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ABSTRACT

A major problem of deep neural networks for image classification is their vulnerability to domain
changes at test-time. Recent methods have proposed to address this problem with test-time training
(TTT), where a two-branch model is trained to learn a main classification task and also a self-
supervised task used to perform test-time adaptation. However, these techniques require defining
a proxy task specific to the target application. To tackle this limitation, we propose TTTFlow: a
Y-shaped architecture using an unsupervised head based on Normalizing Flows to learn the normal
distribution of latent features and detect domain shifts in test examples. At inference, keeping the
unsupervised head fixed, we adapt the model to domain-shifted examples by maximizing the log
likelihood of the Normalizing Flow. Our results show that our method can significantly improve the
accuracy with respect to previous works.

Keywords Test-time Adaptation · Image Classification · Normalizing Flows · Unsupervised Training

1 Introduction

Deep learning has become increasingly effective for computer vision tasks such as segmentation or classification.
Nevertheless, these achievements are often made under the assumption that training and test data share the same
distribution, which is not always the case in practice. Furthermore, a small distribution shift between the training and
test data can lead to an important drop in model performance Recht et al. [2018]. Two types of methods were proposed
to increase the robustness of the model to distributional change: Domain Generalization and Domain Adaptation.
Domain Generalization (DG) Volpi et al. [2018], Prakash et al. [2019], Wang et al. [2022] involves training on a large
set of source data from several domains to help the model be more robust and generalize to unseen domains. However,
DG requires a large amount of data from different domains, which can be difficult to obtain, and there is no guarantee
that the new model can generalize well to an unseen domain at test-time. On the other hand, Domain Adaptation
(DA) Chidlovskii et al. [2016], Liang et al. [2021], Wilson and Cook [2020] aims to avoid performance degradation of a
model trained on a source domain when used on a test set from a different domain. The distribution shift in this context
is reduced without prior training on different domains, but in some cases requires access to the labeled source samples.

Test-Time Adaptation (TTA) Li et al. [2018], Wang et al. [2021], Sun et al. [2020], Boudiaf et al. [2022] is an emerging
field that studies approaches to quickly adapt a pretrained deep network to domain shifts during test-time. Unlike
DG, the source training typically involves a single domain. Moreover, in contrast to DA, it is possible to fine-tune
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the network at test-time. This task remains challenging as it is expected that the source data is not available during
test-time, hence directly measuring the domain discrepancy becomes complicated. However, finding a solution for
TTA is an attractive endeavor, as it promises a more widely useful deployment of deep networks in real-world contexts.
Recent TTA techniques have explored adapting batch statistics in the feature extractor of deep networks Wang et al.
[2021]. While this strategy provides some robustness, it is often suboptimal, as a sufficiently diverse batch of samples
is needed in order to capture enough information to adapt the weights of the network. Another strategy, inspired by
self-supervised learning, is to include additional tasks Sun et al. [2020], Liu et al. [2021]. Although this strategy has
been used successfully for TTA, it is sensitive to the chosen proxy task and requires pseudo-labels.

In this paper, we present TTTFlow, a novel approach for unsupervised Test-Time Adaptation, which makes use of a
Normalizing Flow as a domain shift detector. Our method does not require access to the source data during inference,
can measure domain discrepancy in a tractable way, and does not require special proxy tasks to be solved along with the
source training. Moreover, TTTFlow could be built on top of any off-the-shelf network without additional technical
adjustments.

Specifically, the contributions of this work can be summarized as follows:

• We introduce an unsupervised method under the test-time training paradigm of TTA. Our approach is designed
to directly measure the domain shift between target and source images, without the need of an extra task.

• To the best of our knowledge, this is the first work that employs Normalizing Flows to measure domain shift in
Test-Time Adaptation. While they have been recently investigated for domain alignment, their application in
tasks related to Domain Adaptation remains unexplored.

The remainder of this paper is organized as follows. Section 2 presents prior work on Test-Time Adaptation. Section 3
then introduces the proposed TTTFlow method. Section 4 describes the experimental setup used to evaluate our method,
and Section 5 reports the results.

