
What can we Learn by Predicting Accuracy?
Olivier RISSER-MAROIX

∗

orissermaroix@gmail.com

LIPADE, Université Paris Cité

France

Benjamin CHAMAND
∗

benjamin.chamand@irit.fr

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

France

ABSTRACT

This paper seeks to answer the following question: "What can we
learn by predicting accuracy?". Indeed, classification is one of the

most popular tasks in machine learning, and many loss functions

have been developed to maximize this non-differentiable objective

function. Unlike past work on loss function design, which was

guided mainly by intuition and theory before being validated by

experimentation, here we propose to approach this problem in the

opposite way: we seek to extract knowledge by experimentation.

This data-driven approach is similar to that used in physics to

discover general laws from data. We used a symbolic regression

method to automatically find a mathematical expression highly

correlatedwith a linear classifier’s accuracy. The formula discovered

onmore than 260 datasets of embeddings has a Pearson’s correlation

of 0.96 and a 𝑟2 of 0.93. More interestingly, this formula is highly

explainable and confirms insights from various previous papers

on loss design. We hope this work will open new perspectives in

the search for new heuristics leading to a deeper understanding of

machine learning theory.

CCS CONCEPTS

•Computingmethodologies→Machine learning; • Informa-

tion systems→ Data mining.

KEYWORDS

symbolic regression, explainability, datasets representation

1 INTRODUCTION

Most work in machine learning is done by building up and evalu-

ating components from theoretical intuitions. Here we propose a

different approach, which is to acquire insights from experimenta-

tion, in the same way that physicists have attempted to discover

the analytical laws underlying physical phenomena in nature from

observations. However, thanks to breakthroughs in artificial intelli-

gence, a new trend to automate and assist research with Machine
Learning (ML) tools is emerging. Some researchers started to use it

in mathematics [9] and physics [12, 49].

In ML, the most similar setting would be the meta-learning one.

In this learning-to-learn paradigm, a model gains experience over

multiple learning episodes and uses this experience to improve

its future learning performance. Hospedales et al. [23] reported

successful applications of meta-learning on diverse tasks such as

hyperparameter optimization, neural architecture search (NAS), etc.

In this setting, the machine generally improves solutions without

any human intervention. Although meta-learning has been widely

explored and is actively involved in increasing the performance of

∗
Both authors contributed equally to this research.

machine learning models. The solutions found are generally non-

interpretable. So surprisingly, including AI in the process hasn’t

caught the attention as a tool helping in the theoretical discoveries

of ML studies. Hence, we investigate how machine learning can

be integrated into the research process and lead us to better un-

derstand our discipline. As example, we propose here to tackle the

problem of finding the key components of embeddings leading to

better accuracy. This task could help us to better understand the

intrinsic mechanisms of learning representations. Indeed, represen-

tation learning is often evaluated on benchmarks, such as [25] in

NLP or [16, 61] in Computer Vision, where the task of classifica-

tion is highly present. For example, self-supervised learning image

representations are evaluated with a linear classifier. Classification

performances are generally measured using the accuracy. To opti-

mize this non-differentiable objective, researchers proposed proxy

losses such as cross-entropy, hinge loss, and variants satisfying

some properties and correcting several defaults of the previous

ones. We can thus benefit from decades of research to validate the

machine-generated function.

The task of predicting the future accuracy of a machine learning

model has received little attention. While this question may look

odd at first glance, answering it has multiple applications, such as:

fastening NAS by being able to predict the performance of a ran-

dom architecture without having to train it [29, 57]; evaluating the

accuracy of a classifier on an unlabeled test set [10]; or measuring

the difficulty of a dataset [8, 48]. Accuracy can thus be estimated

from network weights [60], network architecture [57] or, as in our

case, dataset statistics [4, 8, 10]. Previous works mostly rely on

regression models such as neural networks or random forests, mak-

ing solutions found non-explainable [10, 60]. While showing good

performance for their respective use cases, those works did not

focus on the interpretability of their solution.

In this paper, we provide a general formula by studying more

than 260 datasets of embeddings with very different characteristics

(size, dimension, number of classes, etc.). We propose to project

those datasets into the same representation space by describing

them as a set of statistics. From those statistical representations, we

found a formula able to predict the future classification performance

of a linear classifier with a strong Pearson’s correlation and 𝑟2 score.

When comparing similar pipelines, we found our formula simpler

and more explainable. Finally, we analyze it in light of decades of

research.

2 RELATEDWORKS

The scientific method requires understanding the mathematical

relationships between variables in a given system. Symbolic Regres-

sion (SR) aims to find a function that explains hidden relationships

in data without having any prior knowledge of the function’s form.

On the other hand, traditional regression imposes a single fixed

ar
X

iv
:2

20
8.

01
35

8v
2

 [
cs

.L
G

]
 2

3
A

ug
 2

02
2

O. Risser-Maroix, B. Chamand

model structure during training, frequently chosen to be expres-

sive (e.g., neural network, random forest, etc.) at the expense of

being easily interpretable. Because SR is believed to be an NP-hard

problem [54], evolutionary methods have been developed to ob-

tain approximate solutions [32, 31, 1, 42]. The symbolic regression

challenge has recently regained popularity, and novel approaches

combining classical genetic programming and modern deep rein-

forcement learning have emerged [45, 36, 44, 52, 53]. Indeed, when

tested on 240 small datasets of 250 observations, SR was found to

be both highly interpretable and competitive on small datasets [58].

To learn a model mapping any dataset to a predicted accuracy

score, we must build a shared representation space among all

datasets. For example, [43] used nine metrics of data complexity to

characterize the behavior of several classifiers (linear, KNN, etc.)

and thus found their respective domains of competence: where

they perform best. In another work [22] found, by analyzing the

twelve measures they proposed, that rich structures exist in such

a measurement space, revealing the intricate relationship among

the factors affecting the difficulty of a problem. However, they only

examined the training sets’ structures without generalizing to un-

seen points. More recently, [41] listed 22 complexity measures from

past literature. Unfortunately, most have a complexity greater than

𝑂 (𝑛2), with 𝑛 the number of points in the dataset. This makes those

measures difficult to scale up to larger datasets. The task of finding

statistical features for datasets representation is still considered an

open question [10].

