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Abstract

Few-shot segmentation aims to devise a generalizing
model that segments query images from unseen classes dur-
ing training with the guidance of a few support images
whose class tally with the class of the query. There exist two
domain-specific problems mentioned in the previous works,
namely spatial inconsistency and bias towards seen classes.
Taking the former problem into account, our method com-
pares the support feature map with the query feature map at
multi scales to become scale-agnostic. As a solution to the
latter problem, a supervised model, called as base learner,
is trained on available classes to accurately identify pixels
belonging to seen classes. Hence, subsequent meta learner
has a chance to discard areas belonging to seen classes
with the help of an ensemble learning model that coordi-
nates meta learner with the base learner. We simultane-
ously address these two vital problems for the first time and
achieve state-of-the-art performances on both PASCAL-5'
and COCO-20' datasets.

1. Introduction

Semantic segmentation is a crucial task that classifies
each pixel of an image to make sense of the scene with ap-
plication areas such as autonomous driving [5]] and medical
imaging [19]. Deep learning pervades semantic segmenta-
tion like other tasks of computer vision [2, [T5]]. Supervised
segmentation models are required to employ abundant an-
notated data belonging to each class in the training set since
the generalization capacity of supervised models decreases
with scarce labeled data. Therefore, adapting the model to
work on unseen classes requires dense annotation of myr-
iad data from novel classes. Shaban et al. [20] proposed
few-shot segmentation to remove the labeling effort and in-
crease the generalization capacity of a model given few data
for the first time.

Few-shot segmentation addresses the problem of mak-
ing pixel-wise predictions for a target image, called a query,
from an unseen class with the guidance of a support image
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Figure 1. (a) Overview of BAM [10]. Support and query features
are used by meta learner to extract support feature map while base
learner provides guidance for the base classes and leads the meta
learner to focus on novel regions via ensembling. (b) Our pro-
posed method. The decoder for meta learner is improved such
that query feature map is obtained at multi-scale. Support fea-
ture map is compared with query feature maps at multi-scale to
obtain enriched query features. Query predictions obtained from
enriched query features at each scale are ensembled with the base
map as well as the prediction obtained from the fusion of them.
Inner losses are computed at different scale levels and the final
prediction is obtained from the ensemble of the base map with the
predictions from the fused query feature maps. (Best viewed in
Zoom)
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from the same category. Inspired by the few-shot classifi-
cation task [23]], most methods utilized the episodic train-
ing strategy in which the gradients are averaged over tasks
named as an episode. Each episode is sampled from a
dataset whose classes are disjoint from a test case where
only a few data are available. These episodes are used to im-
itate the test case during training to prevent overfitting. De-



spite this intention, a model trained with this strategy tends
to mistake segments from seen training classes, referred as
base classes, as novel classes because of constantly experi-
encing the same set of classes during training. Hence, the
co-occurrence of novel and base classes in the same scene
causes entanglement between features of pixels that are part
of the novel and base categories.

To prevent this entanglement, prediction of the super-
vised model which is trained on base classes guides the
meta learner, which is responsible for detecting novel ar-
eas. Meta learner is directed to areas not occupied by the
base classes so that contradiction between the base learner
and the meta learner is avoided via the ensemble model en-
tailing both base and meta predictions [10]. On the side
of meta learner, candidate objects in query image might
not cover as same area as those in support images; so, the
model should compare support feature map with query fea-
ture map at different resolutions to disentangle adjacent re-
gions around novel segments [22]. As shown in Fig.
the ensemble of base and meta learner without improved
decoder fails to distinguish background from foreground
since naive decoder, which is designed for the supervised
scheme, lacks to combine features at different resolutions
in favor of complete query prediction. Hence, we trans-
form the naive decoder into an improved decoder such that
not only does it correlate the support image with the query
image at multi-resolution but also it benefits from merits
of base learner at multi-resolution. In this regard, we hy-
pothesize that there are cases where it is not enough that
base learner discourages meta learner from base regions at
single-scale. Our experiments verify that the improved de-
coder and ensembling the predictions at multi-scale outper-
form the decoder equipped with ensembling the prediction
at single-scale. Our contributions in this paper are two-fold:

* We alleviate the spatial inconsistency and the bias
problems together with the assistance of our proposed
decoder that seeks to remove bias at multi-resolution.

e Our proposed method achieves new state-of-the art
performance on both PASCAL-5" (mloU @ 1-shot:
68.59%, mloU @ 5-shot: 72.05%) and COCO-20"
(mIoU @ 1-shot: 47.16%, mloU @ 5-shot: 52.50%)
datasets for few-shot segmentation task.