2 Related Work

Normalizing Flows In the field of generative modeling, Normalizing Flows have gained important traction due to their
capabilities of learning tractable distributions in the latent space Kobyzev et al. [2021], Papamakarios et al. [2021].
Their goal is to transform a generally unknown data distribution into a known one, typically the normal distribution,
from which we can easily sample new data points and measure their exact likelihood. The transformation of the flow
model is guaranteed to be bidirectional by using an invertible and differentiable architecture. Although Normalizing
Flows have not been formally used in the field of Domain Adaptation, recent works suggest that they can be an effective
tool for Domain Alignment Grover et al. [2020], Usman et al. [2020], where the domain of two different datasets must
be fitted with indistinguishable distributions. In this work, we take a step further by proposing Normalizing Flows as an
alternative to learn and codify a domain, so that it can later be used at test-time.

Test-Time Adaptation These methods allow using off-the-shelf models without any additional training. In general
terms, test-time adaptation focuses on adapting models that were not trained with a special configuration prior to being
used at inference. One of the first approaches of this category, called TENT Wang et al. [2021], requires to be given
the model and target data. It then updates the model layers containing normalization statistics by minimizing the
Shannon entropy of predictions. The authors of Mummadi et al. [2021] improve TENT by using a log-likelihood ratio
instead of entropy, and by estimating the statistics of the target batch. In SHOT Liang et al. [2021], the entire feature
extractor is fine-tuned using a mutual information loss along with pseudo-labels to correct inaccurate predictions from
the pretrained model. LAME Boudiaf et al. [2022] is an adaptation method that do not alter the network layers, but just
focuses on a post-hoc adaptation of the softmax predictions through Laplacian regularization.

Batch Norm Adaptation To increase robustness of a model, Batch Normalization (BN) can be used for a faster
convergence and increased stability during training. Nevertheless, a shift in the distribution causes the statistics to
change, which is why some papers suggest adapting normalization statistics to improve performance. For instance,
Prediction Time Batch Normalization Nado et al. [2021] proposes to use the mean and variance from the batch of test
samples as statistics in the batch norm layer. However, this estimation can be inaccurate due to a small number of data
samples. To avoid this, the authors of Schneider et al. [2020] compute a new mean and variance, which is a mix of the
BN statistics computed at training and the new estimation at test time. The same approach is used by SITA Khurana
et al. [2021] to estimate statistics, with the difference that it can be used on a single data example. To achieve this, SITA
generates a pseudo-batch by randomly augmenting this example and then computes the statistics on this pseudo-batch.
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Figure 1: Architecture of TTTFlow. The feature maps from a pretrained network are transformed into an isotropic
Gaussian distribution through a Normalizing Flow gφ. The log-likelihood of an input x is measured based on the
likelihood in the latent space z = gφ(x). At test-time, the frozen unsupervised head is then used as a domain shift
detector to fine-tune the extractor. Target images show examples of pixelate, zoom blur and Gaussian noise corruptions
(from left to right) from the CIFAR-10-C dataset.

Test-Time Training Methods based on Test-Time Training (TTT) Sun et al. [2020] update the model at inference, but
use a Y-shaped architecture with a main task and a self-supervised task which are learned at training time. The model is
trained by jointly minimizing the losses in both branches. After the model has been trained, the parameters of the main
task branch are frozen. At test-time, the parameters of the shared encoder are updated so to minimize the self-supervised
loss. Following this approach, Sun et al. [2020] uses rotation prediction Gidaris et al. [2018] as self-supervised task,
where images are randomly rotated by multiples of 90◦ (0◦, 90◦, 180◦, 270◦) and the model should recover this rotation.
A major problem of this approach is the choice of the self-supervised loss, which should be related to both source and
target datasets. Inspired by TTT, TTT++ Liu et al. [2021] adds a loss which promotes online feature alignment by
comparing the statistics of the source data with those of the current batch. For the self-supervised task, the rotation
prediction loss is replaced by a contrastive loss which encourages the encoded features for two different augmentations
of the same image to be similar, and the ones of different images to be dissimilar. Lastly, the authors of MT3 Bartler
et al. [2021] use meta training at inference on the second task to improve the performance of TTT.