Close to our work, [8] propose to understand the difficulty of a

text classification task using textual statistics to describe datasets

used and a genetic algorithm to find the summation of those sta-

tistics correlating best with the F1-score. However, their work is

limited by the choice of features, such as 𝑛-grams, making it only

usable for textual datasets. By searching, with a Genetic Algorithm
(GA), an unweighted summation of a subset of proposed statistics,

they could only cover features having the same magnitude, discard-

ing pertinent other ones such as the dataset size. The choice of an

unweighted summation is likely to perform worse than a weighted

one learned by a linear regression model. However, our solution

confirmed intuition from [22] suggesting that the relationship be-

tween statistics is highly non-linear.

In another interesting work, [4] proposed estimating the predic-

tive accuracy of several classifiers to select the most suited for a

given dataset. In their analysis, the authors studied only one linear

model: the linear discriminant analysis (LDA).However, the current

state-of-the-art use softmax based models require gradient descent

approaches. In order to extract knowledge from a meta-dataset of

tabular datasets, they used Cubist
1
, a package producing models

in the form of rulesets. However, by being numerous and formu-

lated with hard-coded values, the generated rules are complex and

difficult to generalize.

By being applied to specific data such as text or tabular ones,

neither [8] nor [4] used the same set of statistics, making the re-

sults of their proposed pipeline not comparable. Here, we focus

on general embeddings from datasets with a broader diversity in

their characteristics, such as the range of the number of classes ([8]

the biggest one being 115 while we generalize up to 1824 classes).

1
https://cran.r-project.org/web/packages/Cubist/vignettes/cubist.html

Generated
Formulas

Optimal
Observed
Accuracy

Statistics

Embeddings
and Labels

Datasets Representation Accuracy Prediction

Feature Extractor
(e.g. CNN...)

Dataset
(e.g. ImageNet..)

Symbolic
Regr.

+
-× ⁄

√
log

Figure 1: Proposed workflow

In this work, we choose to describe our datasets with 19 domain

agnostic statistics. Moreover, we compare the solution found by our

pipeline with solutions found with previous ones [8, 4]. Using our

set of general statistics, we found that our solution is more efficient

than the others while being simpler.

3 PROPOSED APPROACH

As illustrated in Figure 1, our method is composed of two parts: (1)

the creation of a meta-datasetM from the combination of different

datasets and feature extractors, its representation, and ground-truth

creation; (2) the discovery of an explainable heuristic by symbolic

regression modeling. We detail each component in the following

paragraphs.

Datasets and Feature Extractors To find a general law cover-

ing a wide range of cases for a classification task, we selected 12

datasets and 22 feature extractors. The number of classes ranges

from 10 to 1854, while the dimensionality of the features ranges

from 256 to 2048. The selected datasets are MNIST [38], CIFAR10

[33], DTD [7], PhotoArt [59], CIFAR100 [33], 105-PinterestFaces

[51], CUB200 [56], ImageNet-R [21], Caltech256 [17], FSS1000 [40],

ImageNetMini [37],THINGS [20], containing respectively 10, 10, 47,

50, 100, 105, 200, 200, 256, 1000, 1000, 1854 classes. Regarding the

feature extractors, different architectures have been selected with

different pretraining to cover a large number of dimensions and

difficulty levels of linear classification. For example, an architecture

like FaceNet [50] is expected to perform poorly on CIFAR datasets

since it is learned on a face recognition task while being a better

feature extractor on this same dataset than a random initialized

one. The ImageNet pretrained feature extractors used are: AlexNet

[34], ResNet [19] (RN-{18, 50, 101}), DenseNet [27] (DN-{169, 201}),

SqueezeNet [28], MobileNetv2 [47], MobileNetv3 [24] small and

large versions. We also used FaceNet [50] pretrained on VGGFaces2

and CLIP-{RN50, ViT16b, ViT32b} [46] pretrained on millions of

image-text pairs. As untrained feature extractors, we used: ResNet

(RN-{34, 152}), DenseNet (DN-{169, 201}), SqueezeNet, MobileNetv2,

MobileNetv3 small and large versions. All embedding dimensions

represented here are: {256, 512, 576, 768, 960, 1024, 1280, 1664, 1792,

1920, 2048}. We refer to embeddings produced from the combina-

tion of all datasets of images by all feature extractors as a dataset
of embeddings. We construct a meta-dataset M from those 260+

datasets of embeddings.

Meta-Dataset Representation To be able to find the hidden rela-

tionship between a given dataset and the associated optimal accu-

racy, we need to describe each of those datasets by a feature vector

https://cran.r-project.org/web/packages/Cubist/vignettes/cubist.html

What can we Learn by Predicting Accuracy?

0.0 0.2 0.4 0.6 0.8 1.0
Pearson Correlation

Our GP formula
prototypes_cos_sim

feats_cos_sim
prototypes_corr

sb_trace
st_trace

feats_corr
sw_trace

pca_50
pca_75
n_train
pca_99
shapiro

n_classes
n_test

kurtosis_std
dim

kurtosis_avg
train_std

train_mean

Absolute Pearson Correlation with Accuracy

Figure 2: Absolute value of Pearson correlation between

each dataset statistic and accuracy.

𝑠 in a shared representation space S. Inspired by [22, 41, 43, 5] we

selected various features 𝑠𝑖 : the dimensionality of embeddings (dim),

the number of output classes (n_classes), the trace of the average ma-

trix of all intra-class covariance matrices (sb_trace), the trace of the
average of all inter-classes covariances matrices (sw_trace), the sum
of the two previous traces (st_trace), the mean squared deviation

(MSD) between the features’ correlation matrix and the identity

(feats_corr), the mean cosine similarity between each pair of dimen-

sions (feats_cos_sim), the percentage of dimensions to be retained

for a given explained variance of 50%, 75% and 99% (pca_XX%) to
capture information about the dataset intrinsic dimension, the aver-

age of all embedding values (train_mean) and the standard deviation
(train_std), the average and the standard deviation of the kurtosis

computed on each dimension (kurtosis_avg, kurtosis_std), and the

average Shapiro-Wilk value testing the normality of each dimension

(shapiro). The two variables (prototypes_corr, prototype_cos_sim) re-

fer respectively to information about the correlation and the cosine

similarity between prototypes. Here, the term prototype denotes

the average embedding for each class. Finally, we added number of

samples in the training set (n_train) and the testing set (n_test). The
correlations of each statistic with accuracy are reported in Figure 2.