2. Related work

2.1. Semantic segmentation

Fully convolutional neural network (FCN), which is the
pioneering work in semantic segmentation field, formulates
semantic segmentation as a pixel-wise classification task
[15]. In FCN, all fully connected layers at the end of a
model are transformed into convolution layers so that the
network accepts arbitrary input sizes. Success of FCN

accelerates the field and results in outstanding architec-
tures such as UNet [[19], PSPNet [30], and Deeplab [2| 3]
PSPNet combines average pooled feature maps at different
scales to contain not only global but also local context [30].
Deeplab introduces ASPP module [2] equipped with dilated
convolution that increases the receptive field of the network
without a decrease in resolution by inserting holes between
filter weights.

2.2. Few-shot segmentation

Few-shot segmentation studies can be categorized into
four groups according to their objectives: imbalance in de-
tails, inter-class gap, spatial inconsistency, and correlation
reliability.

The imbalance in details problem emphasizes that there
might be details that do not co-exist in both query and cor-
responding support image. Hence, inconsistent regions be-
tween support and query should be detected and eliminated
on the support side to prevent redundant details or noise in
an adaptive manner. PGNet [28] proposes a network that
associates each query pixel to the relevant parts of the sup-
port image to remove noise, where relevancy is generally
quantified by a similarity metric such as cosine similarity.
PANet [24]] adds regularization loss to ensure that the net-
work becomes successful if the roles of support and query
are swapped. ASGNet [11]] aims to find an adaptive num-
ber of prototypes and their spatial extents based on image
content with a boundary-aware superpixel algorithm so that
prototypes represent parts of an object with similar charac-
teristics. Each query pixel utilizes support prototype giving
maximum cosine similarity with itself as reference.

Most approaches assume that transferable knowledge
constantly exists in base set and tries to segment image from
unseen classes during training. This strong assumption
loses its validity in proportion to the discrepancy between
base and novel dataset, and this problem is referred as an
inter-class gap. RePRI [1] shows that the severity of over-
fitting is exaggerated in few-shot segmentation and adapting
novel classes by fine-tuning over support images improves
segmentation performance. CWT [16] episodically trains
self-attention block that adapts classifier weights of network
updated over support image during both training and test.
BriNet [27] regards prediction for query as pseudo-mask
and switches the roles between query and support to update
model with ground truth support mask during test stage un-
til determined mloU threshold is exceeded for support mask
and its prediction.

Architectures designed for supervised cases fail to pro-
vide scale-invariance in few-shot scenarios since contex-
tual relationships are not figured out by a handful of data.
Methods design control mechanism that provides favor-
able information exchange between different resolutions
[25) 126l 221 28]



Correlation map determines pixel-wise similarity be-
tween support and query images. Problems such as back-
ground clutter and occlusion lead to noise in the correlation
map; hence, it results in erroneous comparisons and training
processes based on misinterpreted correspondences, which
is called as a hyper correlation reliability problem. Meth-
ods are proposed to check the validity of correspondences
based on learnable or engineered criteria so that filtered cor-
relation maps become interpretable. After the elimination
of deceptive correspondences, all similarities correspond-
ing to each query pixel from the support image are summed
to obtain an activation score that determines the level of as-
sociation of that query pixel with the foreground of support
[17,18].

3. Preliminaries

In order to relate the specified challenges in few-shot
segmentation with our approach and guide the reader
through steps, the task is formally defined in Section
Feature Enrichment Module (FEM) [22] and Base and Meta
Learner (BAM) [10] are introduced in Sections[3.2]and 3.3}
respectively.