3 Method

We start by defining the problem of Test-Time Training and then present our TTTFlow method for this problem.

3.1 Problem definition

In the context of classification, we denote the domain as the joint distribution PXY between the input space X and
the label space Y , and define the marginal distribution of the inputs as PX . At training time, a deep network learns
from the data out of a source domain (Xs,Ys), whilst at test-time, the network must be adapted to a new target domain
(Xt,Yt), such that PXs 6= PXt . Both domains share the same label space (Ys = Yt), but the labels for the target inputs
are unknown. The goal of Test-Time Training is to learn a function gf : Xt → Yt on the basis of an already known
function f : Xs → Ys.

3.2 Proposed framework

Our framework exploits a multi-head architecture where a Normalizing Flow is used to encode domain-specific
information from a pretrained feature extractor. An important benefit of this configuration is that it can be applied on
any pretrained network without the need of a special training on the source data. In what follows, we describe the
different components of TTTFlow and the mechanisms that allow test-time training with domain shift. The overall
scheme of the model can be seen in Fig. 1.

3.3 Source Training

Although our TTFlow method can be used on top of any architecture, in this work we consider a CNN as the classification
backbone. This CNN can be divided in a feature extractor fθ (parameterized by θ) followed by a classifier head hϕ
(parameterized byϕ). Let x = fθ(I) ∈ Rc×h×w be the 2D feature map from an input image I, and ŷ = hϕ(x)∈ [0, 1]K
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be the softmax predictions from the classifier, where K is the number of classes. The source training of the network is
performed in a supervised way using the cross-entropy loss. However, and as shown in further sections, using a more
robust source training (e.g., adding contrastive learning) can help to achieve better adaptation results.

3.4 Normalizing flows as a domain shift detector

Once the CNN is trained, we need a way to encode the source domain distribution, such that domain shifts can be
detected at test time. We propose using Normalizing Flows Kobyzev et al. [2021], Dinh et al. [2016], Kingma and
Dhariwal [2018] for this purpose, because of their ability to model complex, high-dimensional distributions effectively.
Normalizing Flows are generative models capable of transforming data from a complex and often unknown distribution
into a latent space with a well-defined and tractable distribution. In this study, the feature map x follows an unknown
distribution P (x), which is related to PX . A function gφ transforms the feature map into its latent representation
z = gφ(x) ∈ Rc×h×w with z ∼ Pφ(z), such that Pφ(z) is a tractable distribution (e.g. standard multi-variate Gaussian
distribution) with a known probability density function. The flow-based function gφ should meet two requirements:
(1) being invertible, i.e. x = g−1

φ (z), and (2) being differentiable w.r.t. the input in both directions. Furthermore,
a higher representation power can be achieved if a composition of invertible and differentiable functions is used:
gφ = g1 ◦ g2 ◦ · · · gM . Knowing that x is transformed into z ∼ Pφ, the likelihood of the original variable can then be
computed exactly using the change of variable rule,

logP (x) = logPφ(z) + log
∣∣∣ det( dz

dx

) ∣∣∣
= logPφ(z) +

M∑
i=1

log
∣∣∣det( dgi

dgi−1

) ∣∣∣, (1)

where log |det(dgi/dgi−1)| is the logarithm of the Jacobian matrix determinant.

Affine coupling layers are a popular choice to build Normalizing Flows Dinh et al. [2016], Kingma and Dhariwal
[2018], so that the resulting Jacobian matrix is upper triangular and its determinant is easily computed as the product of
its diagonal elements. The model can be trained by minimizing the negative log-likelihood in Eq. (2):

Luns = − logP (x). (2)

A Normalizing Flow based on RealNVP Dinh et al. [2016] is placed on top of the frozen feature extractor fθ to learn the
latent space of z from the source inputs x ∼ Xs in an unsupervised way (i.e., using Eq. (1) directly). We hypothesize
that this model captures the domain information from the source data, thus can be used to measure domain shift in the
target data.