Ground TruthCreation Once we have extracted the embeddings

from various datasets with feature extractors, we need to find the

best reachable accuracy by a softmax classifier for each case. To do

so, we split each dataset of embeddings into training and testing

sets and trained the model during 1000 epochs with a batch size of

2048. As pre-processing, all embeddings were only ℓ2-normalized.

The test sets are the usual ones for datasets with a specific split,

such as CIFAR. We used a 66/33 split for few-shot datasets, such as

THINGS, to ensure that the train/test split proportion left at least

10 images per class. The other ones were split with a ratio of 75/25.

By tracking the accuracy on the test set, we can observe the best-

reached accuracy𝛼 that wewill consider as a good approximation of

the best accuracy reachable 𝛼∗. We used Adam optimizer. Our meta-

datasetM = {(𝑠𝑖 , 𝛼𝑖)}𝐷𝑖=1 corresponds to all the pairs of statistical

Figure 3: We can observe a strong linear relationship be-

tween our predicted accuracy compared to the real one.

representation 𝑠𝑖 ∈ S of each dataset 𝑑𝑖 of the 𝐷 datasets and the

observed optimal accuracy 𝛼𝑖 ∈ A. Those tuples are then our inputs

and targets.

Symbolic Regression Recovering hidden algebraic relationship

between variables in order to describe a given phenomenon is the

objective that symbolic regression (SR) seeks to optimize. We search

a prediction function 𝑝 : R𝑆 → R from our meta-datasetM, with

𝑆 the number of statistical features representing each dataset 𝑑𝑖 . As

previously mentioned, different approaches have been developed

for symbolic regression. By benchmarking SR frameworks and ML

models, it has been found that DSO [45], a deep learning-based

approach, and gplearn, a genetic programming (GP) framework, are

two of the top-5 methods compared [35]. When trying with code

provided by DSO [45] on our task, solutions found under-performed

the gplearn with more complex formulas and longer training time.

Thus, we focus here on the gplearn implementation
2
because of

the compactness of the solutions found, speed of execution, and

easiness of use. In GP-based symbolic regression, a population P of

randomly generated mathematical expressions is "evolved" using

evolutionary operations like selection, crossover and mutation to

improve a fitness function F . The individuals 𝑝 in the population P
are represented as hierarchical compositions of primitive functions

𝜏 and terminals appropriate to the particular problem domain. Here,

𝜏 = {log, 𝑒,√,+,−,×,÷} and the set of terminals corresponds to the

statistics 𝑠𝑖 describing the dataset 𝑑𝑖 . We evolved a population of

5000 individuals for 20 steps and tested 3 different fitness functions :

the first one corresponds to the 𝑟2 between the predicted formula

and the expected result. This fitness function produced poor results

both on training and testing sets. The second one measures Pear-

son’s correlation between the expected and predicted accuracies.

While being easier to optimize than the first one, we found this one

to be surprisingly inefficient since it tends to group the pretrained

representations in a compact cluster, and the untrained ones in an-

other one such that a line passes through the two centroids. Indeed,

the Pearson correlation between model accuracies and the variable

specifying whether a pretrained or untrained model is used for

2
https://gplearn.readthedocs.io/

https://gplearn.readthedocs.io/

O. Risser-Maroix, B. Chamand

Table 1: Our formula has a better correlation and higher pre-

dictive power with only 5 variables, while the other models

used the 19 variables (all 𝑝-value < 0.01).

Method Pearson𝑟 𝑟2

Linear Regression 0.9042 0.8011

Decision Tree 0.9472 0.8868

Random Forest (10 trees) 0.9643 0.9246

Our GP formula (𝐺𝑃𝐹) 0.9671 0.9319

embedding extraction is already at 0.77. To overcome this effect, we

designed a simple fitness function such that both pretrained and

untrained extracted embeddings independently have a linear cor-

relation with accuracy. For a given individual, here a GP predictor

formula 𝑝 (·), we assess its fitness score F :

F = min

[��
pearsonr

(
𝑝 (S𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑),A𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑

)��,��
pearsonr

(
𝑝 (S𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑),A𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑

)��] (1)

with S𝑠𝑢𝑏𝑠𝑒𝑡 ,A𝑠𝑢𝑏𝑠𝑒𝑡 corresponding respectively to the sets of

statistical representations and target accuracies 𝛼 of the given

𝑠𝑢𝑏𝑠𝑒𝑡 ∈ {𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑,𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑}. While this constraint does not

enforce to have both pretained and untrained sets to be correlated

with the same tendency, we can, however, experimentally observe

the benefits on Figure 3, where pretrained and untrained networks

are not separated in very distinct clusters but are distributed around

a line. We split our meta-dataset in a fixed 75/25-train/test fashion

and repeated each experiment 1000×. Since F only seeks for corre-

lation, a linear transformation of the output value is learned on the

training set in order to predict the accuracy: 𝛼 = 𝑎 · 𝑝 (·) + 𝑏.

4 RESULTS

Baselines To evaluate the performance of our GP solution, we

compare it with popular regression methods, including linear re-

gression, decision tree regression, and random forest regression.

The same training/test split has been used for all those methods. All

variables are used simultaneously. Performances on the test set are

reported in Table. 1. With a substantial gap of 𝑟2 score between the

linear regressor and our formula, we can conclude that the task of

predicting the accuracy requires a complex non-linear combination

of only a few variables. Furthermore, we compare with non-linear

regressors such as decision trees and random forests. We choose

those because of their performances and the widespread belief sug-

gesting those models are among the most interpretable ones. We

used sklearn implementations. Our formula outperformed the deci-

sion tree and performed similarly to the random forest while being

much more explainable.