3.1. Task description

Few-shot segmentation task utilizes base dataset contain-
ing adequate images with their annotations whose classes,
Chase, are disjoint from novel classes, Cpopelr, in Which
dense predictions are fulfilled with few data and their an-
notations. K number of available data and their annotations
belonging to the novel classes constitute a support set S for
testing which are expected to guide a model M to make
predictions for query image Z,, which is dubbed as K-shot
segmentation. The support set is formally represented as
S = {Zs,, M, } K |, where Z,, and M, correspond to i
support image and its dense ground truth mask. On the side
of training, support set for training is sampled from base
dataset along with query set which consists of the query im-
age and its ground truth, sharing its class with the chosen
support set. The aforementioned classes are treated as novel
class during training in order to perform episodic train-
ing, where pixels belonging to chosen class are assigned
as foreground while pixels from all other classes are con-
sidered as background. Query set is formally represented as
Q ={7,, M,}, where Z, and M correspond to the query
image and its dense ground truth mask. The model, M,
is trained by backpropagating binary cross entropy loss be-
tween Z,; and M, over tasks, named as episodes involving
the selected support set from base dataset with the accom-
panying query set.

3.2. Revisit feature enrichment module

Multi-scale modules in supervised semantic segmenta-
tion generally do not provide mechanism to form inde-

pendent interaction between masked global average pooled
support feature map, called as support prototype, and aver-
age pooled query feature map at different scales. For ex-
ample, conventional multi-scale architectures apply single
filtering to combination of query feature map, support pro-
totype, and prior mask that describes likelihood of query
pixel being related with at least one pixel in foreground of
support [22]. Different from these approaches, inter-source
enrichment module of FEM separately applies the filtering
to the query feature map at each different scale, which is
combined with support prototype and prior mask. Further-
more, inter-scale interaction module of FEM fulfills the in-
formation transfer between two consecutive resolutions in
top-down path, where top-down path consists of outputs of
inter-source enrichment module ordered from high resolu-
tion to low resolution. During information transfer, preser-
vation of hierarchical structure allows gradual accumulation
of information from higher resolution to lower resolution.
In this module, each resolution has direct connection only
to its neighbour in the top-down direction. Therefore, there
is no connection between any resolution pairs other than the
consecutive ones. Hence, the module has a chance to decide
on the scale at which the obtained information is sufficient
to make a prediction and the following scales would bring
redundancy. Following this reasoning, feature maps at dif-
ferent resolutions are fused via information concentration
module in FEM.

3.3. Revisit base and meta learner

Typical few-shot segmentation approaches use meta-
learning approach such that the knowledge gained from
training the model on the base classes is utilized to pre-
dict the mask of the query image belonging to a novel class
given a support image belonging to the same novel class.
This process is called as meta-learning since learning tasks
are sampled from the base classes during training in order to
simulate the few-shot settings in testing so that the training
and testing conditions are matched. However, as [10] states,
training on base classes introduce a bias towards them dur-
ing testing, which prevents the model to work on the novel
classes properly. To tackle this bias BAM is introduced,
where a base learner, apart from the meta learner, explicitly
works on the known classes. When the information related
to known classes is used during testing, the recognition of
novel classes would be enhanced.

Training BAM consists of two stages, namely base-
training and meta-training. Both learners share the same
backbone as feature encoder. To leverage the representa-
tions at different levels of abstraction, features are obtained
from different layers of the encoder. Base learner is trained
in a supervised manner so that the ability to make confi-
dent predictions regarding base classes is gained. In meta-
training stage, the parameters of the base learner are fixed.



The features of support and query images are extracted by
the shared encoder and the features obtained after block-2
and block-3 of ResNet-50 [[7]] are concatenated and trans-
formed with 1x1 convolution layer, which are denoted by
f7 and f respectively. Query features after block-4 of
ResNet-50, fg , are processed by base learner and decoded
by Pyramid Scene Parsing Network (PSPNet) [30]], which is
composed of Pyramid Pooling Module (PPM) and classifier
so that the probability map of base classes, p{: , 1s obtained.
This step is crucial since the base classes are the background
classes for the query image while the novel class is the fore-
ground, which is to be predicted by the meta learner. The
support mask, m?, is used together with f;, in order to ob-
tain the support prototype, vs. The query features, support
prototype and the prior map are concatenated, which is in-
putted to the meta decoder. At the end of the meta decoder,
output background and foreground probability maps, p2,
and p}.,, are obtained.

Low level features for support and query images are ob-
tained from the intermediate levels of the encoder, denoted
by f;,,, and f{ . and the Frobenius norm between their
Gram matrices is computed as adjustment factor, 1. The
adjustment factor is leveraged such that the smaller 9 is,
the closer the representations of support and query images
become. In other words, as ¢ gets smaller, the reliabil-
ity of the prediction of the meta learner increases such that
the query features become representative of the support fea-
tures. Moreover, p!, is ensembled with p{; in order to force
the pixels belonging to non-novel regions for the query im-
age to be closer to the base classes. This enhanced infor-
mation is used such that the corresponding pixels are less
likely to be predicted as novel. Resultant ensembled infor-
mation is concatenated with pl, in order to produce final
prediction.