3.5 Test-time training with flow-based model

At test-time, the pretrained network must adapt its parameters to unlabeled inputs from an also unknown target domain
Xt. We achieve this by only focusing on the extractor parameters θ, similarly to Sun et al. [2020], Liu et al. [2021]. The
frozen Normalizing Flow transforms each new test image feature map xt into its latent representation zt = gφ(xt) to
compute its log-likelihood using Eq. (2). Note again that the log-likelihood is measured with respect to the multivariate
Gaussian distribution, into which the unsupervised head transforms the features’ distribution. This value provides
information of the domain shift, as a feature map that is closer to the latent space of the source data should have a higher
log-likelihood than a feature map that is farther away. Hence, negative log-likelihood can be once again used as the loss
function to adapt the extractor for the target input.

4 Experimental setup

We evaluate our TTTFlow method on two popular test-time adaptation benchmarks based on the CIFAR-10 dataset
Krizhevsky [2009], CIFAR-10-C Hendrycks and Dietterich [2019] and CIFAR-10.1 Recht et al. [2018], and compare its
performance against state-of-art approaches for this task. As explained in Section 3.2, the first step is to train a CNN on
source data from CIFAR-10, a natural image classification dataset consisting of 10,000 images for training and 2,000
images for testing, with 10 different classes.

Once the CNN is trained, the training of the Normalizing Flow (NF) is performed as explained in Section 3.4. We
adopted RealNVP Dinh et al. [2016] as it has become a standard tool for flow modeling. Our compact version is made
of three coupling layers with two resblocks in each of them. The checkerboard coupling was found to be more effective

4
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Table 1: Comparison of joint versus separate training for TTT and TTTFlow on CIFAR-10-C data with Level 5 Gaussian
Noise Corruption.

Method Accuracy (%)

TTT Sun et al. [2020] Separate 61.18
JT as in Sun et al. [2020] 57.96

TTTFlow
Separate 62.75
JT (β = 0.01) 58.16
JT (β = 0.001) 58.44

than its channelwise counterpart. Similar to Liu et al. [2021], the flow model is placed on top of the second layer of the
ResNet50’s feature extractor based on the common assumption that domain information is mostly located at the early
stages of feature extraction while class information is encoded at later stages Zhou et al. [2020]. More implementation
details can be found in the supplementary material, as well as the corresponding ablation study on the flow architecture.

We use CIFAR-10 images without any label information for this step, as the NF model is trained in an unsupervised
manner. The training was performed for 100 epochs using SGD with an initial learning rate of 0.1 and a cosine
annealing scheduler.

Following previous work, ResNet50 He et al. [2015] is chosen as the main architecture. The model is trained for 350
epochs with SGD, using a batch size of 128 images and an initial learning rate of 0.1 which is reduced by a factor of 10
at epochs 150 and 250.

After the two-step source training, the NF model is used to detect domain shift through negative log-likelihood and
update the part of the network from where the features are collected (i.e., up until second layer). For all the experiments
at test-time, we keep the batch size of 128 images and use a learning rate of 0.001, along with SGD as the main
optimizer. At each new batch, we initialize our feature extractor with the weights of the learning part. This is to avoid
computing on an error made by the optimization, and is based on the assumption that each batch can have different
corruptions as made by Sun et al. [2020] in their offline mode.

We use the pretrained CNN as baseline, and compare our results against TENT Wang et al. [2021], TTT Sun et al.
[2020], and TTT++ Liu et al. [2021]. For a fair comparison, we reproduced these previous methods under the same
experimental conditions as in TTTFlow, i.e. using the same hyperparameters such as batch size, number of adaptation
epochs, and so on. Our codebase can be found in https://github.com/GustavoVargasHakim/TTTFlow.git.