Symbolic Regression Formula We ran our GP pipeline 1000

times on the same training set and serialized their respective solu-

tions and scores for analysis. The solution having the best test 𝑟2

score was found 6×. We compare on Figure 4 the test performances

to the complexity of solutions found. Our formula has a complexity

4 6 8 10 12 14 16
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

r2
 sc

or
e

Nb. Nodes VS best r2 score

GP formulas found
Best GP formulas per nb. nodes
Very best GP formula found

Figure 4: Performance versus the complexity of GP-

Formulas.

Table 2: The slight variation in baseline precisionwhen only

using the five variables chosen by our genetic formula sug-

gests that those five variables are the most important for all

methods. (all 𝑝-value < 0.01).

Method Pearson𝑟 𝑟2

Linear Regression 0.8796 0.7689

Decision Tree 0.9538 0.8937

Random Forest (10 trees) 0.9532 0.9057

Our GP formula (𝐺𝑃𝐹) 0.9671 0.9319

of 6 nodes. We will refer to this Genetic Programming Formulas as:

𝐺𝑃𝐹 = log

(
𝑠𝑏_𝑡𝑟𝑎𝑐𝑒/𝑠𝑡_𝑡𝑟𝑎𝑐𝑒√

𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ·𝑓 𝑒𝑎𝑡𝑠_𝑐𝑜𝑟𝑟 ·𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑠_𝑐𝑜𝑠_𝑠𝑖𝑚

)
(2)

We can easily rewrite : 𝐺𝑃𝐹 = 𝑆𝐸𝑃 −𝐶𝑂𝑅 with:

𝑆𝐸𝑃 = log

(
𝑠𝑏_𝑡𝑟𝑎𝑐𝑒

𝑠𝑡_𝑡𝑟𝑎𝑐𝑒

)
𝐶𝑂𝑅 =

1

2

log (𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 · 𝑓 𝑒𝑎𝑡𝑠_𝑐𝑜𝑟𝑟 · 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑠_𝑐𝑜𝑠_𝑠𝑖𝑚)
(3)

𝑆𝐸𝑃 may correspond to a separability criterion while𝐶𝑂𝑅 may cor-

respond to correlation information. Section. 5 delves deeper into

each formula component. By ablating 𝐺𝑃𝐹 and considering each

part independently, we found they were complementary. Indeed,

𝑆𝐸𝑃 has only a Pearson’s correlation of 0.65 and𝐶𝑂𝑅 of−0.87while
the combination of the two parts reached 0.96. Finally, we found

that other best-performing GP formulas have a similar structure

and variables. We report in Figure 5 how many times each statistic

was used during the 1000 runs.

Ablation As a first ablation test, we propose demonstrating how

the variables selected by our𝐺𝑃𝐹 influence the results for different

baselines. Table. 2 shows a minor decrease in performance of those

methods when compared to the original baseline from Table. 1.

For example, Pearson’s correlation of the random forest falls from

0.9643 to 0.9532, while the decision tree rises from 0.9472 to 0.9538.

On the other hand, the linear regression model needs to suffer from

What can we Learn by Predicting Accuracy?

0 200 400 600 800 1000
Number of Occurences

n_classes
prototypes_cos_sim

sw_trace
st_trace
sb_trace

feats_corr
prototypes_corr

shapiro
train_std

train_mean
pca_50

feats_cos_sim
pca_75
pca_99
n_test

dim
n_train

kurtosis_std
kurtosis_avg

Most Frequent Variables in the 1000 Formulas

Figure 5: Frequency of the most used variables in the 1000

GP-formulas found. Dark bars indicate the variables present

in the best GP formula.

Table 3: We evaluate the performance of our formula after

replacing each variable with its mean value. All 𝑝-values <

0.01, except for Sb_trace with a 𝑝-value of 0.6882. Bold scores

correspond to the worst one making the variable the most

important one.

Ablated Variable Pearson𝑟 𝑟2

Sb_trace −0.0503 −2.1806
n_classes 0.7918 0.4341

St_trace 0.8028 −1.2761
feats_corr 0.8530 0.5818

prototypes_cos_sim 0.9420 0.8764

No variable ablated 0.9671 0.9319

this feature selection step by dropping from 0.9042 to 0.8796. All

𝑝-values < 0.01 suggests that selected variables could be sufficient

to correlate with accuracy. However, a non-linear transformation

of those variables is still required.

One can note that the log properties can still be applied to

our 𝐺𝑃𝐹 to reduce our formula as a linear combination of our

selected variables. With coefficients being [1,−1,− 1

2
,− 1

2
,− 1

2
], our

𝐺𝑃𝐹 could thus be written as:

GPF = log(Sb_trace) - log(St_trace)

- 0.5 log(n_classes)

- 0.5 log(feats_corr)

- 0.5 log(prototypes_corr)

(4)

Given that no prior on the structure of the𝐺𝑃𝐹 was imposed during

the search phase, this discovery is particularly interesting. With

this finding arise two closely related questions: 1) does learning

those five coefficients improve performance? 2) what would be the

performances if all variables were used? To answer the first one,

we learned a linear regression model on the five statistics after

Table 4: We compare our solution to different methods. Our

𝐺𝑃𝐹 offers the best compromise between accuracy and sim-

plicity without having any prior on the structure of the solu-

tion. Our extension of the 𝐺𝑃𝐹 using 17 variables offers the

best Pearsons’s correlation and 𝑟2 score. Here log stands for

log-transformed variables and org for the original ones.

Method Nb. Var Pearson𝑟 𝑟2

GA unweighted sum 19 org 0.7763 0.5744

GA unweighted sum 17 log 0.9621 0.9254

Cubist Rules 19 org 0.9666 0.9343

Cubist Rules 5 log 0.9642 0.9276

Cubist Rules 17 log 0.9772 0.9525

Our Linear Regression 5 log 0.9607 0.9206

Our Linear Regression 17 log 0.9795 0.9586

Our GP formula 5 org 0.9671 0.9319

passing them to the log. Doing so increased the performance of the

linear model without the log transform from a Pearson’s coefficient

of 0.9042 in Table. 1 to 0.9607 after log transforming inputs as

reported in Table. 4. While being more efficient on the train set,

the linear model performed worse on the test set than our 𝐺𝑃𝐹 .