4. Method

As CANet implies [29], we use the middle level fea-
tures by applying 1x1 convolution to concatenation of fea-
ture maps obtained from block-2 and block-3. We represent
middle level features belonging to support and querys image
respectively as in Eq. [T|and Eq. [2] where Enc symbolizes
the middle level feature extractor.

8 = Enc(Z,) € RT*Wx¢ (1)

. = Enc(Z,) € RT*WxC 2

To obtain the prior map in a similar manner to PFENet
[22], high level query and support features are reshaped
from REXWXC o REWXC gt first. After that, row wise
norms for high level query and support pixel features are
computed respectively as in Eq. [3]and Eq. ] where © cor-

responds to Hadamard root while diag outputs diagonal el-
ements of a matrix as a column vector.

|€2]| = (diag(£! x t:bﬂ))ol/z c RHWx1 3)

€] = (diag(£} x £7))°1/2 € RHWx1 @

Prior map is calculated by max pooling the cosine simi-
larity matrix between the high level query and support pix-
els along row wise direction as shown in Eq. [5] where © is
Hadamard divison.

C, = pool(f! x ) o (|€1]| x |£5]|T)) € R (5)

Masked global average pooling is applied to f; to extract
support prototype, v, in Eq. [6] where R downsamples M
to the size of f},.

v, = masked_avg_pool(f , R (M,)) € RV>1*C  (6)

FEM takes v, C,, and f] as input and outputs N+1
enriched query feature maps where N of them correspond
to enriched auxiliary feature maps at N different scales and
the last one is the fusion of them as shown in Eq.

X;17X227"'7X2N7X5used:FEM(CQ?fgnvvs) (7)

CAUX _ {Cauav,l7 Cauw,Z’ - Caua;,N, Cauw,fused} (8)

CcAUX in Eq. |§| represents set of classifiers, where first
N classifiers correspond to auxiliary classifiers, which make
predictions for the multi-scale features, while the last classi-
fier is responsible for the prediction deduced from the fused
feature. By using these classifiers, we obtain background
and foreground logit values for enriched query feature maps
at each scale and the fused feature map respectively in Eq.
[ and Eq. [T1] where & performs concatenation operation.

Pons, Pons, = C01(XF) ()

Pons, = Pons, ® P, (10)

pgn,fuseda p}n,f’u,sed = Caur,fused(xt};used) (1 1)

pm,fused = pgt,fused D pgn,fused (12)
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Figure 2. Detailed architecture of the multi-scale ensemble module. Features at multi-scale and the fusion of them are obtained at the end
of the improved decoder as X3 and Xg used respectively, which are used by the corresponding auxiliary classifiers. The resultant enriched
query feature maps are ensembled with the base map to obtain query predictions at multi-scale, which are denoted by p; . and Py 5.4
respectively. Inner losses are computed from probability maps at intermediate scales (pm’si) and predictions at intermediate scales (p f,Si)
while fused losses are computed from fused probability maps (pm’ Fuse d) and fused predictions (p /) fused). (Best viewed in color)

BaseLearner in Eq. takes f;" as input and outputs
summation of predicted probabilities for all classes except
background.

p{: = BaseLearner(fl)) (13)

While Eq. [T14] Eq. [I5] and Eq. [T6]are the same as in
BAM [10], we employ separate ensemble models for each
auxiliary predictions to render meta-model aware of non-
novel regions at each scale, as inspired by BAM, as shown
in Eq. [T7] Eq. [T8] and Eq. [[9)as well as in Fig. 2] with pink
rectangular boxes covered by dashed lines.

P fused = Enss(D], Ensy (), fuseas ) (14)
p},fused = EnST/J (p}n,fused’ w) (15)

P fused = PY. fused © PY. fused (16)

P}, = Enses, (p], Ensy(p), . ¥)  (I7)

P}s, = Ensy(py o0 %) (18)
_ 0 1
Pss; = Pgs; @pf,si (19)
N
meta =Y OBy 0s M) (20)
=1
fused
Emeta = CE(pm,fused?Mq) (21)
) N
finer =Y CE(py,, My) (22)
=1
‘C}c?rfs;l = CE(pf,fused7Mq) (23)

Eq. and Eq. [2I] compute cross entropy losses for
the auxiliary predictions and the fused prediction before en-
semble respectively while Eq. 22]and Eq. [23]compute cross



entropy losses for the auxiliary predictions and the fused
prediction after ensemble accordingly.