5 Results and discussion

We first perform ablation and comparison experiments on the CIFAR-10-C dataset containing different types of image
corruption, and then extend our evaluation to natural domain shift using the CIFAR-10.1 dataset.

5.1 Object recognition on corrupted images

Our first experiments evaluate TTTFlow on the CIFAR-10-C dataset which comprises 15 different algorithmic corrup-
tions (e.g. Gaussian noise, zoom blurring, etc.) with 10,000 images each (see Fig. 1 for examples). Each corruption has
five severity levels, with Level 1 corresponding to mild corruptions and Level 5 to strongest ones. Unless specified
otherwise, we evaluate TTTFlow on Level 5, as it represents the most challenging adaptation scenario.

Joint vs separate training As a first step, we compare our method, which learns the NF on top of a frozen classifier
(separate training), with the Joint Training (JT) approach training the classification task and unsupervised task at the
same time by minimizing

LJT = Lcls + βLuns, (3)

where hyperparameter β controls the trade-off between the two losses. This JT approach follows previous work on
test-time training Sun et al. [2020], Liu et al. [2021]. An important problem with this approach is the need to retrain the
main classification network when learning occurs along with the secondary task. To avoid this issue and to exploit the
weights of any pretrained backbone, we freeze all the parameters of the CNN, except the batch norm statistics of the
feature extractor, and proceed to train the NF independently. This enables using any backbone without retraining.

Table 1 gives the accuracy of our method using separate training or JT with β=0.01 or β=0.001. As can be seen,
placing the NF model on a pretrained encoder yields better performance than performing joint training. We conjecture
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Figure 2: Evolution of accuracy over iterations of the average of each Level
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Figure 3: Evolution of accuracy for every corruption on Level 5.

that the Normalizing Flow is particularly sensitive to the joint training, as it is forced to learn a Gaussian distribution
out of the continually changing feature maps distribution, as they are being modified for classification. Moreover, the
information needed to encode the domain of examples seems different from the information needed to classify them.
The same analysis is performed for TTT Sun et al. [2020], which has a rotation prediction semi-supervised loss in
addition to the classification loss. As reported in Table 1, we find once again that training the TTT model in two separate
steps is better than the JT approach in Sun et al. [2020]. For remaining experiments, we therefore use the separate
training strategy for TTTFlow and TTT.

Number of adaptation iterations We compare the accuracy of TTTFlow for different iterations of adaptation at
test-time. As we can see in Fig. 2 and 3, our model’s accuracy typically increases monotonically with a greater number
of iterations. Furthermore, in most cases, a maximum accuracy is reached after about 20 iterations. Beyond this
point, performing more iterations increases runtime without any significant gain in performance. For some corruptions
like Snow, which severely degrade the image, we find that performance actually drops when doing more adaptation
iterations. When testing other approaches, we do not observe the same stability of performance with respect to the
number of iterations. To have a fair comparison, for all methods, we thus compute the accuracy for 1, 3, 10, 20 and 50
iterations and report the maximum accuracy.

Comparison to methods using a classifier trained with only Lcls As shown in Table 2, TTTFlow achieves an
average accuracy improvement of 14.54% with respect to the pretrained ResNet50 Baseline. Significant improvements
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in accuracy are obtained for all corruption types except JPEG compression and Elastic transform. Moreover, TENT
yielded a very low accuracy for all corruption types, due to collapsing predictions. Compared to TTT, using the same
classifier trained with only Lcls, our method obtains an improvement in average accuracy of 0.84%. These results
support our hypothesis that the NF can be used to measure domain shifts and improve the extractor accordingly in an
unsupervised manner. As said in the article and in addition with these results, it confirms our hypothesis that the NF can
be used to measure domain shifts and improve the extractor accordingly in an unsupervised manner.

