to balance the regularization with the
photometric loss.

For the online training scheme, we start with nfr,0 = 5 frames for the block and the pendulum and nfr,0 = 8 for the ball.
For the ball and the sliding block we increase the number of frames by one every nincrT = 10 steps, for the pendulum every
nincrT = 20 steps. We train for 1200 epochs, where one epoch is completed, when all the pixels have been considered.

We initialize the friction coefficient for the sliding block as µ = 0, the damping for the pendulum as c = 0.5 and the
pendulum length as 0.4.
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Additional Results Figures 15 to 17 and show renderings for the test frames of the real world data, as well as visualiza-
tions of the object masks obtained by our method. The results show, that our method is able to achieve highly detailed recon-
struction for all 3 real world scenarios. Moreover, We obtain accurate masks for the dynamic objects observed in the scene.

C.5. Potential Negative Societal Impact

This work attempts to learn interpretable physical models from video clips. While the work is mostly fundamental, it
enables a user to edit a scene in a physically plausible manner, at least if the dynamics can be modelled explicitly and the
camera and the rest of the scene are static. However, for the physical scenarios that we show, we could not think of possible
usages of our method, that could be harmful to individuals or groups of people. In our opinion, the potential for harmful
missuse of methods operating on videos is given in particular if the model can alter the actions, expressions or in general the
behavior of humans in that scene. In the current state, our method is not able to do such things.
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Figure 12: Rendered frames for sequence 1 of the wallclock background (same sequence as in the main text, rendered images
are shown again for convenience). The left image is part of the training set, “unseen frame 1” is between two training frames,
“unseen frame 2” is a future frame after the interval seen during training. Our method produces photorealistic predictions for
the unseen time instances. Also, it predicts accurate segmentation masks for the object.
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Figure 13: Rendered frames for sequence 5 of the stonewall background. The left image is part of the training set, “unseen
frame 1” is between two training frames, “unseen frame 2” is a future frame after the interval seen during training. Our method
produces photorealistic predictions for the unseen time instances. Also, it predicts accurate segmentation masks for the object.
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Figure 14: Rendered frames for sequence 7 of the woodwall background. The left image is part of the training set, “unseen
frame 1” is between two training frames, “unseen frame 2” is a future frame after the interval seen during training. Our method
produces photorealistic predictions for the unseen time instances. Also, it predicts accurate segmentation masks for the object.
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Figure 15: Rendered frames 8-13 of the test set for the real world pendulum sequence. The two left frames are between
training frames, the remaining frames are extrapolated (indicated by the red arrow). Our method produces photorealistic
predictions for the unseen time instances. Also, it predicts accurate segmentation masks for the object.
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Figure 16: Rendered frames 1, 3, 5, and 7 of the test set for the real world sliding block sequence. The frames are between
training frames. Our method produces photorealistic predictions for the unseen time instances. Also, it predicts accurate
segmentation masks for the object.
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Figure 17: Rendered frames 1, 3, 5, and 7 of the test set for the real world ball sequence. The frames are between training
frames. Our method produces photorealistic predictions for the unseen time instances. Also, it predicts accurate segmentation
masks for the object.
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