Ciflim = Lot + Lhaa' + Lfel + cfinel @4
All individuals losses are accumulated to update the net-
work eventually as in Eq. 24}

5. Experiments
5.1. Details

Datasets. The model is evaluated on two datasets which are
commonly used in few-shot segmentation tasks. PASCAL-
5% [20] is the first dataset, containing 20 classes and it
is a combination of PASCAL VOC 2012 [4] and the ex-
tended annotations obtained from [6]. The second dataset
is COCO-20" [18], which is generated from MSCOCO
[12]. COCO-20¢ is more challenging when compared to
PASCAL-5 as it consists of images belonging to 80 classes.
The datasets are split into 4 folds containing equal number
of classes in order to perform cross-validation while 1000
support and query pairs are randomly sampled for each fold.
One of the folds is selected for evaluating the performance
of the model on unseen classes while the rest of them are
used as base classes for training the model. This procedure
is repeated for all folds.

Evaluation metrics. In order to compare with previous
studies on few-shot segmentation [28), 22, 14} 9} [13} [10],
class mean intersection-over-union is used as the evaluation
metric, which is calculated as in[23] where C is the number
of classes in each fold.

C
1
mlIoU = - ; IoU; (25)

The foreground-background IoU (FB-IoU) is also calcu-
lated as an additional metric.
Implementation details. All experiments are conducted
on PyTorch framework with NVIDIA RTX 2080Ti GPUs.
As suggested in BAM [10]], there are two training stages,
namely pre-training and meta-training. Pre-training stage is
utilized for learning the base classes while ResNet-50 [7]]
and VGG-16 [21] are used as backbone for PASCAL-5"
and only ResNet-50 [7]] is used as backbone for COCO-20".
For PASCAL-5¢, PSPNet [30] is trained for 100 epochs as
base learner with an initial learning rate of 2.5e-3. For the
base learner on COCO-20", the model shared by the authors
of [10] is used. In meta-training stage, PASCAL-5% and
COCO-20¢ are trained for 200 and 50 epochs respectively
while the learning rate is set to Se-2. For both stages, SGD
is utilized as optimizer. Random scaling, rotation, horizon-
tal flip, cropping and Gaussian Blur is applied to images.
The sizes of the enriched query features at the output of the

improved decoder are set to 60, 30, 15, and 8, which makes
N =4 as suggested by [22].

Generalized few-shot segmentation setting. Our method
is also evaluated in generalized few-shot segmentation set-
ting, which is defined by [[10], where both pixels belonging
to novel and base classes are detected. For this setting, novel
pixels are predicted as novel if their final foreground prob-
abilities exceed a predefined threshold while the pixels pre-
dicted as base should be assigned to one of the base classes.
By this way, the pixels belonging to different base classes
are distinguished while the rest of the pixels are classified as
novel or background. This setting requires the calculation
of mloU on base and novel classes and also the combination
of them, which are denoted by mloU,,, mloU; and mloU,
respectively.

5.2. Results
5.2.1 Quantitative results

Table shows the performance comparison between
BAM-++ and other methods proposed for few-shot segmen-
tation task using ResNet-50 and VGG-16. The mIoU results
include 1-shot and 5-shot cases for PASCAL-5¢ dataset.
BAM-++ outperforms the existing methods for both settings.
When VGG-16 is utilized as backbone, our method sur-
passes the state-of-the-art results by 1.61% and 2.17% for 1-
shot and 5-shot settings, respectively. When it comes to the
model with ResNet-50 as backbone, 0.78% and 1.14% per-
formance gains are achieved for 1-shot and 5-shot settings.
The results on COCO-5° dataset are provided in Table [2| for
ResNet-50 as backbone only. BAM++ outperforms the best
results by 0.93% and 1.34% under 1-shot and 5-shot set-
tings, respectively. Comparison with state-of-the-art mod-
els regarding the FB-IoU scores is provided in Table [3] for
both backbones on PASCAL-5¢ dataset. The results show
that our method performs well in 1-shot setting while ex-
ceeds the best result by 0.66% in 5-shot setting for ResNet-
50. On the other hand, model with VGG-16 outperforms
the previous state-of-the-art by 1.43% and 1.42% for 1-shot
and 5-shot settings respectively.