However, when comparing the learned weights, we found that signs

and magnitudes were highly similar to weights or our 𝐺𝑃𝐹 with a

cosine similarity of 0.9923. By not requiring any re-weighting of

our five variables, our formula in its original form (Equation. 2) is

thus more interesting. On the other hand, we learned a linear model

on the log-transformed statistics using the same procedure. Due to

negative values in the original ones, only 17 of 19 are kept. At the

expense of being significantly less explainable, the model’s scores

are reported in Table. 1 outperformed our𝐺𝑃𝐹 ones. Ones can note

that the relative difference of reported correlations between the

models with 17 variables and the 𝐺𝑃𝐹 with 5 is smaller than the

difference of the 𝐺𝑃𝐹 with the 5 variables and the 𝐺𝑃𝐹 with the 4

most important variables reported in Table. 3.

Finally, our last ablation study seeks to determine which compo-

nents of our formula are themost important ones.We can determine

how much each variable influences scores by freezing each vari-

able and replacing it with its mean value. The more significant the

drop, the greater the variable’s significance. Table. 3 allows us to

see that freezing each variable results in a decrease in score. All

𝑝-values are significant (< 0.01), with the exception of Sb_trace.
Indeed, freezing it removes all correlation between our 𝐺𝑃𝐹 and

the expected accuracy with a 𝑝-value of 0.6882. On the other hand,

while having a minimal positive impact on correlating 𝐺𝑃𝐹 with

accuracy, prototypes_cos_sim appears to be still important to have

a good 𝑟2 prediction score.

Comparison to Related Work As previously mentioned, [8, 4]

used neither similar datasets nor statistics for describing selected

datasets making their work hard to compare them and with them.

However, we propose to compare our solutions found by applying

their pipeline on our meta-dataset. Results are reported in Table. 4.

O. Risser-Maroix, B. Chamand

if
. percentage_dims_exp_var_99 > 0.9316406
. feats_corr <= 0.05039461
. kurtosis_std <= 9.284021
. n_test > 1880
. n_test <= 4384
.then
. outcome = 5.4992777
. - 0.031372 kurtosis_std
. - 5.02 percentage_dims_exp_var_99
. + 1.31 feats_corr
. + 0.83 Sb_trace
. - 0.19 prototypes_cos_sim
. + 0.085 prototypes_corr
. + 8e-06 n_test + 1.6 train_mean
. - 3.2e-05 n_classes
. - 1.8 train_std

Figure 6: Example of one of the ten rules output by Cubist
when learning on the 19 variables.

To find an unweighted sum of a few variables, we used a similar

genetic algorithm3
(GA) with the Pearson’s correlation between

predicted and real score as fitness function, such as in [8]. By setting

variable type being integer and bounded between [−1, 1], the 3

possibles values are {−1, 0, 1}. With an initial population of 5000

and 300 iterations, we found results to be stable. We used the exact

same train/test split as us. To compute the 𝑟2 score, we employed

the same procedure of linearly re-calibrating the formula with

(𝑎, 𝑏) learned on the training set. As expected, the results on the

19 variables are significantly worse than the weighted summation

of our baseline linear regression model. Thus, we tested the same

pipeline after keeping and log transforming 17 variables (due to

2 out of the 19 variables having negative values). Consistently

with the discovery of the ablation study suggesting only to log

transforming variables as pre-processing, results increased. The

best solution found with the genetic algorithm (GA) is reported in

Equation. 5:

GA = log(Sb_trace) + log(shapiro)

+ log(dim) - log(feats_corr)

- log(Sw_trace) - log(kurtosis_avg)

- log(prototypes_corr)

(5)

Solution found used 7 variables while our 𝐺𝑃𝐹 used only 5. With

only 3 variables shared with our𝐺𝑃𝐹 , we find it difficult to under-

stand the interaction with the selected variables.

To compare our solution to the pipeline proposed by [4], we

used the R package implementing Cubist, the software the authors

used to find an interpretative set of rules. As reported in Table. 4

we experimented with three set of input variables. The first one

corresponds to our 19 original variables without any transformation.

While having scores comparable to our 𝐺𝑃𝐹 using 5 variables, we

can note that the rules are highly complex. Indeed, it produced 10

rules, using many coefficients, which are hard to read. One example

of rule is reported in Figure. 6. In a second experiment, we used

only the top 5 variables selected by our𝐺𝑃𝐹 after log transforming

them. It helped the Cubist system in outputting comparable results

3
https://github.com/rmsolgi/geneticalgorithm

Table 5: We examine our formula’s transferability of base-

line regressors with five variables. The best reachable 𝐺𝑃𝐹

is indicated with the * symbol. All 𝑝-values < 0.01.

Method Pearson𝑟 𝑟2

Linear Regression 0.6191 0.3052

Decision Tree 0.7944 0.1928

Random Forest (10 trees) 0.7231 -0.0722

Our GP formula (𝐺𝑃𝐹) 0.8618 0.4565

Our GP formula (𝐺𝑃𝐹) * 0.8618 0.7428

by using only two rules. Each rule predicts the accuracy as a linear

combination of all 5 log variables. We compare the coefficients

of those rules with those of our original 𝐺𝑃𝐹 (as in Equation. 4.

Interestingly, they have a cosine similarity of 0.9467 and 0.9791

with our 𝐺𝑃𝐹 ones. With only 5 variables, our 𝐺𝑃𝐹 is simpler and

performs better. Finally, we found that our log pre-processing also

benefited Cubist. When giving the 17 log-transformed variables

as input, Cubist proposed a solution based on 6 rules while being

significantly more efficient than the 10 rules outputted from the 19

original variables. However, our extension of the 𝐺𝑃𝐹 to the linear

combination of the 17 log-variable still performs better while being

much more straightforward than the Cubist’s solutions.