Comparison with TTT++ on baseline trained with Lcls and Lssl As discussed earlier, the unsupervised head of
TTTFlow can be placed on top of any pretrained feature extractor. In TTT++ Liu et al. [2021], the pre-training of the
CNN is based on a similar Y-shaped architecture, where the secondary task is a self-supervised classification task using
the contrastive loss. The joint learning process is then performed using Eq. 4 as the final loss function:

L = Lcls + λLssl (4)

where λ is a hyperparameter. Using contrastive learning as an auxiliary task yields to a more robust network, and
in consequence, a stronger feature extractor. For this reason, we propose to train the NF model using the TTT++
pre-training. As seen in Table 2, our method outperforms TTT++ in all but two corruption types (Impulse noise and
Fog) and gives an average accuracy 2.10% higher than this state-of-art approach.

Visualization of adaptation To visualize the result of our adaptation method, we show in Figure 4 the t-SNE plots
of features at the end of extractor, before and after adaptation. As can be seen, TTTFlow allows each sample to be
separated for better interpretation and prediction. However, a collapse of feature vectors to the same point in space
is visible in the top right of Figure 4 (b) and (d). Since our NF-based method pushes representations toward the
mode of the distribution, this could be a side effect of making too many iterations for adaptation. Nevertheless, in our
experiments, accuracy generally remains stable and may even increase after performing many adaptation iterations.

Table 2: Accuracy (%) on CIFAR-10-C dataset with Level 5 corruption for TTTFlow compared to ResNet50, TENT,
TTT, and TTT++ with different encoders . Mean and standard deviation are reported over 5 runs

Encoder trained with Lcls only Encoder trained
with Lcls and Lssl

Baseline TENT Wang et al. [2021] TTT Sun et al. [2020] TTTFlow TTT++ Liu et al. [2021] TTTFlow

Gaussian Noise 53.25 46.65 ±0.12 61.29 ±0.07 61.73 ±0.35 75.87 ±5.05 79.58 ±0.09
Shot Noise 57.71 46.31 ±0.25 64.37 ±0.10 65.08 ±0.14 77.18 ±1.36 80.20 ±0.03

Impulse Noise 43.79 37.95 ±0.15 58.97 ±0.20 58.48 ±0.12 70.47 ±2.18 67.30 ±0.08

Defocus Blur 51.80 59.77 ±0.29 83.80 ±0.11 84.75 ±0.17 86.02 ±1.35 90.96 ±0.06
Glass Blur 54.69 41.24 ±0.18 61.23 ±0.29 61.93 ±0.12 69.98 ±1.62 71.54 ±0.09

Motion Blur 64.97 56.40 ±0.33 76.86 ±0.13 82.31 ±0.10 85.93 ±0.24 85.95 ±0.07
Zoom Blur 61.62 59.23 ±0.35 84.67 ±0.08 85.82 ±0.17 88.88 ±0.95 91.90 ±0.05

Snow 74.12 55.93 ±0.21 75.63 ±0.1 77.84 ±0.19 82.24 ±1.69 84.28 ±0.12
Frost 67.98 46.44 ±0.20 77.17 ±0.17 77.05 ±0.10 82.74 ±1.63 85.88 ±0.05
Fog 63.67 52.70 ±0.20 81.15 ±0.12 81.02 ±0.25 84.16 ±0.28 74.02 ±0.05

Brightness 87.16 66.34 ±0.18 88.84 ±0.09 89.45 ±0.17 89.07 ±1.20 92.38 ±0.01
Contrast 22.89 49.03 ±0.45 84.79 ±0.12 84.20 ±0.18 86.60 ±1.39 92.20 ±0.10

Elastic Transform 76.96 50.27 ±0.36 72.45 ±0.09 72.20 ±0.24 78.46 ±1.83 80.47 ±0.08
Pixelate 48.22 52.52 ±0.25 74.71 ±0.09 76.50 ±0.13 82.53 ±2.01 88.84 ±0.05

Jpeg Compression 81.42 56.78 ±0.30 69.75 ±0.24 69.95 ±0.11 81.76 ±1.58 87.95 ±0.03

Average 60.68 51.84 74.38 75.22 81.46 83.56

5.2 Object recognition on natural domain shift

We also evaluate TTTFlow when natural domain shift is present. For this purpose, the CIFAR-10.1 dataset Recht et al.
[2018] is used as the second benchmark. CIFAR-10.1 consists of 2,000 images sampled from the original CIFAR-10
set with the objective of maximizing domain shift with respect to the source data. TTTFlow is once again compared
with previous methods, and the standard pretrained CNN is used as baseline. Results are also compared with previous
methods.