5.2.2 Qualitative results

Qualitative results for PASCAL-5? dataset under 1-shot set-
ting with ResNet-50 backbone are provided in Fig. [3| The
differences between our proposed architecture and BAM
can be seen when the predicted masks are analyzed. The
main advantage of our model is revealed in cases where
there is another object adjacent to the novel target object. In
such cases, models generally tend to entangle the objects.
In Fig. [3] it is seen that BAM predicts both the monitor and
the computer as novel objects although there is only moni-
tor in the support image. Since our model analyzes the fea-
tures at different scales, it distinguishes the neighboring ob-



1-shot (%) 5-shot (%)
Backbone Method Fold:0 Fold-1 Fold-2 Fold3 Average | Fold-0 Fold-1 Fold-2 Fold3 Average
PFENet (TPAMI'20) [22] | 5690 6820 5440 5240 5800 | 59.00 69.10 5480 5290  59.00
NTRENet (CVPR'22) [14] | 57.70 67.60 57.10 5370  59.00 | 60.30 6800 5520 5710  60.20
VGG-16 | DPCN(CVPR'22)[I3] | 5890 69.10 6320 5570 6170 | 6340 7070 68.10 59.00  65.30
BAM (CVPR'22) [I0] | 63.18 7077 6614 5753 6441 | 6736 73.05 70.61 6400  68.76
BAM:++ (ours) 64.67 7211 6783 5947 6602 | 6940 7435 7277 6719 7093
PGNet (ICCV'19) [28] | 56.00 6690 50.60 5040 5600 | 5770 6870 5290 5460  58.50
PFENet (TPAMI'20) [22] | 6170  69.50 5540 5630  60.80 | 63.10 7070 5580 5790  61.90
NTRENet (CVPR'22) [14] | 6540 7230 5940 59.80 6420 | 6620 7280 6170 6220  65.70
ResNet-50 | ASNet (CVPR'22) [0] | 6890 7170 6110 6270  66.10 | 7260 7430 6530 6710  70.80
DPCN (CVPR'22) [I3] | 6570 7160 69.10 60.60 6670 | 70.00 7320 7090 6550  69.90
BAM (CVPR'22) [10] | 6897 73.59 67.55 6113 6781 | 7059 7505 7079 6720 7091
BAM:+ (ours) 6946 7416 6920 6154 6859 | 7081 7534 73.04 6899  72.05

Table 1. 1-shot and 5-shot class mIoU results on PASCAL-5* dataset for VGG-16 and ResNet-50 as backbone, provided for 4 folds and
the average. The best results are given in boldface. The underlined results show the best performance excluding our method.

1-shot (%) 5-shot (%)
Backbone Method Fold-0 Fold-1 Fold-2 Fold-3 Average | Fold-0 Fold-1 Fold2 Fold-3 Average
NTRENet (CVPR'22) [14] | 36.80 42.60 3990 3790 3930 | 3820 44.10 4040 3840 4030
ASNet (CVPR22) [9] - - - - 4220 - - - - 68.80
ResNet-50 | DPCN (CVPR’22) [I3] | 42.00 47.00 4320 3970  43.00 | 4600 5490 50.80 4740  49.80

BAM (CVPR’22) [10] 4341 50.59 4749 4342 46.23 49.26 5420 51.63  49.55 51.16
BAM-++ (ours) 4443 5198 47.01 45.22 47.16 5253 57.02 5097 49.49 52.50

Table 2. 1-shot and 5-shot class mIoU results on COCO-20" dataset for ResNet-50 as backbone, provided for 4 folds and the average. The
best results are given in boldface. The underlined results show the best performance excluding our method.