Using Ockham’s principle, those findings are evidence making

our 𝐺𝑃𝐹 a better choice. Furthermore, our 𝐺𝑃𝐹 can be easier to

explain because of its conciseness. We propose to discuss our 𝐺𝑃𝐹

in Section. 5.

Generalization Our method is applicable to any dataset describ-

able with a set of a few statistics. Because we obtained our 𝐺𝑃𝐹

using statistics from embedding datasets extracted only from vi-

sion datasets and feature extractors, the generalization of our 𝐺𝑃𝐹

discovered on those datasets to other domains, such as text, can

be questioned. Thus, we used 7 text datasets, and 4 pretrained text

features extractors from the sentence-transformers package4 to test

our formula’s ability to transfer to new modalities. Combining all

those datasets and feature extractors, we applied the same process

to extract dataset statistics and accuracies, yielding 28 points for

our analysis. Table. 5 compares how our formula transfers to this

new set of points with classical regressors. All reported correlations

have a statistically significant 𝑝-value (< 0.01). We can observe a sig-

nificant drop in Pearson’s correlation and 𝑟2 scores for all methods.

However, our 𝐺𝑃𝐺 still outperforms other methods with a strong

Pearson’s correlation of 0.8618. Two 𝑟2 scores for our 𝐺𝑃𝐹 were

reported; the first one corresponds to our formula linearly trans-

formed with the coefficient 𝑎, 𝑏 learned on the training set of the

vision dataset. The second one, obtained by linearly translating our

𝐺𝑃𝐹 , refers to the best possible 𝑟2 score on the text meta-dataset. To

find the oracle coefficients, we evaluated the formula after learning

the parameters 𝑎, 𝑏 on the text meta-dataset (here train=test). The

oracle gives us the best score reachable on this meta-dataset of 28

points. With (𝑎, 𝑏) = (0.2417, 1.0327) for the vision meta-dataset

and (𝑎, 𝑏) = (0.2508, 0.9121) for the text meta-dataset, we can see

that the parameters from the text and the vision meta-dataset are

4
https://www.sbert.net

https://github.com/rmsolgi/geneticalgorithm
https://www.sbert.net

What can we Learn by Predicting Accuracy?

similar. However, the 𝑟2 score appears extremely sensitive, perhaps

due to the small number of points. This score drop can be explained

by the discrepancy between the text and vision meta-datasets. For

example, while datasets with more than 200 classes are common in

vision, text classification tasks typically have a much lower number

of classes, such as 2 for sentiment analysis or 20 for topics modeling.

We measured this discrepancy by performing Student’s 𝑡-test on

each of the five selected variables. We found three of the five vari-

ables have a 𝑝-value < 0.01 (Sb_trace, n_classes, prototypes_cos_sim),

giving evidence against the null hypothesis of equal population

means. While not perfect, our results appear promising. However,

they would benefit from incorporating more meta-datasets from

other domains, such as audio, video, graph-based, or tabular data

classification datasets.

5 DISCUSSION

As seen previously,𝐺𝑃𝐹 can be written as a summation of two com-

ponents. With a closer look, one can observe that the first element

𝑆𝐸𝑃 is close to the Fisher’s criterion used in the Linear Discrim-
inant Analysis (LDA) [14] where the objective is to find a linear

projection that maximizes the ratio of between-class variance and

the within-class variance. Thus, 𝑆𝐸𝑃 corresponds to a separability

measure of classes. Interestingly, this criterion has been used suc-

cessfully as a loss function in deep learning [11, 15]. The choice of

an LDA-based loss function remains marginal in deep learning, the

cross-entropy (CE) being a more popular choice. However, strong

similarities between the LDA and the CE allow us to swap this first

separability measure for the latter. Indeed, [55] noticed that one

of the most widely studied technical routes to overcome certain

deficiencies of the softmax in the cross-entropy-based loss is to

encourage stronger intra-class compactness and larger inter-class

separability, analogously to Fisher’s criterion.

The second part, 𝐶𝑂𝑅, is negatively correlated to the accuracy.

This is easily understandable by looking at each variable compos-

ing this part of the formula. The first is the number of classes

(𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠). Indeed, when a machine learning model is trained on a

dataset, it is natural to expect that scores will decrease as the num-

ber of classes grows. [18] discuss how, as the number of classes in a

dataset grows, it gets harder to distinguish between them, making

the dataset increasingly challenging to classify. This intuition may

be empirically verified on datasets with different class granularities.

For example, [6] observed a drop in accuracy from 0.97 to 0.82

on the CUB200 dataset [56] when changing the number of classes

from a coarse level (13) to a fine-grained one (200). The two other

variables (𝑓 𝑒𝑎𝑡𝑠_𝑐𝑜𝑟𝑟 , 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒_𝑐𝑜𝑠_𝑠𝑖𝑚) correspond to orthogo-

nality and decorrelation information. By looking at the literature,

we can easily explain the importance of both decorrelation terms.

In defense of the weights decorrelation term (prototypes_cos_sim),

[2] found on several state-of-the-art CNN that they could achieve

better accuracy, more stable training, and smoother convergence

by using orthogonal regularization of weights. Previous works on

features decorrelation heavily justify the presence of our features

decorrelation variable (feats_corr) [3, 13, 26, 30, 39, 55, 62]. Indeed,
[39] found that correlated input variables usually lead the eigen-

vectors of the Hessian to be rotated away from the coordinate axes

leading to slower convergence. Thus, several propositions were

developed to better decorrelate variables such as PCA or ZCA [30].

More recently, decorrelation played an essential role in the per-

formance increase of self-supervised methods [3, 13, 26, 62]. For

example, [13] recently introduced a whitening step in their self-

supervised loss, and [3] included a decorrelation part in their loss.

They argue that this term decorrelates the variables and prevents

collapse.