As reported in Table 3, TTT++ achieves a better performance than TTTFlow in this case, with a 1.75% improvement
in accuracy. However, when looking at the accuracy for the different adaptation iteration, we find that the better
performance of TTT++ only occurs for the first few iterations. Compared to our method, which remains stable, TTT++’s
accuracy degrades beyond 3 iterations. The superior performance of TTT++ for this CIFAR10.1 could be explained by
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Figure 4: t-SNE plots on defocus blur for the features at the output of the extractor from TTTFlow. (a) is the prediction
of the model without adaptation. (b) is the prediction of the model after 50 iterations. (c) is the ground truth of the
model without adaptation. (d) is the ground truth of the model after 50 iterations.

Table 3: Accuracy of compared methods on the CIFAR-10.1 dataset containing natural domain shift.

Method Accuracy (%)

Baseline 84.70
TENT Wang et al. [2021] 58.98 ±0.12
TTT Sun et al. [2020] 84.49 ±0.15
TTTFlow (Lcls) 85.11 ±0.30

TTT++ Liu et al. [2021] 88.24 ±0.17
TTTFlow (Lcls + Lssl) 86.49 ±0.02

Table 4: Comparison of accuracy over iterations for TTT++ Liu et al. [2021] and TTTFlow on th CIFAR-10.1 dataset.

Iterations
Accuracy (%)

TTT++ Liu et al. [2021] TTTFlow (Lcls + Lssl)

1 88.19 ±0.09 86.49 ±0.02

3 88.24 ±0.17 86.41 ±0.13

10 86.49 ±0.22 86.36 ±0.07

20 85.03 ±0.99 86.29 ±0.08

50 80.43 ±0.34 86.48 ±0.07

the nature of this dataset, in which the distribution shift is smaller compared to the corruptions found in CIFAR-10-C.
The distribution shift in this dataset, which is more related to semantic content, may not be fully captured by our NF
model applied on the second ResNet50 layer. As shown in the t-SNE plots of Figure 5, the features obtained by our
model at the end of the extractor are very similar for CIFAR-10 and CIFAR-10.1, which supports that the adaptation
over the iterations (Table 4) for TTTFlow is stable.
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Figure 5: t-SNE plots for the features at the output of the extractor from TTTFlow. Comparison between CIFAR-10 and
CIFAR-10.1. (a) is the ground truth of the model without adaptation for CIFAR-10. (b) is the ground truth of the model
without adaptation for CIFAR-10.1.

6 Conclusion

This work follows the line of former research on test-time training, which develop techniques to adapt models at
test-time when distribution shifts are prevalent. To tackle some limitations of previous works, we proposed using
Normalizing Flows as domain shift detector that can be plugged into the feature extractor of any pretrained architecture,
and that can be trained in an unsupervised manner under maximum likelihood.

Our method, TTTFlow, provided of substantial accuracy gains to the source model, also in comparison with the
state-of-the-art methods in test-time adaptation. Besides the practical advantage of being compatible without any model
and not requiring a special joint training, it has been shown that TTTFlow can also enhance the performance of strongly
trained source models, such as the one of a similar work, TTT++.

Future work includes tackling the perceived limitations of TTTFlow, which include: (a) sensitivity to the Normalizing
Flow architecture, where a lower representation power could yield underfitting to the domain information, and a higher
one could lead to a class collapse. (b) Depending on the type of domain shift, different layers in the encoder can be
more useful to capture domain specific information, for which further studies on the effects of the chosen shared stage
of the extractor are encouraged. (c) So far, TTTFlow depends on the use of batches, whilst adapting for a single sample
is highly desirable. Devising a criterion to select which samples the model should adapt to would have an important
impact both in performance and computational costs.
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