Backbone Method 1-shot (%) | 5-shot (%) 5.2.3 Generalized few-shot segmentation results
PFENet (TPAMI 20) [22] 72.00 72.30
NTRENet (CVPR’22) [14] |~ 73.10 74.20 Our method surpasses BAM [10] in generalized few-shot
VGG-16 DPCN (CVPR'22) [L3] 7370 77.20 segmentation setting for both backbones on PASCAL-5"
BAM (CVPR’22) [10] 77.26 81.10 d h . bl h 1 lid h
BAM-++ (ours) 78.69 82.52 atasc?t as shown in Ta. el The .mIoU results validate the
PFENet (TPAMT 20) [22] 73.30 73.90 superiority of ensembling at multi-scale for both novel and
NTRENet (CVPR’22) [14] 77.00 78.40 base predictions.
ResNet-50 ASNet (CVPR’22) [9] 717.70 80.40
DPCN (CVPR’22) [13] 78.00 80.70 5.3. Ablation study
BAM (CVPR’22) [10] 79.711 82.18
BAM++ (ours) 79.65 82.84 Ablation study regarding the decision on how to in-

Table 3. 1-shot and 5-shot FB-IoU results on PASCAL-5" dataset
for VGG-16 and ResNet-50 as backbone, provided as the average.
The best results are given in boldface. The underlined results show
the best performance excluding our method.

clude the inner losses for the multi-scale predictions are
performed by considering the following cases: calculation
of inner losses before and after the ensembling, without
the ensembling, and after the ensembling only. The con-
tributions of £I77¢" in Eq. [20and £77¢7 in Eq. [22] on
the final mIoU performance are investigated. Thus, we ex-
perimented with the cases where either £I""¢" is inactive,
Liner is inactive, or both £i7S" and LY}7%] are active for

meta final
jects from each other well. Moreover, another faulty case is the LGl calculation in Eq. The results are obtained

given in the third row, which is consistent with our hypothe-
sis. Even though base learner discourages meta learner from
non-novel regions, i.e. sofa, meta learner of BAM predicts
these regions as novel. When ensembling the query predic-
tions at different scales is introduced, such incorrect pre-
dictions are eliminated. As it can be seen in the predicted
map of our method, only the regions belonging to the dog
are considered as foreground. We deduce that ensembling
at multi-scale ensures the model to focus on non-novel re-
gions rather than the areas belonging to base classes.

for PASCAL-5" dataset under 1-shot setting and provided
in Table |5} Activating only L7 reaches an mloU per-
formance of 68.37% while including E}%Z{ alone obtains
the performance of 68.45%. The last row in Table [5] indi-
cates that when both £""¢" and E}’”w’ are used, the high-
est performance is achieved, which is 68.59%. As conse-
quence, this ablation experiment validates our hypothesis,
which emphasizes the weakness of the model implementing
ensembling at single scale and the merits of the co-existence

inner inner
Of‘cmeta and final *
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Figure 3. Qualitative 1-shot results on PASCAL-5" dataset for ResNet-50 backbone. Results for one novel class from each fold are provided
in rows. First two columns contain image and mask for support while the following two columns contain image and ground truth for query.
Fifth column shows the probability map for query obtained from base learner. Predictions are provided for BAM and our method for

comparison in the last two columns. (Best viewed in color)

1-shot (%) 5-shot (%)

Backbone Method mloU,, mloU, mloU, | mloU, mloU, mloU,

VGG-16 BAMI[IO] | 43.19 67.03 61.07 | 46.15 67.02 61.80
) BAM++ 4394 6780 61.83 | 4720 67.80 62.64

BAM 4793 7272 6652 | 49.17 7272  66.83

ResNet-30 | "paMas | 4998 7287 67.15 | 5241 7287 6176

Table 4. Generalized few-shot segmentation results on PASCAL-
5" dataset for VGG-16 and ResNet-50 as backbone. The best re-
sults are given in boldface.

Method | £ete T £7Mal T mioU (%)
BAM++ | v - 6837
BAM++ | - v 68.45
BAM++ | v 68.59

Table 5. Ablation studies on inner losses for the multi-scale pre-
dictions regarding the ensembling with the base map under 1-shot
setting for PASCAL-5°. Results show the averaged mloU over 4
folds.

6. Conclusion

We observed that although ensembling meta predic-
tion with base prediction guides the model by making the
meta learner cautious in the regions where objects from
base classes exist, meta learner misclassifies non-novel re-
gions by neglecting base learner. This situation arises as a

consequence of ensembling the predictions at single-scale.
Therefore, we proposed to perform ensembling for predic-
tions at multi-scale as well as the final prediction. By this
way, bias existing at non-novel regions is diminished. The
experiments on PASCAL-5’ and COCO-20' verifies our hy-
pothesis and our model achieves new state-of-the-art on
few-shot segmentation benchmark.
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