6 CONCLUSION

In this paper, we showed that a simple pipeline could help us to

extract theoretical intuitions from experimentation. To do so, we

conducted experiments on a meta-dataset of more than 260 datasets

of embeddings extracted from the combination of a wide range of

datasets and feature extractors. To solve the problem of expressing

such disparate datasets, we proposed combining them into a single

space by creating a representation using a set of general statistics

that can be computed on any dataset. As a result, our work applies

to computer vision and all other areas of machine learning. Finally,

an heuristic able of predicting the accuracy of a linear classifier

was discovered automatically, with a Pearson’s correlation of 0.96

and an 𝑟2 of 0.93. Interestingly, other systems with similar per-

formances tend to confirm our 𝐺𝑃𝐹 by having highly correlated

weights. Furthermore, this formula is highly explainable and is

consistent with decades of research. This successful example of

AI-assisted research encourages us to use it in other areas, such

as predicting and understanding hyperparameters (regularization,

temperature, tree depth, etc.).

7 ACKNOWLEDGMENT

This work was partially financed by Smiths Detection.
Authors would like to thank all peoples involved in the proof-

reading and contributed to substantially improving this document.

Listed in alphabetical order: Thibault ALEXANDRE, Ihab BENDIDI,

Mohamed CHELALI, Philippe JOLY, Celia KHERFALLAH, Camille

KURTZ, Amine MARZOUKI, Julien PINQUIER, Guillaume SERIEYS.

REFERENCES

[1] Douglas Adriano Augusto and Helio J. C. Barbosa. 2000. Symbolic regression

via genetic programming. In SBRN, Procs. 173–178.
[2] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. 2018. Can we gain more

from orthogonality regularizations in training deep networks? In NIPS, Procs.
Vol. 31.

[3] Adrien Bardes, Jean Ponce, and Yann LeCun. 2022. VICReg: variance-invariance-

covariance regularization for self-supervised learning. In ICLR, Procs.
[4] Hilan Bensusan and Alexandros Kalousis. 2001. Estimating the predictive ac-

curacy of a classifier. In European Conference on Machine Learning. Springer,
25–36.

[5] Benjamin Chamand, Olivier Risser-Maroix, C. Kurtz, P. Joly, and N. Loménie.

2022. Fine-tune your classifier: finding correlations with temperature. In Pro-
ceedings of the IEEE International Conference on Image Processing – ICIP 2022.
IEEE Computer Society.

[6] Dongliang Chang, Kaiyue Pang, Yixiao Zheng, Zhanyu Ma, Yi-Zhe Song, and

Jun Guo. 2021. Your" flamingo" is my" bird": fine-grained, or not. In CVPR, Procs.
11476–11485.

[7] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. 2014. Describing

textures in the wild. In CVPR, Procs.
[8] Edward Collins, Nikolai Rozanov, and Bingbing Zhang. 2018. Evolutionary data

measures: understanding the difficulty of text classification tasks. In CoNLL.
[9] Alex Davies et al. 2021. Advancing mathematics by guiding human intuition

with ai. Nature, 600, 7887, 70–74.
[10] Weijian Deng and Liang Zheng. 2021. Are labels always necessary for classifier

accuracy evaluation? In CVPR, Procs. 15069–15078.

O. Risser-Maroix, B. Chamand

[11] Matthias Dorfer, Rainer Kelz, and Gerhard Widmer. 2016. Deep linear discrimi-

nant analysis. In ICLR, Procs.
[12] Michael R Douglas. 2022. Machine learning as a tool in theoretical science.

Nature Reviews Physics, 1–2.
[13] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. 2021.

Whitening for self-supervised representation learning. In ICML, Procs. PMLR,

3015–3024.

[14] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic prob-

lems. Annals of eugenics, 7, 2, 179–188.
[15] Benyamin Ghojogh, Milad Sikaroudi, Sobhan Shafiei, Hamid R Tizhoosh, Fakhri

Karray, and Mark Crowley. 2020. Fisher discriminant triplet and contrastive

losses for training siamese networks. In 2020 international joint conference on
neural networks (IJCNN). IEEE, 1–7.

[16] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. 2019. Scal-

ing and benchmarking self-supervised visual representation learning. arXiv
preprint arXiv:1905.01235.

[17] Greg Griffin, Alex Holub, and Pietro Perona. 2006. Caltech256 image dataset.

http://www.vision.caltech.edu/Image_Datasets/Caltech256/.

[18] Maya R Gupta, Samy Bengio, and Jason Weston. 2014. Training highly multi-

class classifiers. The Journal of Machine Learning Research, 15, 1, 1461–1492.
[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In CVPR, Procs. 770–778.
[20] Martin N. Hebart, Adam H. Dickter, Alexis Kidder, Wan Y. Kwok, Anna Cor-

riveau, Caitlin Van Wicklin, and Chris I. Baker. 2019. THINGS: A database of

1, 854 object concepts and more than 26, 000 naturalistic object images. PLOS
One, 14, 10, e0223792.

[21] Dan Hendrycks et al. 2020. The many faces of robustness: A critical analysis of

out-of-distribution generalization. CoRR, abs/2006.16241.
[22] Tin Kam Ho and Mitra Basu. 2002. Complexity measures of supervised classifi-

cation problems. IEEE transactions on pattern analysis and machine intelligence,
24, 3, 289–300.

[23] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. 2020.

Meta-learning in neural networks: a survey. arXiv preprint arXiv:2004.05439.
[24] Andrew Howard et al. 2019. Searching for mobilenetv3. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, 1314–1324.
[25] Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat,

and Melvin Johnson. 2020. Xtreme: a massively multilingual multi-task bench-

mark for evaluating cross-lingual generalisation. In International Conference
on Machine Learning. PMLR, 4411–4421.

[26] Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang

Zhao. 2021. On feature decorrelation in self-supervised learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, 9598–9608.

[27] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 4700–4708.

[28] Forrest N Iandola, Song Han, Matthew WMoskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. 2016. Squeezenet: alexnet-level accuracy with 50x

fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360.
[29] Roxana Istrate, Florian Scheidegger, Giovanni Mariani, Dimitrios Nikolopoulos,

Constantine Bekas, and Adelmo Cristiano Innocenza Malossi. 2019. Tapas:

train-less accuracy predictor for architecture search. In Proceedings of the AAAI
Conference on Artificial Intelligence number 01. Vol. 33, 3927–3934.

[30] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. 2018. Optimal whitening

and decorrelation. The American Statistician, 72, 4, 309–314.
[31] John R. Koza. 1993. Genetic programming - on the programming of computers

by means of natural selection. Complex adaptive systems. MIT Press.

[32] John R. Koza. 1994. Genetic programming as a means for programming com-

puters by natural selection. Statistics and Computing, 4, 2.
[33] Alex Krizhevsky andGeoffreyHinton. 2009. Learningmultiple layers of features

from tiny images. Tech. rep. University of Toronto.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classi-

fication with deep convolutional neural networks. In NIPS, Procs.
[35] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrı cio Olivetti de

França, Marco Virgolin, Ying Jin, Michael Kommenda, and Jason HMoore. 2021.

Contemporary symbolic regression methods and their relative performance.

In Proceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks. J. Vanschoren and S. Yeung, (Eds.) Vol. 1.

[36] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago,

Ruben Glatt, Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. 2021. Dis-

covering symbolic policies with deep reinforcement learning. In ICML, Procs.
5979–5989.

[37] Ya Le and Xuan S. Yang. 2015. Tiny imagenet visual recognition challenge. In.

[38] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. 2010. Mnist hand-

written digit database. http://yann.lecun.com/exdb/mnist. (2010).

[39] Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller, (Eds.) 2012.

Efficient backprop. Neural Networks: Tricks of the Trade: Second Edition. Springer
Berlin Heidelberg, Berlin, Heidelberg, 9–48. isbn: 978-3-642-35289-8. doi: 10.1

007/978-3-642-35289-8_3.

[40] Xiang Li, Tianhan Wei, Yau Pun Chen, Yu-Wing Tai, and Chi-Keung Tang.

2020. FSS-1000: A 1000-class dataset for few-shot segmentation. In CVPR, Procs.
2866–2875.

[41] Ana C Lorena, Luı s PF Garcia, Jens Lehmann, Marcilio CP Souto, and Tin Kam

Ho. 2019. How complex is your classification problem? a survey on measuring

classification complexity. ACM Computing Surveys, 52, 5, 1–34.
[42] Qiang Lu, Jun Ren, and ZhiguangWang. 2016. Using genetic programming with

prior formula knowledge to solve symbolic regression problem. Computational
Intelligence and Neuroscience, 2016, 1021378:1–1021378:17.

[43] Ester Bernadó Mansilla and Tin Kam Ho. 2004. On classifier domains of compe-

tence. In Proceedings of the 17th International Conference on Pattern Recognition,
2004. ICPR 2004. Vol. 1. IEEE, 136–139.

[44] T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago,

Daniel M. Faissol, and Brenden K. Petersen. 2021. Symbolic regression via

neural-guided genetic programming population seeding. In NIPS, Procs.
[45] Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santi-

ago, Soo K Kim, and Joanne T Kim. 2021. Deep symbolic regression: Recovering

mathematical expressions from data via risk-seeking policy gradients. In ICLR,
Procs.

[46] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, et al. 2021. Learning transferable visual models from natural

language supervision. In ICML, Procs. 8748–8763.
[47] Mark Sandler, AndrewHoward, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition,
4510–4520.

[48] Florian Scheidegger, Roxana Istrate, Giovanni Mariani, Luca Benini, Costas

Bekas, and Cristiano Malossi. 2021. Efficient image dataset classification diffi-

culty estimation for predicting deep-learning accuracy. The Visual Computer,
37, 6, 1593–1610.

[49] Michael Schmidt and Hod Lipson. 2009. Distilling free-form natural laws from

experimental data. Science, 324, 5923, 81–85.
[50] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A

unified embedding for face recognition and clustering. In CVPR, Procs. 815–823.
[51] Burak Toy. [n. d.] Pins Face Recognition — kaggle.com. https://www.kaggle.co

m/hereisburak/pins-face-recognition. [Accessed 13-Dec-2021]. ().

[52] Silviu-Marian Udrescu andMax Tegmark. 2020. Ai feynman: A physics-inspired

method for symbolic regression. Science Advances, 6, 16, 2631.
[53] Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter AN Bosman.

2021. Improving model-based genetic programming for symbolic regression of

small expressions. Evolutionary Computation, 29, 2, 211–237.
[54] Marco Virgolin and Solon P Pissis. 2022. Symbolic regression is np-hard. arXiv

preprint arXiv:2207.01018.
[55] WeitaoWan, Yuanyi Zhong, Tianpeng Li, and Jiansheng Chen. 2018. Rethinking

feature distribution for loss functions in image classification. In Proceedings of
the IEEE conference on computer vision and pattern recognition, 9117–9126.

[56] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona.

2010. Caltech-UCSD Birds 200. Tech. rep. CNS-TR-2010-001. California Institute

of Technology.

[57] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan

Kindermans. 2020. Neural predictor for neural architecture search. In European
Conference on Computer Vision. Springer, 660–676.

[58] Casper Wilstrup and Jaan Kasak. 2021. Symbolic regression outperforms other

models for small data sets. ArXiv, abs/2103.15147.
[59] Qi Wu, Hongping Cai, and Peter Hall. 2014. Learning graphs to model visual

objects across different depictive styles. In ECCV, Procs. 313–328.
[60] Yasunori Yamada and Tetsuro Morimura. 2016. Weight features for predicting

future model performance of deep neural networks. In IJCAI, 2231–2237.
[61] Xiaohua Zhai et al. 2019. The visual task adaptation benchmark.

[62] Shaofeng Zhang, Feng Zhu, Junchi Yan, Rui Zhao, and Xiaokang Yang. 2022.

Zero-cl: instance and feature decorrelation for negative-free symmetric con-

trastive learning. In ICLR, Procs.

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://www.kaggle.com/hereisburak/pins-face-recognition
https://www.kaggle.com/hereisburak/pins-face-recognition

	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Approach
	4 Results
	5 Discussion
	6 Conclusion
	7 Acknowledgment

